1
|
Bhatnagar A, Chopra U, Raja S, Das KD, Mahalingam S, Chakravortty D, Srinivasula SM. TLR-mediated aggresome-like induced structures comprise antimicrobial peptides and attenuate intracellular bacterial survival. Mol Biol Cell 2024; 35:ar34. [PMID: 38170582 PMCID: PMC10916861 DOI: 10.1091/mbc.e23-09-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.
Collapse
Affiliation(s)
- Anushree Bhatnagar
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Krishanu Dey Das
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| | - S. Mahalingam
- Laboratory of Molecular Cell Biology, Department of Biotechnology, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Dipshikha Chakravortty
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Srinivasa Murty Srinivasula
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala PO, Vithura, Thiruvananthapuram 695551, Kerala, India
| |
Collapse
|
2
|
Chung J, Park J, Lai ZW, Lambert TJ, Richards RC, Zhang J, Walther TC, Farese RV. The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat Cell Biol 2023; 25:1101-1110. [PMID: 37443287 PMCID: PMC10415183 DOI: 10.1038/s41556-023-01178-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
Abstract
Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.
Collapse
Affiliation(s)
- Jeeyun Chung
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Joongkyu Park
- Department of Pharmacology, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zon Weng Lai
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Talley J Lambert
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ruth C Richards
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jiuchun Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tobias C Walther
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert V Farese
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenco AL, Pwee D, Mayer Bridwell AE, Hoffmann M, Voss J, Karmakar P, Azouz N, Klingler AM, Rothlauf PW, Thompson CE, Lee M, Klampfer L, Stallings C, Rothenberg ME, Pöhlmann S, Whelan SP, O'Donoghue AJ, Craik CS, Janetka JW. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.06.442935. [PMID: 34131661 DOI: 10.1101/2021.08.18.456894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered a novel class of small molecule ketobenzothiazole TMPRSS2 inhibitors with significantly improved activity over existing irreversible inhibitors Camostat and Nafamostat. Lead compound MM3122 ( 4 ) has an IC 50 of 340 pM against recombinant full-length TMPRSS2 protein, an EC 50 of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV SARS-CoV-2 chimeric virus, and an EC 50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East Respiratory Syndrome Coronavirus (MERS-CoV) cell entry with an EC 50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice with a half-life of 8.6 hours in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.
Collapse
|
4
|
Doner NM, Seay D, Mehling M, Sun S, Gidda SK, Schmitt K, Braus GH, Ischebeck T, Chapman KD, Dyer JM, Mullen RT. Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION 7 Localizes to Lipid Droplets via Its Senescence Domain. FRONTIERS IN PLANT SCIENCE 2021; 12:658961. [PMID: 33936146 PMCID: PMC8079945 DOI: 10.3389/fpls.2021.658961] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Lipid droplets (LDs) are neutral-lipid-containing organelles found in all kingdoms of life and are coated with proteins that carry out a vast array of functions. Compared to mammals and yeast, relatively few LD proteins have been identified in plants, particularly those associated with LDs in vegetative (non-seed) cell types. Thus, to better understand the cellular roles of LDs in plants, a more comprehensive inventory and characterization of LD proteins is required. Here, we performed a proteomics analysis of LDs isolated from drought-stressed Arabidopsis leaves and identified EARLY RESPONSIVE TO DEHYDRATION 7 (ERD7) as a putative LD protein. mCherry-tagged ERD7 localized to both LDs and the cytosol when ectopically expressed in plant cells, and the protein's C-terminal senescence domain (SD) was both necessary and sufficient for LD targeting. Phylogenetic analysis revealed that ERD7 belongs to a six-member family in Arabidopsis that, along with homologs in other plant species, is separated into two distinct subfamilies. Notably, the SDs of proteins from each subfamily conferred targeting to either LDs or mitochondria. Further, the SD from the ERD7 homolog in humans, spartin, localized to LDs in plant cells, similar to its localization in mammals; although, in mammalian cells, spartin also conditionally localizes to other subcellular compartments, including mitochondria. Disruption of ERD7 gene expression in Arabidopsis revealed no obvious changes in LD numbers or morphology under normal growth conditions, although this does not preclude a role for ERD7 in stress-induced LD dynamics. Consistent with this possibility, a yeast two-hybrid screen using ERD7 as bait identified numerous proteins involved in stress responses, including some that have been identified in other LD proteomes. Collectively, these observations provide new insight to ERD7 and the SD-containing family of proteins in plants and suggest that ERD7 may be involved in functional aspects of plant stress response that also include localization to the LD surface.
