1
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Zimmermann MA, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. J Gen Physiol 2024; 156:e202413604. [PMID: 39373654 PMCID: PMC11461142 DOI: 10.1085/jgp.202413604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal that MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development and prompting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility in the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting that MyBP-H may be functionally silent. However, our results suggest an active role. In vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake." These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
| | - Marcus A. Zimmermann
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT, USA
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA
| |
Collapse
|
2
|
Mead AF, Wood NB, Nelson SR, Palmer BM, Yang L, Previs SB, Ploysangngam A, Kennedy GG, McAdow JF, Tremble SM, Cipolla MJ, Ebert AM, Johnson AN, Gurnett CA, Previs MJ, Warshaw DM. Functional role of myosin-binding protein H in thick filaments of developing vertebrate fast-twitch skeletal muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593199. [PMID: 38798399 PMCID: PMC11118323 DOI: 10.1101/2024.05.10.593199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Myosin-binding protein H (MyBP-H) is a component of the vertebrate skeletal muscle sarcomere with sequence and domain homology to myosin-binding protein C (MyBP-C). Whereas skeletal muscle isoforms of MyBP-C (fMyBP-C, sMyBP-C) modulate muscle contractility via interactions with actin thin filaments and myosin motors within the muscle sarcomere "C-zone," MyBP-H has no known function. This is in part due to MyBP-H having limited expression in adult fast-twitch muscle and no known involvement in muscle disease. Quantitative proteomics reported here reveal MyBP-H is highly expressed in prenatal rat fast-twitch muscles and larval zebrafish, suggesting a conserved role in muscle development, and promoting studies to define its function. We take advantage of the genetic control of the zebrafish model and a combination of structural, functional, and biophysical techniques to interrogate the role of MyBP-H. Transgenic, FLAG-tagged MyBP-H or fMyBP-C both localize to the C-zones in larval myofibers, whereas genetic depletion of endogenous MyBP-H or fMyBP-C leads to increased accumulation of the other, suggesting competition for C-zone binding sites. Does MyBP-H modulate contractility from the C-zone? Globular domains critical to MyBP-C's modulatory functions are absent from MyBP-H, suggesting MyBP-H may be functionally silent. However, our results suggest an active role. Small angle x-ray diffraction of intact larval tails revealed MyBP-H contributes to the compression of the myofilament lattice accompanying stretch or contraction, while in vitro motility experiments indicate MyBP-H shares MyBP-C's capacity as a molecular "brake". These results provide new insights and raise questions about the role of the C-zone during muscle development.
Collapse
Affiliation(s)
- Andrew F. Mead
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Neil B. Wood
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shane R. Nelson
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - Angela Ploysangngam
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Guy G. Kennedy
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer F. McAdow
- Department of Neurlogical Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Sarah M. Tremble
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
| | - Marilyn J. Cipolla
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Alicia M. Ebert
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405
| | - Aaron N. Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christina A. Gurnett
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT 05405
- Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405
| |
Collapse
|
3
|
Schiaffino S, Hughes SM, Murgia M, Reggiani C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J Physiol 2024; 602:427-443. [PMID: 38160435 DOI: 10.1113/jp285714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.
