1
|
Zuo J, Wu D, Zhang Y, Luo H, Jing G, Yuan M, Fang Q, Yang C, Wang X, Wu X, Song X. VCPIP1 negatively regulates NF-κB signaling pathways by deubiquitinating and stabilizing Erbin in MDP-stimulated macrophages. Int Immunopharmacol 2024; 143:113622. [PMID: 39550842 DOI: 10.1016/j.intimp.2024.113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Macrophages are present in all tissues and body compartments under homeostatic physiological conditions. Importantly, they play a key role in pathological inflammatory processes when disturbed. They can quickly produce large amounts of inflammatory cytokines in response to danger signals. Macrophages can recognize muramyl dipeptide (MDP) through nucleotide-binding oligomerization domain (NOD)-like receptors, subsequently activating the NF-κB signaling pathway and producing proinflammatory cytokines. Erbin can bind to NOD2 and inhibit MDP-induced NF-κB activation, thus participating in the regulation of inflammatory response. Stabilizing or enhancing Erbin expression is essential for suppressing inflammatory responses. In this study, we used a deubiquitination enzyme plasmid library to screen for a key deubiquitinase, VCPIP1, which interacts with Erbin and influences its stability through deubiquitination modification. We investigated whether VCPIP1 affects inflammation using MDP-stimulated RAW 264.7 and BMDMs cells. The results showed that VCPIP1 deficiency reduced Erbin expression and increased NF-κB phosphorylation. Additionally, VCPIP1 deficiency promoted the release of inflammatory factors (IL-1β, IL-6, and TNF-α) in RAW 264.7 cells and BMDMs. This study further expands the role of deubiquitinases (DUBs) in inflammation, providing new insights for the prevention and treatment of sepsis, tumors, immune diseases, and other inflammatory reactions.
Collapse
Affiliation(s)
- Jing Zuo
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Die Wu
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Ying Zhang
- Department of Anesthesiology, Dong Feng Hospital of Hubei Medical University, Shiyan 442000, Zhangwan, 16 Daling Road, Hubei Province, China
| | - Huan Luo
- Department of Anesthesiology, Cancer Hospital of Chongqing University, Chongqing 400030, Shapingba, 181 Hanyu Road, Chongqing Municipality, China
| | - Guoqing Jing
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Min Yuan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China
| | - Qing Fang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Cheng Yang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xing Wang
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Wuchang, 238 Liberation Road, Hubei Province, China.
| | - Xuemin Song
- The Research Centre of Anesthesiology and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Wuchang, 169 Donghu Road, Hubei Province, China.
| |
Collapse
|
2
|
Liao T, Li R, Lu P, Liu Y, Yang R, Guo H, Wu Z, Wang R, Yuan L, Hu Z, Gao H, Li F. Molecular Basis of VCPIP1 and P97/VCP Interaction Reveals Its Functions in Post-Mitotic Golgi Reassembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403417. [PMID: 39234822 PMCID: PMC11538695 DOI: 10.1002/advs.202403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/19/2024] [Indexed: 09/06/2024]
Abstract
The VCPIP1-P97/VCP (Valosin-Containing Protein) complex is required for post-mitotic Golgi cisternae reassembly and maintenance in interphase. However, the organization and mechanism of this complex in regulating Golgi membrane fusion is still elusive. Here, the cryo-electron microscopy (cryo-EM) structures of the human VCPIP1-P97/VCP complex are presented. These studies reveal that three independent VCPIP1 molecules sit over the C-terminal substrate exit tunnel formed by P97/VCP homo-hexamer, resulting in an unusual C3 to C6 symmetric barrel architecture. The UFD1 (unknown function domain 1) from VCPIP1, but not the N-terminal OTU domain and the C-terminal UBL domain, docks to the two adjacent D2 domains of P97/VCP, allosterically causing the cofactors binding domain-NTDs (N-terminal domains) of P97/VCP in a "UP" and D1 domain in an ATPase competent conformation. Conversely, VCPIP1 bound P97/VCP hexamer favors the binding of P47, and thus the intact SNARE complex, promoting Golgi membrane fusion. These studies not only reveal the unexpected organization of humanVCPIP1-P97/VCP complex, but also provide new insights into the mechanism of VCPIP1-P97/VCP mediated Golgi apparatus reassembly, which is a fundamental cellular event for protein and lipid processing.
