1
|
Volpiana MW, Nenadic A, Beh CT. Regulation of yeast polarized exocytosis by phosphoinositide lipids. Cell Mol Life Sci 2024; 81:457. [PMID: 39560727 DOI: 10.1007/s00018-024-05483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release. Although enriched in vesicle membranes, PI4P is inexplicably removed from post-Golgi vesicles during their transit to the PM, which drives subsequent steps in exocytosis. At the PM, PI(4,5)P2 recruits effectors that establish polarized membrane sites for targeting the vesicular delivery of secretory cargo. The budding yeast Saccharomyces cerevisiae provides an elegant model to unravel the complexities of phosphoinositide regulation during polarized exocytosis. Here, we review how PI4P and PI(4,5)P2 promote yeast vesicle biogenesis, exocyst complex assembly and vesicle docking at polarized cortical sites, and suggest how these steps might impact related mechanisms of human disease.
Collapse
Affiliation(s)
- Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
3
|
Anand R, Kashif M, Pandit A, Babu R, Singh AP. Reprogramming in Candida albicans Gene Expression Network under Butanol Stress Abrogates Hyphal Development. Int J Mol Sci 2023; 24:17227. [PMID: 38139056 PMCID: PMC10743114 DOI: 10.3390/ijms242417227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.
Collapse
Affiliation(s)
- Rajesh Anand
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Mohammad Kashif
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Awadhesh Pandit
- Next Generation Sequencing Facility, National Institute of Immunology, New Delhi 110067, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Agam P. Singh
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| |
Collapse
|
4
|
Das S, Goswami AM, Saha T. An insight into the role of protein kinases as virulent factors, regulating pathogenic attributes in Candida albicans. Microb Pathog 2022; 164:105418. [DOI: 10.1016/j.micpath.2022.105418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
|
5
|
Min K, Jannace TF, Si H, Veeramah KR, Haley JD, Konopka JB. Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans. PLoS Pathog 2021; 17:e1009861. [PMID: 34398936 PMCID: PMC8389844 DOI: 10.1371/journal.ppat.1009861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/26/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Microbial pathogens grow in a wide range of different morphologies that provide distinct advantages for virulence. In the fungal pathogen Candida albicans, adenylyl cyclase (Cyr1) is thought to be a master regulator of the switch to invasive hyphal morphogenesis and biofilm formation. However, faster growing cyr1Δ/Δ pseudorevertant (PR) mutants were identified that form hyphae in the absence of cAMP. Isolation of additional PR mutants revealed that their improved growth was due to loss of one copy of BCY1, the negative regulatory subunit of protein kinase A (PKA) from the left arm of chromosome 2. Furthermore, hyphal morphogenesis was improved in some of PR mutants by multigenic haploinsufficiency resulting from loss of large regions of the left arm of chromosome 2, including global transcriptional regulators. Interestingly, hyphal-associated genes were also induced in a manner that was independent of cAMP. This indicates that basal protein kinase A activity is an important prerequisite to induce hyphae, but activation of adenylyl cyclase is not needed. Instead, phosphoproteomic analysis indicated that the Cdc28 cyclin-dependent kinase and the casein kinase 1 family member Yck2 play key roles in promoting polarized growth. In addition, integrating transcriptomic and proteomic data reveals hyphal stimuli induce increased production of key transcription factors that contribute to polarized morphogenesis.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Thomas F. Jannace
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Haoyu Si
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - John D. Haley
- Department of Pathology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- Biological Mass Spectrometry Shared Resource, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
| | - James B. Konopka
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University (SUNY), Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Chow EWL, Pang LM, Wang Y. From Jekyll to Hyde: The Yeast-Hyphal Transition of Candida albicans. Pathogens 2021; 10:pathogens10070859. [PMID: 34358008 PMCID: PMC8308684 DOI: 10.3390/pathogens10070859] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, accounting for 15% of nosocomial infections with an estimated attributable mortality of 47%. C. albicans is usually a benign member of the human microbiome in healthy people. Under constant exposure to highly dynamic environmental cues in diverse host niches, C. albicans has successfully evolved to adapt to both commensal and pathogenic lifestyles. The ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous forms is a well-established virulent trait. Over the past few decades, a significant amount of research has been carried out to understand the underlying regulatory mechanisms, signaling pathways, and transcription factors that govern the C. albicans yeast-to-hyphal transition. This review will summarize our current understanding of well-elucidated signal transduction pathways that activate C. albicans hyphal morphogenesis in response to various environmental cues and the cell cycle machinery involved in the subsequent regulation and maintenance of hyphal morphogenesis.
