1
|
Lim RM, Lu A, Chuang BM, Anaraki C, Chu B, Halbrook CJ, Edinger AL. CARMIL1-AA selectively inhibits macropinocytosis while sparing autophagy. Mol Biol Cell 2025; 36:ar4. [PMID: 39602282 PMCID: PMC11742120 DOI: 10.1091/mbc.e24-09-0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Macropinocytosis is reported to fuel tumor growth and drug resistance by allowing cancer cells to scavenge extracellular macromolecules. However, accurately defining the role of macropinocytosis in cancer depends on our ability to selectively block this process. 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) is widely used to inhibit macropinocytosis but affects multiple Na+/H+ exchangers (NHE) that regulate cytoplasmic and organellar pH. Consistent with this, we report that EIPA slows proliferation to a greater extent than can be accounted for by macropinocytosis inhibition and triggers conjugation of ATG8 to single membranes (CASM). Knocking down only NHE1 would not avoid macropinocytosis-independent effects on pH. Moreover, contrary to published reports, NHE1 loss did not block macropinocytosis in multiple cell lines. Knocking down CARMIL1 with CRISPR-Cas9 editing limited macropinocytosis, but only by 50%. In contrast, expressing the CARMIL1-AA mutant inhibits macropinocytosis induced by a wide range of macropinocytic stimuli to a similar extent as EIPA. CARMIL1-AA expression did not inhibit proliferation, highlighting the shortcomings of EIPA as a macropinocytosis inhibitor. Importantly, autophagy, another actin dependent, nutrient-producing process, was not affected by CARMIL1-AA expression. In sum, constitutive or inducible CARMIL1-AA expression reduced macropinocytosis without affecting proliferation, RAC activation, or autophagy, other processes that drive tumor initiation and progression.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Alexa Lu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
| | - Brennan M. Chuang
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Cecily Anaraki
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
| | - Brandon Chu
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
| | - Christopher J. Halbrook
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| | - Aimee L. Edinger
- Department of Developmental and Cell Biology, Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92617
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92617
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868
| |
Collapse
|
2
|
Goode BL, Eskin J, Shekhar S. Mechanisms of actin disassembly and turnover. J Cell Biol 2023; 222:e202309021. [PMID: 37948068 PMCID: PMC10638096 DOI: 10.1083/jcb.202309021] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Cellular actin networks exhibit a wide range of sizes, shapes, and architectures tailored to their biological roles. Once assembled, these filamentous networks are either maintained in a state of polarized turnover or induced to undergo net disassembly. Further, the rates at which the networks are turned over and/or dismantled can vary greatly, from seconds to minutes to hours or even days. Here, we review the molecular machinery and mechanisms employed in cells to drive the disassembly and turnover of actin networks. In particular, we highlight recent discoveries showing that specific combinations of conserved actin disassembly-promoting proteins (cofilin, GMF, twinfilin, Srv2/CAP, coronin, AIP1, capping protein, and profilin) work in concert to debranch, sever, cap, and depolymerize actin filaments, and to recharge actin monomers for new rounds of assembly.
Collapse
Affiliation(s)
- Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Julian Eskin
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Salloum G, Bresnick AR, Backer JM. Macropinocytosis: mechanisms and regulation. Biochem J 2023; 480:335-362. [PMID: 36920093 DOI: 10.1042/bcj20210584] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Macropinocytosis is defined as an actin-dependent but coat- and dynamin-independent endocytic uptake process, which generates large intracellular vesicles (macropinosomes) containing a non-selective sampling of extracellular fluid. Macropinocytosis provides an important mechanism of immune surveillance by dendritic cells and macrophages, but also serves as an essential nutrient uptake pathway for unicellular organisms and tumor cells. This review examines the cell biological mechanisms that drive macropinocytosis, as well as the complex signaling pathways - GTPases, lipid and protein kinases and phosphatases, and actin regulatory proteins - that regulate macropinosome formation, internalization, and disposition.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| | - Jonathan M Backer
- Department of Molecular Pharamacology, Albert Einstein College of Medicine, Bronx, NY, U.S.A
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, U.S.A
| |
Collapse
|
4
|
Jung G, Pan M, Alexander C, Jin T, Hammer JA. Dual regulation of the actin cytoskeleton by CARMIL-GAP. J Cell Sci 2022; 135:275754. [PMID: 35583107 PMCID: PMC9270954 DOI: 10.1242/jcs.258704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Capping protein Arp2/3 myosin I linker (CARMIL) proteins are multi-domain scaffold proteins that regulate actin dynamics by regulating the activity of capping protein (CP). Here, we characterize CARMIL-GAP (GAP for GTPase-activating protein), a Dictyostelium CARMIL isoform that contains a ∼130 residue insert that, by homology, confers GTPase-activating properties for Rho-related GTPases. Consistent with this idea, this GAP domain binds Dictyostelium Rac1a and accelerates its rate of GTP hydrolysis. CARMIL-GAP concentrates with F-actin in phagocytic cups and at the leading edge of chemotaxing cells, and CARMIL-GAP-null cells exhibit pronounced defects in phagocytosis and chemotactic streaming. Importantly, these defects are fully rescued by expressing GFP-tagged CARMIL-GAP in CARMIL-GAP-null cells. Finally, rescue with versions of CARMIL-GAP that lack either GAP activity or the ability to regulate CP show that, although both activities contribute significantly to CARMIL-GAP function, the GAP activity plays the bigger role. Together, our results add to the growing evidence that CARMIL proteins influence actin dynamics by regulating signaling molecules as well as CP, and that the continuous cycling of the nucleotide state of Rho GTPases is often required to drive Rho-dependent biological processes. Summary:Dictyostelium CARMIL-GAP supports phagocytosis and chemotaxis by regulating both capping protein and Rac1.