Collapse
Affiliation(s)
- Nathan M. Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Damien Seay
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Marina Mehling
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Siqi Sun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kerstin Schmitt
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Kent D. Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - John M. Dyer
- United States Department of Agriculture, US Arid-Land Agricultural Research Center, Agriculture Research Service, Maricopa, AZ, United States
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- *Correspondence: Robert T. Mullen,
| |
Collapse
|
5
|
Schregle R, Mueller S, Legler DF, Rossy J, Krueger WA, Groettrup M. FAT10 localises in dendritic cell aggresome-like induced structures and contributes to their disassembly. J Cell Sci 2020; 133:jcs240085. [PMID: 32546531 DOI: 10.1242/jcs.240085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 08/31/2023] Open
Abstract
Dendritic cell (DC) aggresome-like induced structures (DALIS) are protein aggregates of polyubiquitylated proteins that form transiently during DC maturation. DALIS scatter randomly throughout the cytosol and serve as antigen storage sites synchronising DC maturation and antigen presentation. Maturation of DCs is accompanied by the induction of the ubiquitin-like modifier FAT10 (also known as UBD), which localises to aggresomes, structures that are similar to DALIS. FAT10 is conjugated to substrate proteins and serves as a signal for their rapid and irreversible degradation by the 26S proteasome similar to, yet independently of ubiquitin, thereby contributing to antigen presentation. Here, we have investigated whether FAT10 is involved in the formation and turnover of DALIS, and whether proteins accumulating in DALIS can be modified through conjunction to FAT10 (FAT10ylated). We found that FAT10 localises to DALIS in maturing DCs and that this localisation occurs independently of its conjugation to substrates. Additionally, we investigated the DALIS turnover in FAT10-deficient and -proficient DCs, and observed FAT10-mediated disassembly of DALIS. Thus, we report further evidence that FAT10 is involved in antigen processing, which may provide a functional rationale as to why FAT10 is selectively induced upon DC maturation.
Collapse
Affiliation(s)
- Richard Schregle
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| |
Collapse
|
6
|
Khoshaeen A, Najafi M, Mahdavi MR, Jalali H, Mahdavi M. A novel missense mutation (c.1006C>T) of SPG20 gene associated with Troyer syndrome. J Genet 2020. [DOI: 10.1007/s12041-020-01210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Liang H, Miao H, Yang H, Gong F, Chen S, Wang L, Zhu H, Pan H. Dwarfism in Troyer syndrome: a family with SPG20 compound heterozygous mutations and a literature review. Ann N Y Acad Sci 2019; 1462:118-127. [PMID: 31535723 DOI: 10.1111/nyas.14229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 01/16/2023]
Abstract
Troyer syndrome is an autosomal recessive disease characterized by spastic paralysis, dysarthria, distal amyotrophy, and short stature. Recently, two siblings (an older brother and a younger sister) were admitted to our hospital for the chief complaints of "short stature and intellectual disability." Through whole exome sequencing of the sister, who is the proband, it was found that her SPG20 gene had compound heterozygous mutations: c.364_365delAT (p.Met122Valfs* 2) and c.892delA (p.Thr298Glnfs* 30). Target testing revealed that the brother had the same genotype as the sister, and the former mutation originated from the father, while the latter mutation originated from the mother. In summary, this is the first report of Troyer syndrome in a family caused by SPG20 compound heterozygous mutations. A novel SPG20 mutation was found, namely c.892delA (p.Thr298Glnfs* 30). In addition, we also summarize these Troyer syndrome patients' heights and their clinical characteristics, and provide a brief review of all known pathogenic mutations of SPG20.
Collapse
Affiliation(s)
- Hanting Liang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Miao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Cabe M, Rademacher DJ, Karlsson AB, Cherukuri S, Bakowska JC. PB1 and UBA domains of p62 are essential for aggresome-like induced structure formation. Biochem Biophys Res Commun 2018; 503:2306-2311. [PMID: 29966650 DOI: 10.1016/j.bbrc.2018.06.153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 11/26/2022]
Abstract
ALIS are large, transient, cytosolic aggregates that serve as storage compartments for ubiquitin-tagged defective ribosomal products. We determined the importance of the protein p62 in the formation of ALIS and demonstrated that two domains of p62-PB1 and UBA-are essential for ALIS assembly. Those two major binding domains of p62, also known as sequestosome 1, were shown to play a critical role in the formation of autophagosomes or cytoplasmic aggregates. Specifically, the PB1 domain is essential for self-oligomerization, and the UBA domain allows p62 to bind to polyubiquitin chains or ubiquitinated proteins. After stimulation of RAW 264.7 macrophages with lipopolysaccharide, we observed a significant decrease in the number of cells with ALIS. Importantly, cells overexpressing either a PB1 mutant or UBA-deleted p62 construct also exhibited a substantially diminished number of cells containing ALIS. Since both p62 and ubiquitin are found in ALIS, we evaluated the dynamics of YFP-tagged p62 in ALIS. In contrast to the findings of a previous study that evaluated GFP-tagged ubiquitin motility in ALIS, we determined that YFP-tagged p62 has very limited mobility. Lastly, we determined that GST-tagged full-length p62 binds to Lys-63-linked polyubiquitin chains but not to Lys-48-linked chains. Overall, our findings provide insight on the essential role that p62, particularly its PB1 and UBA domains, has in the formation of ALIS.