Collapse
Affiliation(s)
- Tianzhui Liao
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Ruotong Li
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Ping Lu
- Zhejiang Key Laboratory of Structural BiologyWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
| | - Yusong Liu
- Zhejiang Key Laboratory of Structural BiologyWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater FishEngineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education MinistryCollege of Life SciencesHunan Normal UniversityChangshaHunan410013China
| | - Hao Guo
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Zhuoxi Wu
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Ruiwen Wang
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Ling Yuan
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Zhengmao Hu
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Haishan Gao
- Zhejiang Key Laboratory of Structural BiologyWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric DiseasesCenter for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunan410013China
| |
Collapse
|
3
|
McDade E, Liu H, Bui Q, Hassenstab J, Gordon B, Benzinger T, Shen Y, Timsina J, Wang L, Sung YJ, Karch C, Renton A, Daniels A, Morris J, Xiong C, Ibanez L, Perrin R, Llibre-Guerra JJ, Day G, Supnet-Bell C, Xu X, Berman S, Chhatwal J, Ikeuchi T, Kasuga K, Niimi Y, Huey E, Schofield P, Brooks W, Ryan N, Jucker M, Laske C, Levin J, Vöglein J, Roh JH, Lopera F, Bateman R, Cruchaga C. Ubiquitin-Proteasome System in the Different Stages of Dominantly Inherited Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-4202125. [PMID: 39108475 PMCID: PMC11302696 DOI: 10.21203/rs.3.rs-4202125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explored the role of the ubiquitin-proteasome system (UPS) in dominantly inherited Alzheimer's disease (DIAD) by examining changes in cerebrospinal fluid (CSF) levels of UPS proteins along with disease progression, AD imaging biomarkers (PiB PET, tau PET), neurodegeneration imaging measures (MRI, FDG PET), and Clinical Dementia Rating® (CDR®). Using the SOMAscan assay, we detected subtle increases in specific ubiquitin enzymes associated with proteostasis in mutation carriers (MCs) up to two decades before the estimated symptom onset. This was followed by more pronounced elevations of UPS-activating enzymes, including E2 and E3 proteins, and ubiquitin-related modifiers. Our findings also demonstrated consistent correlations between UPS proteins and CSF biomarkers such as Aβ42/40 ratio, total tau, various phosphorylated tau species to total tau ratios (ptau181/T181, ptauT205/T205, ptauS202/S202, ptauT217/T217), and MTBR-tau243, alongside Neurofilament light chain (NfL) and the CDR®. Notably, a positive association was observed with imaging markers (PiB PET, tau PET) and a negative correlation with markers of neurodegeneration (FDG PET, MRI), highlighting a significant link between UPS dysregulation and neurodegenerative processes. The correlations suggest that the increase in multiple UPS proteins with rising tau levels and tau-tangle associated markers, indicating a potential role for the UPS in relation to misfolded tau/neurofibrillary tangles (NFTs) and symptom onset. These findings indicate that elevated CSF UPS proteins in DIAD MCs could serve as early indicators of disease progression and suggest a link between UPS dysregulation and amyloid plaque, tau tangles formation, implicating the UPS as a potential therapeutic target in AD pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alan Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA: Departments of Neurology and Genetics and Ge
| | | | | | | | | | | | | | | | | | | | | | - Jasmeer Chhatwal
- Massachusetts General Hospital, Brigham and Women's Hospital, Harvard Medical School
| | | | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University
| | | | | | | | | | | | | | | | | | | | | | | | - Randall Bateman
- Department of Neurology, Washington University School of Medicine
| | | |
Collapse
|
4
|