Collapse
Affiliation(s)
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College, London, UK
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
4
|
Ganassi M, Zammit PS, Hughes SM. Isolation, Culture, and Analysis of Zebrafish Myofibers and Associated Muscle Stem Cells to Explore Adult Skeletal Myogenesis. Methods Mol Biol 2023; 2640:21-43. [PMID: 36995585 DOI: 10.1007/978-1-0716-3036-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Adult skeletal musculature experiences continuous physical stress, and hence requires maintenance and repair to ensure its continued efficient functioning. The population of resident muscle stem cells (MuSCs), termed satellite cells, resides beneath the basal lamina of adult myofibers, contributing to both muscle hypertrophy and regeneration. Upon exposure to activating stimuli, MuSCs proliferate to generate new myoblasts that differentiate and fuse to regenerate or grow myofibers. Moreover, many teleost fish undergo continuous growth throughout life, requiring continual nuclear recruitment from MuSCs to initiate and grow new fibers, a process that contrasts with the determinate growth observed in most amniotes. In this chapter, we describe a method for the isolation, culture, and immunolabeling of adult zebrafish myofibers that permits examination of both myofiber characteristics ex vivo and the MuSC myogenic program in vitro. Morphometric analysis of isolated myofibers is suitable to assess differences among slow and fast muscles or to investigate cellular features such as sarcomeres and neuromuscular junctions. Immunostaining for Pax7, a canonical stemness marker, identifies MuSCs on isolated myofibers for study. Furthermore, the plating of viable myofibers allows MuSC activation and expansion and downstream analysis of their proliferative and differentiative dynamics, thus providing a suitable, parallel alternative to amniote models for the study of vertebrate myogenesis.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
5
|
Liu G, Ito T, Kijima Y, Yoshitake K, Asakawa S, Watabe S, Kinoshita S. Zebrafish Danio rerio myotomal muscle structure and growth from a spatial transcriptomics perspective. Genomics 2022; 114:110477. [PMID: 36058475 DOI: 10.1016/j.ygeno.2022.110477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Fish exhibit different muscle structures and growth characteristics compared with mammals. We used a spatial transcriptomics approach and examined myotomal muscle sections from zebrafish. Adult muscles were divided into eight regions according to spatial gene expression characteristics. Slow muscle was located in the wedge-shaped region near the lateral line and at the base of the dorsal fin, intermediate muscle was located in a ribbon-shaped region adjacent to slow muscle, and fast muscle was located in the deep region of the trunk, surrounded by intermediate muscle; the interior of fast muscle was further divided into 6 parts by their transcriptomic features. Combined analysis of adult and larval data revealed that adult muscles contain specific regions similar to larval muscles. These regions showed active myogenesis and a high expression of genes associated with muscle hyperplasia. This is the first study to apply spatial transcriptomics to fish myotomal muscle structure and growth.
Collapse
Affiliation(s)
- Guanting Liu
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Takumi Ito
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Yusuke Kijima
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan; School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agriculture and Life Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
6
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Garcia-Calvo E, Cabezas-Sanchez P, Luque-Garcia JL. In-vitro and in-vivo evaluation of the molecular mechanisms involved in the toxicity associated to CdSe/ZnS quantum dots exposure. CHEMOSPHERE 2021; 263:128170. [PMID: 33297139 DOI: 10.1016/j.chemosphere.2020.128170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
The use of different types of quantum dots is growing in recent times in both the technology and biomedical industries. Such is the extension of the use of these quantum dots that they have become potential emerging contaminants, which makes it necessary to evaluate their potential toxicity and the impact they may have on both health and the environment. Although studies already exist in this regard, the molecular mechanisms by which CdSe/ZnS quantum dots exert their toxic effects are still unknown. For this reason, in this study, a comprehensive proteomic approach has been designed, applying the SILAC strategy to an in-vitro model (hepatic cells) and the super-SILAC alternative to an in-vivo model, specifically zebrafish larvae. This integral approach, together with additional bioanalytical assays, has made it possible for the identification of proteins, molecular mechanisms and, therefore, biological processes that are altered as a consequence of exposure to CdSe/ZnS quantum dots. It has been demonstrated, on the one hand, that these quantum dots induce hypoxia and ROS generation in hepatic cells, which leads to apoptosis, specifically through the TDP-43 pathway. On the other hand, it has been shown that exposure to CdSe/ZnS quantum dots has a high impact on developing organisms, inducing serious neural and developmental problems in the locomotor system.
Collapse
Affiliation(s)
- E Garcia-Calvo
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain
| | - P Cabezas-Sanchez
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain
| | - J L Luque-Garcia
- Dpt. Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Spain.