Collapse
Affiliation(s)
- Goeh Jung
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Miao Pan
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - Chris Alexander
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, USA
| | - John A Hammer
- Cell and Developmental Biology Center, National Heart lung and Blood Institute, National Institutes of Health, USA
| |
Collapse
|
5
|
Kolukisa B, Baser D, Akcam B, Danielson J, Eltan SB, Haliloglu Y, Sefer AP, Babayeva R, Akgun G, Charbonnier LM, Schmitz-Abe K, Demirkol YK, Zhang Y, Gonzaga-Jauregui C, Heredia RJ, Kasap N, Kiykim A, Yucel EO, Gok V, Unal E, Kisaarslan AP, Nepesov S, Baysoy G, Onal Z, Yesil G, Celkan TT, Cokugras H, Camcioglu Y, Eken A, Boztug K, Lo B, Karakoc-Aydiner E, Su HC, Ozen A, Chatila TA, Baris S. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 2022; 77:1004-1019. [PMID: 34287962 PMCID: PMC9976932 DOI: 10.1111/all.15010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.
Collapse
Affiliation(s)
- Burcu Kolukisa
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Dilek Baser
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Bengu Akcam
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Asena Pinar Sefer
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Royale Babayeva
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Gamze Akgun
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Louis-Marie Charbonnier
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Boston Children’s Hospital, Division of Immunology
and Newborn Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasemin Kendir Demirkol
- Genomic Laboratory (GLAB), Umraniye Teaching and Research
Hospital, University of Health Sciences, Istanbul, Turkey
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | | | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Nurhan Kasap
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Ozek Yucel
- Istanbul University, Istanbul Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Veysel Gok
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | | | - Serdar Nepesov
- Medipol University Medical Faculty, Department of
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Gokhan Baysoy
- Medipol University Medical Faculty, Department of
Pediatric Gastroenterology, Istanbul, Turkey
| | - Zerrin Onal
- Istanbul University, Istanbul Faculty of Medicine,
Department of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul,
Turkey
| | - Gozde Yesil
- Istanbul University, Istanbul Faculty of Medicine,
Department of Medical Genetics, Istanbul, Turkey
| | - Tulin Tiraje Celkan
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Division of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Haluk Cokugras
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Yildiz Camcioglu
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ahmet Eken
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Bernice Lo
- Sidra Medicine, Research Branch, Division of
Translational Medicine, Doha, Qatar,College of Health and Life Sciences, Hamad Bin Khalifa
University, Doha, Qatar
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Talal A. Chatila
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| |
Collapse
|
6
|
Stark BC, Gao Y, Sepich DS, Belk L, Culver MA, Hu B, Mekel M, Ferris W, Shin J, Solnica-Krezel L, Lin F, Cooper JA. CARMIL3 is important for cell migration and morphogenesis during early development in zebrafish. Dev Biol 2022; 481:148-159. [PMID: 34599906 PMCID: PMC8781030 DOI: 10.1016/j.ydbio.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023]
Abstract
Cell migration is important during early animal embryogenesis. Cell migration and cell shape are controlled by actin assembly and dynamics, which depend on capping proteins, including the barbed-end heterodimeric actin capping protein (CP). CP activity can be regulated by capping-protein-interacting (CPI) motif proteins, including CARMIL (capping protein Arp2/3 myosin-I linker) family proteins. Previous studies of CARMIL3, one of the three highly conserved CARMIL genes in vertebrates, have largely been limited to cells in culture. Towards understanding CARMIL function during embryogenesis in vivo, we analyzed zebrafish lines carrying mutations of carmil3. Maternal-zygotic mutants showed impaired endodermal migration during gastrulation, along with defects in dorsal forerunner cell (DFC) cluster formation, which affected the morphogenesis of Kupffer's vesicle (KV). Mutant KVs were smaller, contained fewer cells and displayed decreased numbers of cilia, leading to defects in left/right (L/R) patterning with variable penetrance and expressivity. The penetrance and expressivity of the KV phenotype in carmil3 mutants correlated well with the L/R heart positioning defect at the end of embryogenesis. This in vivo animal study of CARMIL3 reveals its new role during morphogenesis of the vertebrate embryo. This role involves migration of endodermal cells and DFCs, along with subsequent morphogenesis of the KV and L/R asymmetry.