Collapse
Affiliation(s)
- Eve Wai Ling Chow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
| | - Li Mei Pang
- National Dental Centre Singapore, National Dental Research Institute Singapore (NDRIS), 5 Second Hospital Ave, Singapore 168938, Singapore;
| | - Yue Wang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Correspondence:
| |
Collapse
|
7
|
Hossain S, Lash E, Veri AO, Cowen LE. Functional connections between cell cycle and proteostasis in the regulation of Candida albicans morphogenesis. Cell Rep 2021; 34:108781. [PMID: 33626353 PMCID: PMC7971348 DOI: 10.1016/j.celrep.2021.108781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Morphological plasticity is a key virulence trait for many fungal pathogens. For the opportunistic fungal pathogen Candida albicans, transitions among yeast, pseudohyphal, and hyphal forms are critical for virulence, because the morphotypes play distinct roles in the infection process. C. albicans morphogenesis is induced in response to many host-relevant conditions and is regulated by complex signaling pathways and cellular processes. Perturbation of either cell-cycle progression or protein homeostasis induces C. albicans filamentation, demonstrating that these processes play a key role in morphogenetic control. Regulators such as cyclin-dependent kinases, checkpoint proteins, the proteasome, the heat shock protein Hsp90, and the heat shock transcription factor Hsf1 all influence morphogenesis, often through interconnected effects on the cell cycle and proteostasis. This review highlights the major cell-cycle and proteostasis regulators that modulate morphogenesis and discusses how these two processes intersect to regulate this key virulence trait.
Collapse
Affiliation(s)
- Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emma Lash
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
8
|
Saccomanno A, Potocký M, Pejchar P, Hála M, Shikata H, Schwechheimer C, Žárský V. Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. FRONTIERS IN PLANT SCIENCE 2021; 11:609600. [PMID: 33519861 PMCID: PMC7840542 DOI: 10.3389/fpls.2020.609600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Collapse
Affiliation(s)
- Antonietta Saccomanno
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Hála
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | | | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
9
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
10
|
Min K, Naseem S, Konopka JB. N-Acetylglucosamine Regulates Morphogenesis and Virulence Pathways in Fungi. J Fungi (Basel) 2019; 6:jof6010008. [PMID: 31878148 PMCID: PMC7151181 DOI: 10.3390/jof6010008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) is being increasingly recognized for its ability to stimulate cell signaling. This amino sugar is best known as a component of cell wall peptidoglycan in bacteria, cell wall chitin in fungi and parasites, exoskeletons of arthropods, and the extracellular matrix of animal cells. In addition to these structural roles, GlcNAc is now known to stimulate morphological and stress responses in a wide range of organisms. In fungi, the model organisms Saccharomyces cerevisiae and Schizosaccharomyces pombe lack the ability to respond to GlcNAc or catabolize it, so studies with the human pathogen Candida albicans have been providing new insights into the ability of GlcNAc to stimulate cellular responses. GlcNAc potently induces C. albicans to transition from budding to filamentous hyphal growth. It also promotes an epigenetic switch from White to Opaque cells, which differ in morphology, metabolism, and virulence properties. These studies have led to new discoveries, such as the identification of the first eukaryotic GlcNAc transporter. Other results have shown that GlcNAc can induce signaling in C. albicans in two ways. One is to act as a signaling molecule independent of its catabolism, and the other is that its catabolism can cause the alkalinization of the extracellular environment, which provides an additional stimulus to form hyphae. GlcNAc also induces the expression of virulence genes in the C. albicans, indicating it can influence pathogenesis. Therefore, this review will describe the recent advances in understanding the role of GlcNAc signaling pathways in regulating C. albicans morphogenesis and virulence.