| |
Collapse
|
8
|
Dennhag N, Liu JX, Nord H, von Hofsten J, Pedrosa Domellöf F. Absence of Desmin in Myofibers of the Zebrafish Extraocular Muscles. Transl Vis Sci Technol 2020; 9:1. [PMID: 32953241 PMCID: PMC7476663 DOI: 10.1167/tvst.9.10.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the medial rectus (MR) muscle of zebrafish (Daniorerio) with respect to the pattern of distribution of desmin and its correlation to distinct types of myofibers and motor endplates. Methods The MRs of zebrafish were examined using confocal microscopy in whole-mount longitudinal specimens and in cross sections processed for immunohistochemistry with antibodies against desmin, myosin heavy chain isoforms, and innervation markers. Desmin patterns were correlated to major myofiber type and type of innervation. A total of 1382 myofibers in nine MR muscles were analyzed. Results Four distinct desmin immunolabeling patterns were found in the zebrafish MRs. Approximately a third of all slow myofibers lacked desmin, representing 8.5% of the total myofiber population. The adult zebrafish MR muscle displayed en grappe, en plaque, and multiterminal en plaque neuromuscular junctions (NMJs) with intricate patterns of desmin immunolabeling. Conclusions The MRs of zebrafish showed important similarities with the human extraocular muscles with regard to the pattern of desmin distribution and presence of the major types of NMJs and can be regarded as an adequate model to further study the role of desmin and the implications of heterogeneity in cytoskeletal protein composition. Translational Relevance The establishment of a zebrafish model to study the cytoskeleton in muscles that are particularly resistant to muscle disease opens new avenues to understand human myopathies and muscle dystrophies and may provide clues to new therapies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Mead AF, Kennedy GG, Palmer BM, Ebert AM, Warshaw DM. Mechanical Characteristics of Ultrafast Zebrafish Larval Swimming Muscles. Biophys J 2020; 119:806-820. [PMID: 32755560 PMCID: PMC7451861 DOI: 10.1016/j.bpj.2020.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
Zebrafish (Danio rerio) swim within days of fertilization, powered by muscles of the axial myotomes. Forces generated by these muscles can be measured rapidly in whole, intact larval tails by adapting protocols developed for ex vivo muscle mechanics. But it is not known how well these measurements reflect the function of the underlying muscle fibers and sarcomeres. Here, we consider the anatomy of the 5-day-old, wild-type larval tail, and implement technical modifications to measuring muscle physiology in intact tails. Specifically, we quantify fundamental relationships between force, length, and shortening velocity, and capture the extreme contractile speeds required to swim with tail-beat frequencies of 80-100 Hz. Therefore, we analyze 1000 frames/s videos to track the movement of structures, visible in the transparent tail, which correlate with sarcomere length. We also characterize the passive viscoelastic properties of the preparation to isolate forces contributed by nonmuscle structures within the tail. Myotomal muscles generate more than 95% of their maximal isometric stress (76 ± 3 mN/mm2) over the range of muscle lengths used in vivo. They have rapid twitch kinetics (full width at half-maximal stress: 11 ± 1 ms) and a high twitch/tetanus ratio (0.91 ± 0.05), indicating adaptations for fast excitation-contraction coupling. Although contractile stress is relatively low, myotomal muscles develop high net power (134 ± 20 W/kg at 80 Hz) in cyclical work loop experiments designed to simulate the in vivo dynamics of muscle fibers during swimming. When shortening at a constant speed of 7 ± 1 muscle lengths/s, muscles develop 86 ± 2% of isometric stress, whereas peak instantaneous power during 100 Hz work loops occurs at 18 ± 2 muscle lengths/s. These approaches can improve the usefulness of zebrafish as a model system for muscle research by providing a rapid and sensitive functional readout for experimental interventions.
Collapse
Affiliation(s)
- Andrew F Mead
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont; Department of Biology, University of Vermont, Burlington, Vermont
| | - Guy G Kennedy
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont; Instrumentation and Model Facility, University of Vermont, Burlington, Vermont
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, Vermont
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont.