Collapse
Affiliation(s)
- Benjamin C. Stark
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Yuanyuan Gao
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Diane S. Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lakyn Belk
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Matthew A. Culver
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Bo Hu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO
| | - Wyndham Ferris
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA.,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO,Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO,Corresponding authors. Email addresses for correspondence after publication: Fang Lin, ; Lilianna Solnica-Krezel, ; John Cooper,
| |
Collapse
|
7
|
Lamb AK, Fernandez AN, Peersen OB, Di Pietro SM. The dynein light chain protein Tda2 functions as a dimerization engine to regulate actin capping protein during endocytosis. Mol Biol Cell 2021; 32:1459-1473. [PMID: 34081539 PMCID: PMC8351736 DOI: 10.1091/mbc.e21-01-0032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clathrin- and actin-mediated endocytosis is a fundamental process in eukaryotic cells. Previously, we discovered Tda2 as a new yeast dynein light chain (DLC) that works with Aim21 to regulate actin assembly during endocytosis. Here we show Tda2 functions as a dimerization engine bringing two Aim21 molecules together using a novel binding surface different than the canonical DLC ligand binding groove. Point mutations on either protein that diminish the Tda2-Aim21 interaction in vitro cause the same in vivo phenotype as TDA2 deletion showing reduced actin capping protein (CP) recruitment and increased filamentous actin at endocytic sites. Remarkably, chemically induced dimerization of Aim21 rescues the endocytic phenotype of TDA2 deletion. We also uncovered a CP interacting motif in Aim21, expanding its function to a fundamental cellular pathway and showing such motif exists outside mammalian cells. Furthermore, specific disruption of this motif causes the same deficit of actin CP recruitment and increased filamentous actin at endocytic sites as AIM21 deletion. Thus, the data indicate the Tda2-Aim21 complex functions in actin assembly primarily through CP regulation. Collectively, our results provide a mechanistic view of the Tda2-Aim21 complex and its function in actin network regulation at endocytic sites.
Collapse
Affiliation(s)
- Andrew K Lamb
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Andres N Fernandez
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Olve B Peersen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|
8
|
Baker LA, Momen M, McNally R, Berres ME, Binversie EE, Sample SJ, Muir P. Biologically Enhanced Genome-Wide Association Study Provides Further Evidence for Candidate Loci and Discovers Novel Loci That Influence Risk of Anterior Cruciate Ligament Rupture in a Dog Model. Front Genet 2021; 12:593515. [PMID: 33763109 PMCID: PMC7982834 DOI: 10.3389/fgene.2021.593515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a common condition that disproportionately affects young people, 50% of whom will develop knee osteoarthritis (OA) within 10 years of rupture. ACL rupture exhibits both hereditary and environmental risk factors, but the genetic basis of the disease remains unexplained. Spontaneous ACL rupture in the dog has a similar disease presentation and progression, making it a valuable genomic model for ACL rupture. We leveraged the dog model with Bayesian mixture model (BMM) analysis (BayesRC) to identify novel and relevant genetic variants associated with ACL rupture. We performed RNA sequencing of ACL and synovial tissue and assigned single nucleotide polymorphisms (SNPs) within differentially expressed genes to biological prior classes. SNPs with the largest effects were on chromosomes 3, 5, 7, 9, and 24. Selection signature analysis identified several regions under selection in ACL rupture cases compared to controls. These selection signatures overlapped with genome-wide associations with ACL rupture as well as morphological traits. Notable findings include differentially expressed ACSF3 with MC1R (coat color) and an association on chromosome 7 that overlaps the boundaries of SMAD2 (weight and body size). Smaller effect associations were within or near genes associated with regulation of the actin cytoskeleton and the extracellular matrix, including several collagen genes. The results of the current analysis are consistent with previous work published by our laboratory and others, and also highlight new genes in biological pathways that have not previously been associated with ACL rupture. The genetic associations identified in this study mirror those found in human beings, which lays the groundwork for development of disease-modifying therapies for both species.
Collapse
Affiliation(s)
- Lauren A Baker
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rachel McNally
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E Berres
- Bioinformatics Resource Center, Biotechnology Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nat Cell Biol 2021; 23:147-159. [PMID: 33558729 DOI: 10.1038/s41556-020-00629-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/21/2020] [Indexed: 01/18/2023]
Abstract
Coordinated polymerization of actin filaments provides force for cell migration, morphogenesis and endocytosis. Capping protein (CP) is a central regulator of actin dynamics in all eukaryotes. It binds to actin filament (F-actin) barbed ends with high affinity and slow dissociation kinetics to prevent filament polymerization and depolymerization. However, in cells, CP displays remarkably rapid dynamics within F-actin networks, but the underlying mechanism remains unclear. Here, we report that the conserved cytoskeletal regulator twinfilin is responsible for CP's rapid dynamics and specific localization in cells. Depletion of twinfilin led to stable association between CP and cellular F-actin arrays, as well as to its retrograde movement throughout leading-edge lamellipodia. These were accompanied by diminished F-actin turnover rates. In vitro single-filament imaging approaches revealed that twinfilin directly promotes dissociation of CP from filament barbed ends, while enabling subsequent filament depolymerization. These results uncover a bipartite mechanism that controls how actin cytoskeleton-mediated forces are generated in cells.