Collapse
|
11
|
Zhang T, Sun D, Luo G, Liu Y. Spatial and Translational Regulation of Exocyst Subunits by Cell Cycle in Budding Yeast. Med Sci Monit 2019; 25:4059-4067. [PMID: 31150370 PMCID: PMC6559343 DOI: 10.12659/msm.914194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Previous studies have shown that exocyst complex is located at polarized growth sites at different cell cycle stages in budding yeast. But how cell cycle and the cyclin-dependent kinase, Cdk1, regulate the distribution of exocyst complex on the plasma membrane and the protein level of each exocyst subunit is not clear. MATERIAL AND METHODS Using budding yeast as a research material, regulation of cell cycle and Cdk1 on exocyst localization on the plasma membrane and on level of each exocyst subunit were examined by methods of cell biology and molecular biology. RESULTS Exocyst complex is located at growth sites on the plasma membrane in both budding and non-budding stages. Cdk1 activity is required for polarized distribution of exocyst complex in late G1, S and M phases, but not in cytokinesis stage. Cdk1 is not required for the assembly and localization of exocyst complex on plasma membrane. The protein level of Sec3 but not other exocyst subunits is regulated by the cell cycle. CONCLUSIONS Cdk1 activity is required for exocyst polarization before cytokinesis during the cell cycle progression, but not for its assembly and localization on the plasma membrane. Dynamic localization and protein level of the complex subunits are regulated by the cell cycle.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Dong Sun
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guangzuo Luo
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
12
|
Regulation of Candida albicans Hyphal Morphogenesis by Endogenous Signals. J Fungi (Basel) 2019; 5:jof5010021. [PMID: 30823468 PMCID: PMC6463138 DOI: 10.3390/jof5010021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a human commensal fungus that is able to assume several morphologies, including yeast, hyphal, and pseudohyphal. Under a range of conditions, C. albicans performs a regulated switch to the filamentous morphology, characterized by the emergence of a germ tube from the yeast cell, followed by a mold-like growth of branching hyphae. This transition from yeast to hyphal growth has attracted particular attention, as it has been linked to the virulence of C. albicans as an opportunistic human pathogen. Signal transduction pathways that mediate the induction of the hyphal transcription program upon the imposition of external stimuli have been extensively investigated. However, the hyphal morphogenesis transcription program can also be induced by internal cellular signals, such as inhibition of cell cycle progression, and conversely, the inhibition of hyphal extension can repress hyphal-specific gene expression, suggesting that endogenous cellular signals are able to modulate hyphal gene expression as well. Here we review recent developments in the regulation of the hyphal morphogenesis of C. albicans, with emphasis on endogenous morphogenetic signals.
Collapse
|
13
|
The Anti- Candida albicans Agent 4-AN Inhibits Multiple Protein Kinases. Molecules 2019; 24:molecules24010153. [PMID: 30609757 PMCID: PMC6337409 DOI: 10.3390/molecules24010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 12/17/2022] Open
Abstract
Small molecules containing quinone and/or oxime moieties have been found as promising anti-fungal agents. One of them is 4-AN, a recently reported potent anti-Candida compound, which inhibits the formation of hyphae, decreases the level of cellular phosphoproteome, and finally shows no toxicity towards human erythrocytes and zebrafish embryos. Here, further research on 4-AN is presented. The results revealed that the compound: (i) Kills Candida clinical isolates, including these with developed antibiotic resistance, (ii) affects mature biofilm, and (iii) moderately disrupts membrane permeability. Atomic force microscopy studies revealed a slight influence of 4-AN on the cell surface architecture. 4-AN was also shown to inhibit multiple various protein kinases, a characteristic shared by most of the ATP-competitive inhibitors. The presented compound can be used in novel strategies in the fight against candidiasis, and reversible protein phosphorylation should be taken into consideration as a target in designing these strategies.