| |
Collapse
|
10
|
Li S, Wen H, Du S. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J 2020; 34:1378-1397. [PMID: 31914689 PMCID: PMC6956737 DOI: 10.1096/fj.201900935rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/11/2022]
Abstract
Zebrafish skeletal muscles are broadly divided into slow-twitch and fast-twitch muscle fibers. The slow fibers, which express a slow fiber-specific myosin heavy chain 1 (Smyhc1), are the first group of muscle fibers formed during myogenesis. To uncover Smyhc1 function in muscle growth, we generated three mutant alleles with reading frame shift mutations in the zebrafish smyhc1 gene using CRISPR. The mutants showed shortened sarcomeres with no thick filaments and M-lines in slow fibers of the mutant embryos. However, the formation of slow muscle precursors and expression of other slow muscle genes were not affected and fast muscles appeared normal. The smyhc1 mutant embryos and larvae showed reduced locomotion and food intake. The mutant larvae exhibited increased lethality of incomplete penetrance. Approximately 2/5 of the homozygous mutants were viable and grew into reproductive adults. These adult mutants displayed a typical pattern of slow and fast muscle fiber distribution, and regained normal slow muscle formation. Together, our studies indicate that Smyhc1 is essential for myogenesis in embryonic slow muscles, and loss of Smyhc1 results in defective sarcomere assembly, reduces larval motility and fish survival, but has no visible impact on muscle growth in juvenile and adult zebrafish that escape the larval lethality.
Collapse
Affiliation(s)
- Siping Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
11
|
Ratnayake D, Currie PD. Fluorescence-Activated Cell Sorting of Larval Zebrafish Muscle Stem/Progenitor Cells Following Skeletal Muscle Injury. Methods Mol Biol 2019; 1889:245-254. [PMID: 30367418 DOI: 10.1007/978-1-4939-8897-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes a protocol for the isolation of larval zebrafish muscle stem/progenitor cells by fluorescence-activated cell sorting (FACS). This method has been successfully applied to isolate pax3a expressing cells 3 days following needle stab skeletal muscle injury. The cell sorting strategy described here can easily be adapted to any cell type at embryonic or larval stages. RNA extracted from the sorted cells can be used for subsequent downstream applications such as quantitative PCR (qPCR), microarrays, or next generation sequencing.
Collapse
Affiliation(s)
- Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia. .,European Molecular Biology Laboratory Australia Melbourne Node, Monash University, Clayton, VIC, Australia.
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia.,European Molecular Biology Laboratory Australia Melbourne Node, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Garcia de la serrana D, Wreggelsworth K, Johnston IA. Duplication of a Single myhz1.1 Gene Facilitated the Ability of Goldfish ( Carassius auratus) to Alter Fast Muscle Contractile Properties With Seasonal Temperature Change. Front Physiol 2018; 9:1724. [PMID: 30568597 PMCID: PMC6290348 DOI: 10.3389/fphys.2018.01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/15/2018] [Indexed: 12/25/2022] Open
Abstract
Seasonal temperature changes markedly effect the swimming performance of some cyprinid fish acutely tested at different temperatures, involving a restructuring of skeletal muscle phenotype including changes in contractile properties and myosin heavy chain expression. We analyzed the transcriptome of fast myotomal muscle from goldfish (Carassius auratus L.) acclimated to either 8 or 25°C for 4 weeks (12 h light: 12 h dark) and identified 10 myosin heavy chains (myh) and 13 myosin light chain (myl) transcripts. Goldfish orthologs were classified based on zebrafish nomenclature as myhz1.1α, myhz1.1β, myhz1.1γ, myha, myhb, embryo_myh1, myh9b, smyh2, symh3, and myh11 (myosin heavy chains) and myl1a, myl1b, myl2, myl9a, myl9b, myl3, myl13, myl6, myl12.1a, myl12.1b, myl12.2a, myl12.2b, and myl10 (myosin light chains). The most abundantly expressed transcripts myhz1.1α, myhz1.1β, myhz1.1γ, myha, myl1a, myl1b, myl2, and myl3) were further investigated in fast skeletal muscle of goldfish acclimated to either 4, 8, 15, or 30°C for 12 weeks (12 h light:12 h dark). Total copy number for the myosin heavy chains showed a distinct optimum at 15°C (P < 0.01). Together myhz1.1α and myhz1.1β comprised 90 to 97% of myhc transcripts below 15°C, but only 62% at 30°C. Whereas myhz1.1α and myhz1.1β were equally abundant at 4 and 8°C, myhz1.1β transcripts were 17 and 12 times higher than myhz1.1α at 15 and 30°C, respectively, (P < 0.01). Myhz1.1γ expression was at least nine-fold higher at 30°C than at cooler temperatures (P < 0.01). In contrast, the expression of myha and myosin light chains showed no consistent pattern with acclimation temperature. A phylogenetic analysis indicated that the previously reported ability of goldfish and common carp to alter contractile properties and myofibrillar ATPase activity with temperature acclimation was related to the duplication of a single myhz1.1 fast muscle myosin heavy chain found in basal cyprinids such as the zebrafish (Danio rerio).