Collapse
|
10
|
Hodge MJ, de las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of Breed Specific Differences in Spermatozoal Transcriptomes of Sheep in Australia. Genes (Basel) 2021; 12:genes12020203. [PMID: 33573244 PMCID: PMC7912062 DOI: 10.3390/genes12020203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 01/27/2023] Open
Abstract
Reduced reproductive efficiency results in economic losses to the Australian sheep industry. Reproductive success, particularly after artificial insemination, is dependent on a number of contributing factors on both ewe and ram sides. Despite considerable emphasis placed on characterising ewe side contributions, little emphasis has been placed on characterising ram side contributions to conception success. Over 14,000 transcripts are in spermatozoa of other species, which are transferred to the ova on fertilisation. These transcripts conceivably influence early embryonic development and whether conception is successful. Semen was collected (n = 45) across three breeds; Merino, Dohne, and Poll Dorset. Following collection, each ejaculate was split in two; an aliquot was assessed utilising Computer Assisted Semen Analysis (CASA) and the remaining was utilised for RNA extraction and subsequent next-generation sequencing. Overall, 754 differentially expressed genes were identified in breed contrasts and contrast between ejaculates of different quality. Downstream analysis indicated that these genes could play significant roles in a broad range of physiological functions, including maintenance of spermatogenesis, fertilisation, conception, embryonic development, and offspring production performance. Overall results provide evidence that the spermatozoal transcriptome could be a crucial contributing factor in improving reproductive performance as well as in the overall productivity and profitability of sheep industries.
Collapse
Affiliation(s)
- Marnie J. Hodge
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Apiam Animal Health, Apiam Genetic Services, Dubbo, NSW 2830, Australia;
| | - Sara de las Heras-Saldana
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia;
| | | | - Cyril P. Stephen
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
| | - Sameer D. Pant
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (M.J.H.); (C.P.S.)
- Correspondence:
| |
Collapse
|
11
|
Fokin AI, David V, Oguievetskaia K, Derivery E, Stone CE, Cao L, Rocques N, Molinie N, Henriot V, Aumont-Nicaise M, Hinckelmann MV, Saudou F, Le Clainche C, Carter AP, Romet-Lemonne G, Gautreau AM. The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex. SCIENCE ADVANCES 2021; 7:eabd5956. [PMID: 33523880 PMCID: PMC7806238 DOI: 10.1126/sciadv.abd5956] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2020] [Indexed: 05/09/2023]
Abstract
Dendritic actin networks develop from a first actin filament through branching by the Arp2/3 complex. At the surface of endosomes, the WASH complex activates the Arp2/3 complex and interacts with the capping protein for unclear reasons. Here, we show that the WASH complex interacts with dynactin and uncaps it through its FAM21 subunit. In vitro, the uncapped Arp1/11 minifilament elongates an actin filament, which then primes the WASH-induced Arp2/3 branching reaction. In dynactin-depleted cells or in cells where the WASH complex is reconstituted with a FAM21 mutant that cannot uncap dynactin, formation of branched actin at the endosomal surface is impaired. Our results reveal the importance of the WASH complex in coordinating two complexes containing actin-related proteins.
Collapse
Affiliation(s)
- Artem I Fokin
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Violaine David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Ksenia Oguievetskaia
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | | | | | - Luyan Cao
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Nathalie Rocques
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Nicolas Molinie
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Véronique Henriot
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Maria-Victoria Hinckelmann
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | | - Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France.
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| |
Collapse
|
12
|
Lefebvre S, Pavlidou A, Walther S. What is the potential of neurostimulation in the treatment of motor symptoms in schizophrenia? Expert Rev Neurother 2020; 20:697-706. [DOI: 10.1080/14737175.2020.1775586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Anastasia Pavlidou
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
McConnell P, Mekel M, Kozlov AG, Mooren OL, Lohman TM, Cooper JA. Comparative Analysis of CPI-Motif Regulation of Biochemical Functions of Actin Capping Protein. Biochemistry 2020; 59:1202-1215. [PMID: 32133840 DOI: 10.1021/acs.biochem.0c00092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterodimeric actin capping protein (CP) is regulated by a set of proteins that contain CP-interacting (CPI) motifs. Outside of the CPI motif, the sequences of these proteins are unrelated and distinct. The CPI motif and surrounding sequences are conserved within a given protein family, when compared to those of other CPI-motif protein families. Using biochemical assays with purified proteins, we compared the ability of CPI-motif-containing peptides from different protein families (a) to bind to CP, (b) to allosterically inhibit barbed-end capping by CP, and (c) to allosterically inhibit interaction of CP with V-1, another regulator of CP. We found large differences in potency among the different CPI-motif-containing peptides, and the different functional assays showed different orders of potency. These biochemical differences among the CPI-motif peptides presumably reflect interactions between CP and CPI-motif peptides involving amino acid residues that are conserved but are not part of the strictly defined consensus, as it was originally identified in comparisons of sequences of CPI motifs across all protein families [Hernandez-Valladares, M., et al. (2010) Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17, 497-503; Bruck, S., et al. (2006) Identification of a Novel Inhibitory Actin-capping Protein Binding Motif in CD2-associated Protein. J. Biol. Chem. 281, 19196-19203]. These biochemical differences may be important for conserved distinct functions of CPI-motif protein families in cells with respect to the regulation of CP activity and actin assembly near membranes.