Collapse
Affiliation(s)
- Maleen Cabe
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - David J Rademacher
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Amelia B Karlsson
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - Srinivas Cherukuri
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA
| | - Joanna C Bakowska
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
9
|
De Stasio EA, Mueller KP, Bauer RJ, Hurlburt AJ, Bice SA, Scholtz SL, Phirke P, Sugiaman-Trapman D, Stinson LA, Olson HB, Vogel SL, Ek-Vazquez Z, Esemen Y, Korzynski J, Wolfe K, Arbuckle BN, Zhang H, Lombard-Knapp G, Piasecki BP, Swoboda P. An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons. Genetics 2018; 208:1083-1097. [PMID: 29301909 PMCID: PMC5844324 DOI: 10.1534/genetics.117.300571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
Regulatory Factor X (RFX) transcription factors (TFs) are best known for activating genes required for ciliogenesis in both vertebrates and invertebrates. In humans, eight RFX TFs have a variety of tissue-specific functions, while in the worm Caenorhabditis elegans, the sole RFX gene, daf-19, encodes a set of nested isoforms. Null alleles of daf-19 confer pleiotropic effects including altered development with a dauer constitutive phenotype, complete absence of cilia and ciliary proteins, and defects in synaptic protein maintenance. We sought to identify RFX/daf-19 target genes associated with neuronal functions other than ciliogenesis using comparative transcriptome analyses at different life stages of the worm. Subsequent characterization of gene expression patterns revealed one set of genes activated in the presence of DAF-19 in ciliated sensory neurons, whose activation requires the daf-19c isoform, also required for ciliogenesis. A second set of genes is downregulated in the presence of DAF-19, primarily in nonsensory neurons. The human orthologs of some of these neuronal genes are associated with human diseases. We report the novel finding that daf-19a is directly or indirectly responsible for downregulation of these neuronal genes in C. elegans by characterizing a new mutation affecting the daf-19a isoform (tm5562) and not associated with ciliogenesis, but which confers synaptic and behavioral defects. Thus, we have identified a new regulatory role for RFX TFs in the nervous system. The new daf-19 candidate target genes we have identified by transcriptomics will serve to uncover the molecular underpinnings of the pleiotropic effects that daf-19 exerts on nervous system function.
Collapse
Affiliation(s)
| | | | - Rosemary J Bauer
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Sophie A Bice
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Sophie L Scholtz
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Prasad Phirke
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Huddinge, Sweden
| | | | - Loraina A Stinson
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Haili B Olson
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Savannah L Vogel
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Yagmur Esemen
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Jessica Korzynski
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Kelsey Wolfe
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Bonnie N Arbuckle
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - He Zhang
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | | | - Brian P Piasecki
- Department of Biology, Lawrence University, Appleton, Wisconsin 54911
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, 141 83 Huddinge, Sweden
| |
Collapse
|
10
|
Bizzari S, Hamzeh AR, Nair P, Mohamed M, Saif F, Aithala G, Al-Ali MT, Bastaki F. Novel SPG20 mutation in an extended family with Troyer syndrome. Metab Brain Dis 2017; 32:2155-2159. [PMID: 28875386 DOI: 10.1007/s11011-017-0104-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
Troyer Syndrome (TRS) is a rare autosomal recessive complicated spastic paraplegia disorder characterized by various neurological and musculoskeletal manifestations. Pathogenicity stems from mutations in SPG20 which encodes Spartin, a multifunctional protein that is thought to be essential for neuron viability. Here we report on the clinical and molecular characterization of TRS in five patients from an extended consanguineous family in the United Arab Emirates. Molecular analysis involved Whole Exome Sequencing and Sanger sequencing for identification and confirmation of the causative variant respectively. In silico tools including CADD and Polyphen-2 were used to assess pathogenicity of the variant. The clinical description of these patients included spastic paraparesis, motor and cognitive delay, gait abnormalities, musculoskeletal features, as well as white matter abnormalities and emotional liability. Molecular analysis revealed a novel homozygous missense mutation in SPG20 (c.1324G > C; p.Ala442Pro) occurring at an evolutionarily conserved residue in the Plant-Related Senescence domain of Spartin. The mutation segregated with the clinical phenotype in all patients. In silico algorithms predict the mutation to be disease causing, and the variant had not been previously reported in public or ethnic specific variant repositories.