Collapse
Affiliation(s)
- Daniel Garcia de la serrana
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
- Serra Húnter Fellow, Cell Biology Physiology and Immunology Department, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Kristin Wreggelsworth
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| | - Ian A. Johnston
- School of Biology, Scottish Oceans Institute, University of St. Andrews, St Andrews, United Kingdom
| |
Collapse
|
13
|
Dong J, Chen Z, Sun C, Tian Y, Hu J, Lu M, Ye X. Cloning, SNP detection, and growth correlation analysis of the 5' flanking regions of two myosin heavy chain-7 genes in Mandarin fish (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2018; 228:10-16. [PMID: 30419288 DOI: 10.1016/j.cbpb.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
Myosin heavy chains (MYHs) play important roles in muscle growth and contraction. In fish, MYHs contribute to hyperplasia and hypertrophy of muscle fibers, which can continue into adult life and thus result in indeterminate growth in some species. We previously identified two MYH genes, MYH-7a and MYH-7b, that are differentially expressed in Mandarin fish (Siniperca chuatsi) and appear to function in early growth. However, the regulatory role of their 5' flanking regions is unknown. To examine the effects of single nucleotide polymorphisms (SNPs) in these regions, we used genome walking to amplify their flanking sequences and analyzed the regulatory elements and binding sites. A single SNP locus was found in the flanking sequence of each gene. These SNP loci are located in the conserved glucocorticoid receptor binding region (MYH-7a: G-614A; Allele frequency: G:A = 94.9:5.1; GG (89.76) and AG (10.24) genotypes) and the LIM homeobox domain transcription factor binding sequence (MYH-7b: C-1933A; Allele frequency: C:A = 54.8:45.2; AA (20.82), AC (48.81), and CC (30.37) genotypes). At the G-614A loci, the GG genotype exhibited more superior growth traits (total length, body length, body height, etc.) than the AG genotype, with the exception of caudal peduncle length. Alternatively, at the C-1933A loci, the AC and AA genotypes showed significant differences in all growth traits, except for head length, with AC exhibiting superior traits. The AA and CC genotypes showed significant differences in caudal peduncle length and height, while no differences were observed between the AC and CC genotypes. Thus, these SNPs in the 5' flanking regions of MYH-7a and MYH-7b are correlated with superior growth and can be used for selecting Mandarin fish during breeding.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhihang Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
14
|
Boskovic S, Marín-Juez R, Jasnic J, Reischauer S, El Sammak H, Kojic A, Faulkner G, Radojkovic D, Stainier DYR, Kojic S. Characterization of zebrafish (Danio rerio) muscle ankyrin repeat proteins reveals their conserved response to endurance exercise. PLoS One 2018; 13:e0204312. [PMID: 30252882 PMCID: PMC6155536 DOI: 10.1371/journal.pone.0204312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/05/2018] [Indexed: 12/30/2022] Open
Abstract
Muscle proteins with ankyrin repeats (MARPs) ANKRD1 and ANKRD2 are titin-associated proteins with a putative role as transcriptional co-regulators in striated muscle, involved in the cellular response to mechanical, oxidative and metabolic stress. Since many aspects of the biology of MARPs, particularly exact mechanisms of their action, in striated muscle are still elusive, research in this field will benefit from novel animal model system. Here we investigated the MARPs found in zebrafish for protein structure, evolutionary conservation, spatiotemporal expression profiles and response to increased muscle activity. Ankrd1 and Ankrd2 show overall moderate conservation at the protein level, more pronounced in the region of ankyrin repeats, motifs indispensable for their function. The two zebrafish genes, ankrd1a and ankrd1b, counterparts of mammalian ANKRD1/Ankrd1, have different expression profiles during first seven days of development. Mild increase of ankrd1a transcript levels was detected at 72 hpf (1.74±0.24 fold increase relative to 24 hpf time point), while ankrd1b expression was markedly upregulated from 24 hpf onward and peaked at 72 hpf (92.18±36.95 fold increase relative to 24 hpf time point). Spatially, they exhibited non-overlapping expression patterns during skeletal muscle development in trunk (ankrd1a) and tail (ankrd1b) somites. Expression of ankrd2 was barely detectable. Zebrafish MARPs, expressed at a relatively low level in adult striated muscle, were found to be responsive to endurance exercise training consisting of two bouts of 3 hours of forced swimming daily, for five consecutive days. Three hours after the last exercise bout, ankrd1a expression increased in cardiac muscle (6.19±5.05 fold change), while ankrd1b and ankrd2 were upregulated in skeletal muscle (1.97±1.05 and 1.84±0.58 fold change, respectively). This study provides the foundation to establish zebrafish as a novel in vivo model for further investigation of MARPs function in striated muscle.