Collapse
|
14
|
Ghorai P, Irfan M, Narula A, Datta A. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis. Appl Microbiol Biotechnol 2018; 102:9731-9743. [PMID: 30121747 DOI: 10.1007/s00253-018-9303-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
The morphological plasticity of Candida albicans is a virulence determinant as the hyphal form has significant roles in the infection process. Recently, phosphoregulation of proteins through phosphorylation and dephosphorylation events has gained importance in studying the regulation of pathogenicity at the molecular level. To understand the importance of phosphorylation in hyphal morphogenesis, global analysis of the phosphoproteome was performed after hyphal induction with elevated temperature, serum, and N-acetyl-glucosamine (GlcNAc) treatments. The study identified 60, 20, and 53 phosphoproteins unique to elevated temperature-, serum-, and GlcNAc-treated conditions, respectively. Distribution of unique phosphorylation sites sorted by the modified amino acids revealed that predominant phosphorylation occurs in serine, followed by threonine and tyrosine residues in all the datasets. However, the frequency distribution of phosphorylation sites in the proteins varied with treatment conditions. Further, interaction network-based functional annotation of protein kinases of C. albicans as well as identified phosphoproteins was performed, which demonstrated the interaction of kinases with phosphoproteins during filamentous growth. Altogether, the present findings will serve as a base for further functional studies in the aspects of protein kinase-target protein interaction in effectuating phosphorylation of target proteins, and delineating the downstream signaling networks linked to virulence characteristics of C. albicans.
Collapse
Affiliation(s)
- Priyanka Ghorai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammad Irfan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Narula
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Candida albicans Hyphae: From Growth Initiation to Invasion. J Fungi (Basel) 2018; 4:jof4010010. [PMID: 29371503 PMCID: PMC5872313 DOI: 10.3390/jof4010010] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/28/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is a commensal resident of the human gastrointestinal and genital tracts. Under conditions such as dysbiosis, host immune perturbances, or the presence of catheters/implanted medical devices, the fungus may cause debilitating mucosal or fatal systemic infections. The ability of C. albicans to grow as long filamentous hyphae is critical for its pathogenic potential as it allows the fungus to invade the underlying substratum. In this brief review, I will outline the current understanding regarding the mechanistic regulation of hyphal growth and invasion in C. albicans.
Collapse
|
16
|
Masłyk M, Janeczko M, Demchuk OM, Boguszewska-Czubara A, Golczyk H, Sierosławska A, Rymuszka A, Martyna A, Kubiński K. A representative of arylcyanomethylenequinone oximes effectively inhibits growth and formation of hyphae in Candida albicans and influences the activity of protein kinases in vitro. Saudi Pharm J 2017; 26:244-252. [PMID: 30166923 PMCID: PMC6111191 DOI: 10.1016/j.jsps.2017.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/03/2017] [Indexed: 01/24/2023] Open
Abstract
In this study, we applied various assays to reveal new activities of phenylcyanomethylenequinone oxime-4-(hydroxyimino) cyclohexa-2,5-dien-1-ylidene](phenyl)ethanenitrile (4-AN) for potential anti-microbial applications. These assays demonstrated (a) the antimicrobial effect on bacterial and fungal cultures, (b) the effect on the in vitro activity of the kinase CK2, (c) toxicity towards human erythrocytes, the Caco-2 cancer cell line, and embryonic development of Zebrafish. We demonstrated the activity of 4-AN against selected bacteria and Candida spp. The MIC ranging from 4 µg/ml to 125 µg/ml proved effective in inhibition of formation of hyphae and cell aggregation in Candida, which was demonstrated at the cytological level. Noteworthy, 4-AN was found to inhibit the CK2 kinase with moderate potency. Moreover, at low concentrations, it did not exert any evident toxic effects on human erythrocytes, Caco-2 cells, or Zebrafish embryos. 4-AN can be a potential candidate as a novel drug against Candida infections.