Collapse
Affiliation(s)
- Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Marlene Mekel
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Olivia L Mooren
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Macropinocytosis confers resistance to therapies targeting cancer anabolism. Nat Commun 2020; 11:1121. [PMID: 32111826 PMCID: PMC7048872 DOI: 10.1038/s41467-020-14928-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Macropinocytic cancer cells scavenge amino acids from extracellular proteins. Here, we show that consuming necrotic cell debris via macropinocytosis (necrocytosis) offers additional anabolic benefits. A click chemistry-based flux assay reveals that necrocytosis provides not only amino acids, but sugars, fatty acids and nucleotides for biosynthesis, conferring resistance to therapies targeting anabolic pathways. Indeed, necrotic cell debris allow macropinocytic breast and prostate cancer cells to proliferate, despite fatty acid synthase inhibition. Standard therapies such as gemcitabine, 5-fluorouracil (5-FU), doxorubicin and gamma-irradiation directly or indirectly target nucleotide biosynthesis, creating stress that is relieved by scavenged nucleotides. Strikingly, necrotic debris also render macropinocytic, but not non-macropinocytic, pancreas and breast cancer cells resistant to these treatments. Selective, genetic inhibition of macropinocytosis confirms that necrocytosis both supports tumor growth and limits the effectiveness of 5-FU in vivo. Therefore, this study establishes necrocytosis as a mechanism for drug resistance. Macropinocytosis allows cancer cells to cope with nutrient stress. Here, the authors use a selective, genetic approach to inhibit macropinocytosis and show that consuming necrotic cell debris via macropinocytosis—necrocytosis—affords resistance to many therapies that target biosynthesis.
Collapse
|
15
|
Fan YL, Zhao HC, Li B, Zhao ZL, Feng XQ. Mechanical Roles of F-Actin in the Differentiation of Stem Cells: A Review. ACS Biomater Sci Eng 2019; 5:3788-3801. [PMID: 33438419 DOI: 10.1021/acsbiomaterials.9b00126] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the development and differentiation of stem cells, mechanical forces associated with filamentous actin (F-actin) play a crucial role. The present review aims to reveal the relationship among the chemical components, microscopic structures, mechanical properties, and biological functions of F-actin. Particular attention is given to the functions of the cytoplasmic and nuclear microfilament cytoskeleton and their regulation mechanisms in the differentiation of stem cells. The distributions of different types of actin monomers in mammal cells and the functions of actin-binding proteins are summarized. We discuss how the fate of stem cells is regulated by intra/extracellular mechanical and chemical cues associated with microfilament-related proteins, intercellular adhesion molecules, etc. In addition, we also address the differentiation-induced variation in the stiffness of stem cells and the correlation between the fate and geometric shape change of stem cells. This review not only deepens our understanding of the biophysical mechanisms underlying the fates of stem cells under different culture conditions but also provides inspirations for the tissue engineering of stem cells.
Collapse
Affiliation(s)
- Yan-Lei Fan
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hu-Cheng Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Spence EF, Dube S, Uezu A, Locke M, Soderblom EJ, Soderling SH. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Nat Commun 2019; 10:386. [PMID: 30674877 PMCID: PMC6344529 DOI: 10.1038/s41467-019-08288-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/21/2018] [Indexed: 11/16/2022] Open
Abstract
Excitatory synapse formation during development involves the complex orchestration of both structural and functional alterations at the postsynapse. However, the molecular mechanisms that underlie excitatory synaptogenesis are only partially resolved, in part because the internal machinery of developing synapses is largely unknown. To address this, we apply a chemicogenetic approach, in vivo biotin identification (iBioID), to discover aspects of the proteome of nascent synapses. This approach uncovered sixty proteins, including a previously uncharacterized protein, CARMIL3, which interacts in vivo with the synaptic cytoskeletal regulator proteins SrGAP3 (or WRP) and actin capping protein. Using new CRISPR-based approaches, we validate that endogenous CARMIL3 is localized to developing synapses where it facilitates the recruitment of capping protein and is required for spine structural maturation and AMPAR recruitment associated with synapse unsilencing. Together these proteomic and functional studies reveal a previously unknown mechanism important for excitatory synapse development in the developing perinatal brain.