Collapse
Affiliation(s)
- Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hadil El Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Dragica Radojkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
15
|
Xu QH, Guan P, Zhang T, Lu C, Li G, Liu JX. Silver nanoparticles impair zebrafish skeletal and cardiac myofibrillogenesis and sarcomere formation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:102-113. [PMID: 29729476 DOI: 10.1016/j.aquatox.2018.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Metal nanoparticles from industries contaminate the environment and affect the normal development of fish even human health. However, little is known about their biological effects on fish embryogenesis and the potential mechanisms. In this study, zebrafish embryos exposed to/injected with silver nanopaticles (AgNPs) exhibited shorter body, reduced heartbeats, and dysfunctional movements. Less, loose, and unassembled myofibrils were observed in AgNPs-treated embryos, and genes in myofibrillogenesis and sarcomere formation were found to be down-regulated in treated embryos. Down-regulated calcium (Ca2+) signaling and loci-specific DNA methylation in specific muscle genes, such as bves, shroom1, and arpc1a, occurred in AgNPs-treated embryos, which might result in the down-regulated expression of myofibrillogenesis genes and muscle dysfunctions in the treated embryos. Our results for the first time reveal that through down-regulating Ca2+ signaling and myogenic loci-specific DNA methylation in zebrafish embryos, AgNPs might induce defects of myofibril assembly and sarcomere formation via their particles mostly, which may subsequently cause heartbeat reduction and behavior dysfunctions.
Collapse
Affiliation(s)
- Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chang Lu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
16
|
Genetic Screen for Postembryonic Development in the Zebrafish ( Danio rerio): Dominant Mutations Affecting Adult Form. Genetics 2017; 207:609-623. [PMID: 28835471 DOI: 10.1534/genetics.117.300187] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Large-scale forward genetic screens have been instrumental for identifying genes that regulate development, homeostasis, and regeneration, as well as the mechanisms of disease. The zebrafish, Danio rerio, is an established genetic and developmental model used in genetic screens to uncover genes necessary for early development. However, the regulation of postembryonic development has received less attention as these screens are more labor intensive and require extensive resources. The lack of systematic interrogation of late development leaves large aspects of the genetic regulation of adult form and physiology unresolved. To understand the genetic control of postembryonic development, we performed a dominant screen for phenotypes affecting the adult zebrafish. In our screen, we identified 72 adult viable mutants showing changes in the shape of the skeleton as well as defects in pigmentation. For efficient mapping of these mutants and mutation identification, we devised a new mapping strategy based on identification of mutant-specific haplotypes. Using this method in combination with a candidate gene approach, we were able to identify linked mutations for 22 out of 25 mutants analyzed. Broadly, our mutational analysis suggests that there are key genes and pathways associated with late development. Many of these pathways are shared with humans and are affected in various disease conditions, suggesting constraint in the genetic pathways that can lead to change in adult form. Taken together, these results show that dominant screens are a feasible and productive means to identify mutations that can further our understanding of gene function during postembryonic development and in disease.