Collapse
Affiliation(s)
- Maciej Masłyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Monika Janeczko
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Oleg M Demchuk
- Organic Chemistry Department, Faculty of Chemistry, Maria Curie-Skłodowska University, ul. Gliniana 33, 20-614 Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Anna Sierosławska
- Department of Animal Physiology and Toxicology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Anna Rymuszka
- Department of Animal Physiology and Toxicology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biotechnology, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| |
Collapse
|
17
|
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, Jena, Germany
- Friedrich Schiller University, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
18
|
Chavez-Dozal AA, Bernardo SM, Lee SA. The exocyst in Candida albicans polarized secretion and filamentation. Curr Genet 2016; 62:343-6. [PMID: 26762634 PMCID: PMC4978426 DOI: 10.1007/s00294-015-0553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022]
Abstract
The exocyst is an octameric complex that orchestrates the docking and tethering of vesicles to the plasma membrane during exocytosis and is fundamental for key biological processes including growth and establishment of cell polarity. Although components of the exocyst are well conserved among fungi, the specific functions of each component of the exocyst complex unique to Candida albicans biology and pathogenesis are not fully understood. This commentary describes recent findings regarding the role of exocyst subunits Sec6 and Sec15 in C. albicans filamentation and virulence.
Collapse
Affiliation(s)
- Alba A. Chavez-Dozal
- Section of Infectious Diseases, New Mexico VA Healthcare System, 1501 San Pedro SE, Mail Code 111-J, Albuquerque, NM 87108, USA
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Stella M. Bernardo
- Section of Infectious Diseases, New Mexico VA Healthcare System, 1501 San Pedro SE, Mail Code 111-J, Albuquerque, NM 87108, USA
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico VA Healthcare System, 1501 San Pedro SE, Mail Code 111-J, Albuquerque, NM 87108, USA
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
19
|
Wang H, Huang ZX, Au Yong JY, Zou H, Zeng G, Gao J, Wang Y, Wong AHH, Wang Y. CDK phosphorylates the polarisome scaffold Spa2 to maintain its localization at the site of cell growth. Mol Microbiol 2016; 101:250-64. [DOI: 10.1111/mmi.13386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Haitao Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
- Faculty of Health Sciences; University of Macau; Macau China
| | - Zhen-Xing Huang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Jie Ying Au Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Hao Zou
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Guisheng Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Jiaxin Gao
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | - Yanming Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
| | | | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research; Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine; National University of Singapore; Singapore
| |
Collapse
|
20
|
Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016; 57:93-99. [PMID: 27032479 DOI: 10.1016/j.semcdb.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.
Collapse
Affiliation(s)
- José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.
| | - Paola Bardetti
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Antonio de la Torre
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - María Tenorio-Gómez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
21
|
Wang Y. Hgc1-Cdc28-how much does a single protein kinase do in the regulation of hyphal development in Candida albicans? J Microbiol 2016; 54:170-7. [PMID: 26920877 DOI: 10.1007/s12275-016-5550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/03/2015] [Accepted: 12/03/2015] [Indexed: 01/06/2023]
Abstract
The fungal human pathogen Candida albicans can cause invasive infection with high mortality rates. A key virulence factor is its ability to switch between three morphologies: yeast, pseudohyphae and hyphae. In contrast to the ovalshaped unicellular yeast cells, hyphae are highly elongated, tube-like, and multicellular. A long-standing question is what coordinates all the cellular machines to construct cells with distinct shapes. Hyphal-specific genes (HSGs) are thought to hold the answer. Among the numerous HSGs found, only UME6 and HGC1 are required for hyphal development. UME6 encodes a transcription factor that regulates many HSGs including HGC1. HGC1 encodes a G1 cyclin which partners with the Cdc28 cyclin-dependent kinase. Hgc1-Cdc28 simultaneously phosphorylates and regulates multiple substrates, thus controlling multiple cellular apparatuses for morphogenesis. This review is focused on major progresses made in the past decade on Hgc1's roles and regulation in C. albicans hyphal development and other traits important for infection.