Collapse
Affiliation(s)
- Erin F Spence
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shataakshi Dube
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Akiyoshi Uezu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Margaret Locke
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
- Duke Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Scott H Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Johnston AB, Hilton DM, McConnell P, Johnson B, Harris MT, Simone A, Amarasinghe GK, Cooper JA, Goode BL. A novel mode of capping protein-regulation by twinfilin. eLife 2018; 7:41313. [PMID: 30351272 PMCID: PMC6249002 DOI: 10.7554/elife.41313] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
Cellular actin assembly is controlled at the barbed ends of actin filaments, where capping protein (CP) limits polymerization. Twinfilin is a conserved in vivo binding partner of CP, yet the significance of this interaction has remained a mystery. Here, we discover that the C-terminal tail of Twinfilin harbors a CP-interacting (CPI) motif, identifying it as a novel CPI-motif protein. Twinfilin and the CPI-motif protein CARMIL have overlapping binding sites on CP. Further, Twinfilin binds competitively with CARMIL to CP, protecting CP from barbed-end displacement by CARMIL. Twinfilin also accelerates dissociation of the CP inhibitor V-1, restoring CP to an active capping state. Knockdowns of Twinfilin and CP each cause similar defects in cell morphology, and elevated Twinfilin expression rescues defects caused by CARMIL hyperactivity. Together, these observations define Twinfilin as the first ‘pro-capping’ ligand of CP and lead us to propose important revisions to our understanding of the CP regulatory cycle. Plant and animal cells are supported by skeleton-like structures that can grow and shrink beneath the cell membrane, pushing and pulling on the edges of the cell. This scaffolding network – known as the cytoskeleton – contains long strands, or filaments, made from many identical copies of a protein called actin. The shape of the actin proteins allows them to slot together, end-to-end, and allows the strands to grow and shrink on-demand. When the strands are the correct length, the cell caps the growing ends with a protein known as Capping Protein. This helps to stabilize the cell’s skeleton, preventing the strands from getting any longer, or any shorter. Proteins that interfere with the activity of Capping Protein allow the actin strands to grow or shrink. Some, like a protein called V-1, attach to Capping Protein and get in the way so that it cannot sit on the ends of the actin strands. Others, like CARMIL, bind to Capping Protein and change its shape, making it more likely to fall off the strands. So far, no one had found a partner that helps Capping Protein limit the growth of the actin cytoskeleton. A protein called Twinfilin often appears alongside Capping Protein, but the two proteins seemed to have no influence on each other, and had what appeared to be different roles. Whilst Capping Protein blocks growth and stabilizes actin strands, Twinfilin speeds up their disassembly at their ends. But Johnston, Hilton et al. now reveal that the two proteins actually work together. Twinfilin helps Capping Protein resist the effects of CARMIL and V-1, and Capping Protein puts Twinfilin at the end of the strand. Thus, when Capping Protein is finally removed by CARMIL, Twinfilin carries on with disassembling the actin strands. The tail of the Twinfilin protein looks like part of the CARMIL protein, suggesting that they might interact with Capping Protein in the same way. Attaching a fluorescent tag to the Twinfilin tail revealed that the two proteins compete to attach to the same part of the Capping Protein. When mouse cells produced extra Twinfilin, it blocked the effects of CARMIL, helping to grow the actin strands. V-1 attaches to Capping Protein in a different place, but Twinfilin was also able to interfere with its activity. When Twinfilin attached to the CARMIL binding site, it did not directly block V-1 binding, but it made the protein more likely to fall off. Understanding how the actin cytoskeleton moves is a key question in cell biology, but it also has applications in medicine. Twinfilin plays a role in the spread of certain blood cancer cells, and in the formation of elaborate structures in the inner ear that help us hear. Understanding how Twinfilin and Capping Protein interact could open paths to new therapies for a range of medical conditions.
Collapse
Affiliation(s)
- Adam B Johnston
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - Denise M Hilton
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University, St Louis, United states
| | - Britney Johnson
- Department of Pathology and Immunology, Washington University, St Louis, United States
| | - Meghan T Harris
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - Avital Simone
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University, St Louis, United States
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University, St Louis, United states
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
| |
Collapse
|
18
|
Stark BC, Lanier MH, Cooper JA. CARMIL family proteins as multidomain regulators of actin-based motility. Mol Biol Cell 2017; 28:1713-1723. [PMID: 28663287 PMCID: PMC5491179 DOI: 10.1091/mbc.e17-01-0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin.