Collapse
|
17
|
Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL. Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 2017; 424:162-180. [PMID: 28279710 DOI: 10.1016/j.ydbio.2017.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 12/24/2022]
Abstract
Satellite cells, also known as muscle stem cells, are responsible for skeletal muscle growth and repair in mammals. Pax7 and Pax3 transcription factors are established satellite cell markers required for muscle development and regeneration, and there is great interest in identifying additional factors that regulate satellite cell proliferation, differentiation, and/or skeletal muscle regeneration. Due to the powerful regenerative capacity of many zebrafish tissues, even in adults, we are exploring the regenerative potential of adult zebrafish skeletal muscle. Here, we show that adult zebrafish skeletal muscle contains cells similar to mammalian satellite cells. Adult zebrafish satellite-like cells have dense heterochromatin, express Pax7 and Pax3, proliferate in response to injury, and show peak myogenic responses 4-5 days post-injury (dpi). Furthermore, using a pax7a-driven GFP reporter, we present evidence implicating satellite-like cells as a possible source of new muscle. In lieu of central nucleation, which distinguishes regenerating myofibers in mammals, we describe several characteristics that robustly identify newly-forming myofibers from surrounding fibers in injured adult zebrafish muscle. These characteristics include partially overlapping expression in satellite-like cells and regenerating myofibers of two RNA-binding proteins Rbfox2 and Rbfoxl1, known to regulate embryonic muscle development and function. Finally, by analyzing pax7a; pax7b double mutant zebrafish, we show that Pax7 is required for adult skeletal muscle repair, as it is in the mouse.
Collapse
Affiliation(s)
- Michael A Berberoglu
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Thomas L Gallagher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Zachary T Morrow
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Jared C Talbot
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Kimberly J Hromowyk
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Inês M Tenente
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David M Langenau
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Molecular Pathology and Regenerative Medicine, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Abstract
Understanding muscle stem cell behaviors can potentially provide insights into how these cells act and respond during normal growth and diseased contexts. The zebrafish is an ideal model organism to examine these behaviors in vivo where it would normally be technically challenging in other mammalian models. This chapter will describe the procedures required to successfully conduct live imaging of zebrafish transgenics that has specifically been adapted for skeletal muscle.
Collapse
Affiliation(s)
- Phong D Nguyen
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
19
|
5′-flanking sequences of zebrafish fast myosin heavy chain genes regulate unique expression in the anterior, medial subsection and posterior tail somites of the skeletal muscle. Comp Biochem Physiol B Biochem Mol Biol 2016; 191:1-12. [DOI: 10.1016/j.cbpb.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
|
20
|
Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish. PLoS One 2015; 10:e0136213. [PMID: 26308086 PMCID: PMC4550250 DOI: 10.1371/journal.pone.0136213] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/31/2015] [Indexed: 11/19/2022] Open
Abstract
Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds.
Collapse
|
21
|
Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle 2015; 5:22. [PMID: 26180627 PMCID: PMC4502549 DOI: 10.1186/s13395-015-0046-6] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022] Open
Abstract
Developing skeletal muscles express unique myosin isoforms, including embryonic and neonatal myosin heavy chains, coded by the myosin heavy chain 3 (MYH3) and MYH8 genes, respectively, and myosin light chain 1 embryonic/atrial, encoded by the myosin light chain 4 (MYL4) gene. These myosin isoforms are transiently expressed during embryonic and fetal development and disappear shortly after birth when adult fast and slow myosins become prevalent. However, developmental myosins persist throughout adult stages in specialized muscles, such as the extraocular and jaw-closing muscles, and in the intrafusal fibers of the muscle spindles. These myosins are re-expressed during muscle regeneration and provide a specific marker of regenerating fibers in the pathologic skeletal muscle. Mutations in MYH3 or MYH8 are responsible for distal arthrogryposis syndromes, characterized by congenital joint contractures and orofacial dysmorphisms, supporting the importance of muscle contractile activity and body movements in joint development and in shaping the form of the face during fetal development. The biochemical and biophysical properties of developmental myosins have only partially been defined, and their functional significance is not yet clear. One possibility is that these myosins are specialized in contracting against low loads, and thus, they may be adapted to the prenatal environment, when fetal muscles contract against a very low load compared to postnatal muscles.
Collapse
Affiliation(s)
- Stefano Schiaffino
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2, 35129 Padova, Italy
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Vika Smerdu
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO USA
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy ; CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|