Collapse
Affiliation(s)
- Yue Wang
- Candida albicans Biology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
Douglas LM, Konopka JB. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. J Microbiol 2016; 54:178-91. [PMID: 26920878 DOI: 10.1007/s12275-016-5621-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022]
Abstract
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
Collapse
Affiliation(s)
- Lois M Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
23
|
Chen X, Ebbole DJ, Wang Z. The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:48-54. [PMID: 26453967 DOI: 10.1016/j.pbi.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Regulated by several small GTPases, the octameric exocyst complex directs the docking and tethering of exocytic vesicles to the destined plasma membrane sites, providing the precise spatiotemporal control of exocytosis. Although the exocyst components are well conserved among various fungal species, the mechanisms for the regulation of its assembly and activity are diverse. Exocytosis is crucial for the generation of cell polarity as well as the delivery of effector proteins in filamentous fungi, and thus plays an important role for fungal morphogenesis and pathogenicity on plant hosts. This review focuses on current findings about the roles of the exocyst complex in the morphogenesis and pathogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Functional Analysis of the Exocyst Subunit Sec15 in Candida albicans. EUKARYOTIC CELL 2015; 14:1228-39. [PMID: 26453654 DOI: 10.1128/ec.00147-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
In prior studies of exocyst-mediated late secretion in Candida albicans, we have determined that Sec6 contributes to cell wall integrity, secretion, and filamentation. A conditional mutant lacking SEC6 expression exhibits markedly reduced lateral hyphal branching. In addition, lack of the related t-SNAREs Sso2 and Sec9 also leads to defects in secretion and filamentation. To further understand the role of the exocyst in the fundamental processes of polarized secretion and filamentation in C. albicans, we studied the exocyst subunit Sec15. Since Saccharomyces cerevisiae SEC15 is essential for viability, we generated a C. albicans conditional mutant strain in which SEC15 was placed under the control of a tetracycline-regulated promoter. In the repressed state, cell death occurred after 5 h in the tetR-SEC15 strain. Prior to this time point, the tetR-SEC15 mutant was markedly defective in Sap and lipase secretion and demonstrated increased sensitivity to Zymolyase and chitinase. Notably, tetR-SEC15 mutant hyphae were characterized by a hyperbranching phenotype, in direct contrast to strain tetR-SEC6, which had minimal lateral branching. We further studied the localization of the Spitzenkörper, polarisomes, and exocysts in the tetR-SEC15 and tetR-SEC6 mutants during filamentation. Mlc1-GFP (marking the Spitzenkörper), Spa2-GFP (the polarisome), and Exo70-GFP (exocyst) localizations were normal in the tetR-SEC6 mutant, whereas these structures were mislocalized in the tetR-SEC15 mutant. Following alleviation of gene repression by removing doxycycline, first Spitzenkörper, then polarisome, and finally exocyst localizations were recovered sequentially. These results indicate that the exocyst subunits Sec15 and Sec6 have distinct roles in mediating polarized secretion and filamentation in C. albicans.
Collapse
|
25
|
Abstract
The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
|
27
|
Greig JA, Sudbery IM, Richardson JP, Naglik JR, Wang Y, Sudbery PE. Cell cycle-independent phospho-regulation of Fkh2 during hyphal growth regulates Candida albicans pathogenesis. PLoS Pathog 2015; 11:e1004630. [PMID: 25617770 PMCID: PMC4305328 DOI: 10.1371/journal.ppat.1004630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/16/2014] [Indexed: 11/21/2022] Open
Abstract
The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity. The fungus Candida albicans is a commensal in the human microbiota, responsible for superficial infections such as oral and vaginal thrush. However, it can become highly virulent, causing life-threatening systemic candidemia in severely immunocompromised patients, including those taking immunosuppressive drugs for transplantation, sufferers of AIDS and neutropenia, and individuals undergoing chemotherapy or at extremes of age. With a rapidly increasing ageing population worldwide, C. albicans and other fungal pathogens will become more prevalent, demanding a greater understanding of their pathogenesis for the development of effective therapeutics. Fungal pathogenicity requires a coordinated change in the pattern of gene expression orchestrated by a set of transcription factors. Here we have discovered that a transcription factor, Fkh2, is modified by phosphorylation under the control of the kinases Cdc28 and Cbk1 in response to conditions that activate virulence factor expression. Fkh2 is involved in a wide variety of cellular processes including cell proliferation, but this phosphorylation endows it with a specialized function in promoting the expression of genes required for tissue invasion, biofilm formation, and pathogenesis in the host. This study highlights the role of protein phosphorylation in regulating pathogenesis and furthers our understanding of the pathogenic switch in this important opportunistic fungal pathogen.