Collapse
Affiliation(s)
- S Bizzari
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates.
| | - A R Hamzeh
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates
| | - P Nair
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates
| | - M Mohamed
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - F Saif
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - G Aithala
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| | - M T Al-Ali
- Centre for Arab Genomic Studies, P.O. Box 22252, Dubai, United Arab Emirates
| | - F Bastaki
- Pediatric Department, Latifa Hospital, Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
11
|
Ring J, Rockenfeller P, Abraham C, Tadic J, Poglitsch M, Schimmel K, Westermayer J, Schauer S, Achleitner B, Schimpel C, Moitzi B, Rechberger GN, Sigrist SJ, Carmona-Gutierrez D, Kroemer G, Büttner S, Eisenberg T, Madeo F. Mitochondrial energy metabolism is required for lifespan extension by the spastic paraplegia-associated protein spartin. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:411-422. [PMID: 29234670 PMCID: PMC5722644 DOI: 10.15698/mic2017.12.603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 01/11/2023]
Abstract
Hereditary spastic paraplegias, a group of neurodegenerative disorders, can be caused by loss-of-function mutations in the protein spartin. However, the physiological role of spartin remains largely elusive. Here we show that heterologous expression of human or Drosophila spartin extends chronological lifespan of yeast, reducing age-associated ROS production, apoptosis, and necrosis. We demonstrate that spartin localizes to the proximity of mitochondria and physically interacts with proteins related to mitochondrial and respiratory metabolism. Interestingly, Nde1, the mitochondrial external NADH dehydrogenase, and Pda1, the core enzyme of the pyruvate dehydrogenase complex, are required for spartin-mediated cytoprotection. Furthermore, spartin interacts with the glycolysis enhancer phospo-fructo-kinase-2,6 (Pfk26) and is sufficient to complement for PFK26-deficiency at least in early aging. We conclude that mitochondria-related energy metabolism is crucial for spartin's vital function during aging and uncover a network of specific interactors required for this function.
Collapse
Affiliation(s)
- Julia Ring
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, UK
| | - Claudia Abraham
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katherina Schimmel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Julia Westermayer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Simon Schauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Bettina Achleitner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Christa Schimpel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioNanoNet Forschungsgesellschaft mbH, Graz, Austria
| | - Barbara Moitzi
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Gerald N. Rechberger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Stephan J. Sigrist
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
- NeuroCure, Charité, Berlin, Germany
| | | | - Guido Kroemer
- BioTechMed Graz, Graz, Austria
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital Stockholm, Sweden
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
12
|
Butler S, Helbig KL, Alcaraz W, Seaver LH, Hsieh DT, Rohena L. Three cases of Troyer syndrome in two families of Filipino descent. Am J Med Genet A 2016; 170:1780-5. [DOI: 10.1002/ajmg.a.37658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/25/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Shauna Butler
- Department of Pediatrics; San Antonio Military Medical Center; JBSA Ft Sam Houston Texas
| | | | - Wendy Alcaraz
- Division of Clinical Genomics; Ambry Genetics; Aliso Viejo California
| | - Laurie H. Seaver
- Department of Pediatrics; University of Hawai‘i John A. Burns School of Medicine and Kapi'olani Medical Specialists; Honolulu Hawaii
| | - David T. Hsieh
- Department of Pediatrics; San Antonio Military Medical Center; JBSA Ft Sam Houston Texas
| | - Luis Rohena
- Department of Pediatrics; San Antonio Military Medical Center; JBSA Ft Sam Houston Texas
| |
Collapse
|
13
|
Oxidative Stress in Caenorhabditis elegans: Protective Effects of Spartin. PLoS One 2015; 10:e0130455. [PMID: 26114733 PMCID: PMC4482654 DOI: 10.1371/journal.pone.0130455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/20/2015] [Indexed: 01/25/2023] Open
Abstract
Troyer syndrome is caused by a mutation in the SPG20 gene, which results in complete loss of expression of the protein spartin. We generated a genetic model of Troyer syndrome in worms to explore the locomotor consequences of a null mutation of the Caenorhabditis elegans SPG20 orthologue, F57B10.9, also known as spg-20. Spg-20 mutants showed decreased length, crawling speed, and thrashing frequency, and had a shorter lifespan than wild-type animals. These results suggest an age-dependent decline in motor function in mutant animals. The drug paraquat was used to induce oxidative stress for 4 days in the animals. We measured survival rate and examined locomotion by measuring crawling speed and thrashing frequency. After 4 days of paraquat exposure, 77% of wild-type animals survived, but only 38% of spg-20 mutant animals survived. Conversely, animals overexpressing spg-20 had a survival rate of 95%. We also tested lifespan after a 1 hour exposure to sodium azide. After a 24 hour recovery period, 87% of wild type animals survived, 57% of spg-20 mutant animals survived, and 82% of animals overexpressing spg-20 survived. In the behavioral assays, spg-20 mutant animals showed a significant decrease in both crawling speed and thrashing frequency compared with wild-type animals. Importantly, the locomotor phenotype for both crawling and thrashing was rescued in animals overexpressing spg-20. The animals overexpressing spg-20 had crawling speeds and thrashing frequencies similar to those of wild-type animals. These data suggest that the protein F57B10.9/SPG-20 might have a protective role against oxidative stress.