Collapse
Affiliation(s)
- Benjamin C Stark
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - M Hunter Lanier
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
19
|
McMillen LM, Vavylonis D. Model of turnover kinetics in the lamellipodium: implications of slow- and fast- diffusing capping protein and Arp2/3 complex. Phys Biol 2016; 13:066009. [PMID: 27922825 DOI: 10.1088/1478-3975/13/6/066009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell protrusion through polymerization of actin filaments at the leading edge of motile cells may be influenced by spatial gradients of diffuse actin and regulators. Here we study the distribution of two of the most important regulators, capping protein and Arp2/3 complex, which regulate actin polymerization in the lamellipodium through capping and nucleation of free barbed ends. We modeled their kinetics using data from prior single molecule microscopy experiments on XTC cells. These experiments have provided evidence for a broad distribution of diffusion coefficients of both capping protein and Arp2/3 complex. The slowly diffusing proteins appear as extended 'clouds' while proteins bound to the actin filament network appear as speckles that undergo retrograde flow. Speckle appearance and disappearance events correspond to assembly and dissociation from the actin filament network and speckle lifetimes correspond to the dissociation rate. The slowly diffusing capping protein could represent severed capped actin filament fragments or membrane-bound capping protein. Prior evidence suggests that slowly diffusing Apr2/3 complex associates with the membrane. We use the measured rates and estimates of diffusion coefficients of capping protein and Arp2/3 complex in a Monte Carlo simulation that includes particles in association with a filament network and diffuse in the cytoplasm. We consider two separate pools of diffuse proteins, representing fast and slowly diffusing species. We find a steady state with concentration gradients involving a balance of diffusive flow of fast and slow species with retrograde flow. We show that simulations of FRAP are consistent with prior experiments performed on different cell types. We provide estimates for the ratio of bound to diffuse complexes and calculate conditions where Arp2/3 complex recycling by diffusion may become limiting. We discuss the implications of slowly diffusing populations and suggest experiments to distinguish among mechanisms that influence long range transport.
Collapse
Affiliation(s)
- Laura M McMillen
- Department of Physics, Lehigh University, Bethlehem PA 18015, USA
| | | |
Collapse
|
20
|
Lanier MH, McConnell P, Cooper JA. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2. J Biol Chem 2015; 291:1076-91. [PMID: 26578515 DOI: 10.1074/jbc.m115.676882] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 02/01/2023] Open
Abstract
CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.
Collapse
Affiliation(s)
- M Hunter Lanier
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| | - Patrick McConnell
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| | - John A Cooper
- From the Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110
| |
Collapse
|
21
|
Stark BC, Cooper JA. Differential expression of CARMIL-family genes during zebrafish development. Cytoskeleton (Hoboken) 2015; 72:534-41. [PMID: 26426389 DOI: 10.1002/cm.21257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
CARMILs are a conserved family of large multidomain proteins that regulate and target actin assembly by interacting with actin capping protein (CP). Vertebrates contain three highly conserved CARMIL isoforms encoded by three genes, whereas lower organisms contain only one isoform and gene. In order to investigate the functions of vertebrate CARMILs, we identified and characterized the three CARMIL genes in zebrafish (Danio rerio). We isolated and sequenced complete and partial cDNAs from embryos. The three genes display distinct spatial and temporal expression patterns during development. Sequence and phylogenetic analyses of cDNAs and predicted protein sequences reveal that the three zebrafish genes fall into the three conserved isoform groups previously defined for other vertebrates, which have isoform-specific and overlapping functions in human cultured cells. These results provide new tools and offer insight into understanding the role of the regulation of actin assembly dynamics during embryonic development and tissue morphogenesis.
Collapse
Affiliation(s)
- Benjamin C Stark
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - John A Cooper
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
22
|
Lanier MH, Kim T, Cooper JA. CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation. Mol Biol Cell 2015; 26:4577-88. [PMID: 26466680 PMCID: PMC4678016 DOI: 10.1091/mbc.e15-08-0552] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/07/2015] [Indexed: 12/12/2022] Open
Abstract
CARMIL2 is a novel and direct molecular connection between vimentin filaments and actin assembly during cell migration and invadopodia formation. Through two distinct domains, CARMIL2 localizes to vimentin filaments and regulates actin assembly. The biochemical activities of both domains are necessary for cell migration and invasion. Cancer cell migration requires the regulation of actin networks at protrusions associated with invadopodia and other leading edges. Carcinomas become invasive after undergoing an epithelial–mesenchymal transition characterized by the appearance of vimentin filaments. While vimentin expression correlates with cell migration, the molecular connections between vimentin- and actin-based membrane protrusions are not understood. We report here that CARMIL2 (capping protein, Arp2/3, myosin-I linker 2) provides such a molecular link. CARMIL2 localizes to vimentin, regulates actin capping protein (CP), and binds to membranes. CARMIL2 is necessary for invadopodia formation, as well as cell polarity, lamellipodial assembly, membrane ruffling, macropinocytosis, and collective cell migration. Using point mutants and chimeras with defined biochemical and cellular properties, we discovered that localization to vimentin and CP binding are both essential for the function of CARMIL2 in cells. On the basis of these results, we propose a model in which dynamic vimentin filaments target CARMIL2 to critical membrane-associated locations, where CARMIL2 regulates CP, and thus actin assembly, to create cell protrusions.