Collapse
Affiliation(s)
- Jamie A. Greig
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Ian M. Sudbery
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jonathan P. Richardson
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Julian R. Naglik
- Mucosal and Salivary Biology Division, King’s College London Dental Institute, King’s College London, London, United Kingdom
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
- Department of Biochemistry, Yong Loo Ling School of Medicine, National University of Singapore, Singapore
- * E-mail: (PES); (YW)
| | - Peter E. Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail: (PES); (YW)
| |
Collapse
|
28
|
|
29
|
Novel mechanism coupling cyclic AMP-protein kinase A signaling and golgi trafficking via Gyp1 phosphorylation in polarized growth. EUKARYOTIC CELL 2014; 13:1548-56. [PMID: 25326521 DOI: 10.1128/ec.00231-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic AMP (cAMP)-protein kinase A (PKA) signaling activates virulence expression during hyphal development in the fungal human pathogen Candida albicans. The hyphal growth is characterized by Golgi polarization toward the hyphal tips, which is thought to enhance directional vesicle transport. However, how the hypha-induction signal regulates Golgi polarization is unknown. Gyp1, a Golgi-associated protein and the first GTPase-activating protein (GAP) in the Rab GAP cascade, critically regulates membrane trafficking from the endoplasmic reticulum to the plasma membrane. Here, we report a novel pathway by which the cAMP-PKA signaling triggers Golgi polarization during hyphal growth. We demonstrate that Gyp1 plays a crucial role in actin-dependent Golgi polarization. Hyphal induction activates PKA, which in turn phosphorylates Gyp1. Phosphomimetic mutation of four PKA sites identified by mass spectrometry (Gyp1(4E)) caused strong Gyp1 polarization to hyphal tips, whereas nonphosphorylatable mutations (Gyp1(4A)) abolished it. Gyp1(4E) exhibited enhanced association with the actin motor Myo2, while Gyp1(4A) showed the opposite effect, providing a possible mechanism for Golgi polarization. A GAP-dead Gyp1 (Gyp1(R292K)) showed strong polarization similar to that seen with Gyp1(4E), indicating a role for the GAP activity. Mutating the PKA sites on Gyp1 also impaired the recruitment of a late Golgi marker, Sec7. Furthermore, proper PKA phosphorylation and GAP activity of Gyp1 are required for virulence in mice. We propose that the cAMP-PKA signaling directly targets Gyp1 to promote Golgi polarization in the yeast-to-hypha transition, an event crucial for C. albicans infection.
Collapse
|
30
|
Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation. Trends Microbiol 2014; 22:707-14. [PMID: 25262420 DOI: 10.1016/j.tim.2014.09.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 01/01/2023]
Abstract
The fungus Candida albicans is a benign member of the mucosal microbiota, but can cause mucosal infections and life-threatening disseminated invasive infections in susceptible individuals. The ability to switch between yeast, pseudohyphal, and hyphal growth forms (polymorphism) is one of the most investigated virulence attributes of C. albicans. Recent studies suggest that hyphal development in C. albicans requires two temporally linked regulations for initiation and maintenance of the hyphal transcriptional program. Hyphal initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis. Hyphal maintenance requires active sensing of the surrounding environment, leading to exclusion of Nrg1 binding to promoters of hypha-specific genes or reduced NRG1 expression. We discuss recent advances in understanding the complex transcriptional regulation of hyphal gene expression. These provide molecular mechanisms underpinning the phenotypic plasticity of C. albicans polymorphism.
Collapse
Affiliation(s)
- Yang Lu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Chang Su
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|