Collapse
|
14
|
Nakagawa T, Nakayama K. Protein monoubiquitylation: targets and diverse functions. Genes Cells 2015; 20:543-62. [PMID: 26085183 PMCID: PMC4744734 DOI: 10.1111/gtc.12250] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitin is a 76-amino acid protein whose conjugation to protein targets is a form of post-translational modification. Protein ubiquitylation is characterized by the covalent attachment of the COOH-terminal carboxyl group of ubiquitin to an amino group of the substrate protein. Given that the NH2 -terminal amino group is usually masked, internal lysine residues are most often targeted for ubiquitylation. Polyubiquitylation refers to the formation of a polyubiquitin chain on the substrate as a result of the ubiquitylation of conjugated ubiquitin. The structures of such polyubiquitin chains depend on the specific lysine residues of ubiquitin targeted for ubiquitylation. Most of the polyubiquitin chains other than those linked via lysine-63 and methionine-1 of ubiquitin are recognized by the proteasome and serve as a trigger for substrate degradation. In contrast, polyubiquitin chains linked via lysine-63 and methionine-1 serve as a binding platform for proteins that function in immune signal transduction or DNA repair. With the exception of a few targets such as histones, the functions of protein monoubiquitylation have remained less clear. However, recent proteomics analysis has shown that monoubiquitylation occurs more frequently than polyubiquitylation, and studies are beginning to provide insight into its biologically important functions. Here, we summarize recent findings on protein monoubiquitylation to provide an overview of the targets and molecular functions of this modification.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, 980-8575, Miyagi, Japan
| |
Collapse
|
15
|
Tawamie H, Wohlleber E, Uebe S, Schmäl C, Nöthen MM, Abou Jamra R. Recurrent null mutation in SPG20 leads to Troyer syndrome. Mol Cell Probes 2015; 29:315-8. [PMID: 26003402 DOI: 10.1016/j.mcp.2015.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/26/2023]
Abstract
Troyer syndrome is an autosomal recessive form of complex hereditary spastic paraplegia. To date, the disorder has only been described in the Amish and in kindred from Oman. In Amish, all affected individuals have a homozygous one nucleotide deletion; c.1110delA. In the Omani kindred, all affected have a homozygous two nucleotides deletion; c.364_365delTA (p.Met122ValfsTer2). Here we report the results of homozygosity mapping and whole exome sequencing in two siblings of a consanguineous Turkish family with mild intellectual disability, spastic paraplegia, and muscular dystrophy. We identified the same deletion that has been identified in the Omani kindred, but haplotype analysis suggests a recurrent event, and not a founder mutation. We summarize current knowledge of Troyer syndrome, and propose wider use of whole exome sequencing in routine diagnostics. This applies in particular to nonspecific phenotypes with high heterogeneity, such as spastic paraplegia, intellectual disability, and muscular dystrophy, since in such cases the assignment of a definite diagnosis is frequently delayed.
Collapse
Affiliation(s)
- Hasan Tawamie
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Wohlleber
- Institute of Human Genetics, University of Bonn, Bonn, Germany; Humangenetik Freibrug, Freiburg, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany; Department of Genomics, Life and Brain Center, University Bonn, Bonn, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Centogene, Rostock, Germany.
| |
Collapse
|