Collapse
Affiliation(s)
- M Hunter Lanier
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Taekyung Kim
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
23
|
Edwards M, McConnell P, Schafer DA, Cooper JA. CPI motif interaction is necessary for capping protein function in cells. Nat Commun 2015; 6:8415. [PMID: 26412145 PMCID: PMC4598739 DOI: 10.1038/ncomms9415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022] Open
Abstract
Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the 'capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110-1093, USA
| | - Patrick McConnell
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110-1093, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904-4328, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110-1093, USA
| |
Collapse
|
24
|
Jo YJ, Jang WI, Namgoong S, Kim NH. Actin-capping proteins play essential roles in the asymmetric division of maturing mouse oocytes. J Cell Sci 2014; 128:160-70. [PMID: 25395583 DOI: 10.1242/jcs.163576] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Actin polymerization is essential for various stages of mammalian oocyte maturation, including spindle migration, actin cap formation, polar body extrusion and cytokinesis. The heterodimeric actin-capping protein is an essential element of the actin cytoskeleton. It binds to the fast-growing (barbed) ends of actin filaments and plays essential roles in various actin-mediated cellular processes. However, the roles of capping protein in mammalian oocyte maturation are poorly understood. We investigated the roles of capping protein in mouse oocytes and found that it is essential for correct asymmetric spindle migration and polar body extrusion. Capping protein mainly localized in the cytoplasm during maturation. By knocking down or ectopically overexpressing this protein, we revealed that it is crucial for efficient spindle migration and maintenance of the cytoplasmic actin mesh density. Expression of the capping-protein-binding region of CARMIL (also known as LRRC16A) impaired spindle migration and polar body extrusion during oocyte maturation and decreased the density of the cytoplasmic actin mesh. Taken together, these findings show that capping protein is an essential component of the actin cytoskeleton machinery that plays crucial roles in oocyte maturation, presumably by controlling the cytoplasmic actin mesh density.
Collapse
Affiliation(s)
- Yu-Jin Jo
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Woo-In Jang
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Suk Namgoong
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheong-Ju, ChungChungBuk-do, 361-763, Republic of Korea
| |
Collapse
|
25
|
Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15:677-89. [PMID: 25207437 DOI: 10.1038/nrm3869] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Capping protein (CP) binds the fast growing barbed end of the actin filament and regulates actin assembly by blocking the addition and loss of actin subunits. Recent studies provide new insights into how CP and barbed-end capping are regulated. Filament elongation factors, such as formins and ENA/VASP (enabled/vasodilator-stimulated phosphoprotein), indirectly regulate CP by competing with CP for binding to the barbed end, whereas other molecules, including V-1 and phospholipids, directly bind to CP and sterically block its interaction with the filament. In addition, a diverse and unrelated group of proteins interact with CP through a conserved 'capping protein interaction' (CPI) motif. These proteins, including CARMIL (capping protein, ARP2/3 and myosin I linker), CD2AP (CD2-associated protein) and the WASH (WASP and SCAR homologue) complex subunit FAM21, recruit CP to specific subcellular locations and modulate its actin-capping activity via allosteric effects.
Collapse
Affiliation(s)
- Marc Edwards
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| | - Adam Zwolak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dorothy A Schafer
- Departments of Biology and Cell Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - John A Cooper
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110, USA
| |
Collapse
|
26
|
Sinnar SA, Antoku S, Saffin JM, Cooper JA, Halpain S. Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol Biol Cell 2014; 25:2152-60. [PMID: 24829386 PMCID: PMC4091828 DOI: 10.1091/mbc.e13-12-0749] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study shows that capping protein (CP) is essential for mammalian cell migration in vitro and in vivo. The authors also show that CP is present in filopodia of multiple cell types and that it regulates filopodial structure and function. Thus CP function in both lamellipodia and filopodia may contribute to efficient migration. Capping protein (CP) binds to barbed ends of growing actin filaments and inhibits elongation. CP is essential for actin-based motility in cell-free systems and in Dictyostelium. Even though CP is believed to be critical for creating the lamellipodial actin structure necessary for protrusion and migration, CP's role in mammalian cell migration has not been directly tested. Moreover, recent studies have suggested that structures besides lamellipodia, including lamella and filopodia, may have unappreciated roles in cell migration. CP has been postulated to be absent from filopodia, and thus its role in filopodial activity has remained unexplored. We report that silencing CP in both cultured mammalian B16F10 cells and in neurons of developing neocortex impaired cell migration. Moreover, we unexpectedly observed that low levels of CP were detectable in the majority of filopodia. CP depletion decreased filopodial length, altered filopodial shape, and reduced filopodial dynamics. Our results support an expansion of the potential roles that CP plays in cell motility by implicating CP in filopodia as well as in lamellipodia, both of which are important for locomotion in many types of migrating cells.
Collapse
Affiliation(s)
- Shamim A Sinnar
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Susumu Antoku
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jean-Michel Saffin
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| | - Jon A Cooper
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Shelley Halpain
- Division of Biological Sciences, University of California, San Diego, and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037
| |
Collapse
|
27
|
Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Proc Natl Acad Sci U S A 2014; 111:E1970-9. [PMID: 24778263 DOI: 10.1073/pnas.1313738111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.
Collapse
|