Xia J, Ma N, Shi Q, Liu QC, Zhang W, Cao HJ, Wang YK, Zheng QW, Ni QZ, Xu S, Zhu B, Qiu XS, Ding K, Huang JY, Liang X, Chen Y, Xiang YJ, Zhang XR, Qiu L, Chen W, Xie D, Wang X, Long L, Li JJ. XAF1 promotes colorectal cancer metastasis via VCP-RNF114-JUP axis. J Cell Biol 2024; 223:e202303015. [PMID: 38095639 PMCID: PMC10720657 DOI: 10.1083/jcb.202303015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 12/17/2023] Open
Abstract
Metastasis is the main cause of colorectal cancer (CRC)-related death, and the 5-year relative survival rate for CRC patients with distant metastasis is only 14%. X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a zinc-rich protein belonging to the interferon (IFN)-induced gene family. Here, we report a metastasis-promoting role of XAF1 in CRC by acting as a novel adaptor of valosin-containing protein (VCP). XAF1 facilitates VCP-mediated deubiquitination of the E3 ligase RING finger protein 114 (RNF114), which promotes K48-linked ubiquitination and subsequent degradation of junction plakoglobin (JUP). The XAF1-VCP-RNF114-JUP axis is critical for the migration and metastasis of CRC cells. Moreover, we observe correlations between the protein levels of XAF1, RNF114, and JUP in clinical samples. Collectively, our findings reveal an oncogenic function of XAF1 in mCRC and suggest that the XAF1-VCP-RNF114-JUP axis is a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Shi
- Central Laboratory, The First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Qin-Cheng Liu
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Wei Zhang
- Department of General Surgery, Fengxian Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kai Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Yi Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jun Xiang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xi-Ran Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province. Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyun Long
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| |
Collapse
|
5
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
6
|
Li J, Zhang J, Wang Y. Analysis of mannosidase I activity in interphase and mitotic cells by lectin staining and endoglycosidase H treatment. STAR Protoc 2023; 4:102283. [PMID: 37148248 PMCID: PMC10193293 DOI: 10.1016/j.xpro.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
N-Glycosylation is a common protein modification catalyzed by a series of glycosylation enzymes in the endoplasmic reticulum and Golgi apparatus. Here, based on a previously established Golgi α-mannosidase-I-deficient cell line, we present a protocol to investigate the enzymatic activity of exogenously expressed Golgi α-mannosidase IA in interphase and mitotic cells. We describe steps for cell surface lectin staining and subsequent live cell imaging. We also detail PNGase F and Endo H cleavage assays to analyze protein glycosylation. For complete details on the use and execution of this protocol, please refer to Huang et al.1.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
8
|
Huang S, Haga Y, Li J, Zhang J, Kweon HK, Seino J, Hirayama H, Fujita M, Moremen KW, Andrews P, Suzuki T, Wang Y. Mitotic phosphorylation inhibits the Golgi mannosidase MAN1A1. Cell Rep 2022; 41:111679. [DOI: 10.1016/j.celrep.2022.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
9
|
Mirzadeh A, Kobakhidze G, Vuillemot R, Jonic S, Rouiller I. In silico prediction, characterization, docking studies and molecular dynamics simulation of human p97 in complex with p37 cofactor. BMC Mol Cell Biol 2022; 23:39. [PMID: 36088301 PMCID: PMC9464413 DOI: 10.1186/s12860-022-00437-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The AAA + ATPase p97 is an essential unfoldase/segragase involved in a multitude of cellular processes. It functions as a molecular machine critical for protein homeostasis, homotypic membrane fusion events and organelle biogenesis during mitosis in which it acts in concert with cofactors p47 and p37. Cofactors assist p97 in extracting and unfolding protein substrates through ATP hydrolysis. In contrast to other p97ʼs cofactors, p37 uniquely increases the ATPase activity of p97. Disease-causing mutations in p97, including mutations that cause neurodegenerative diseases, increase cofactor association with its N-domain, ATPase activity and improper substrate processing. Upregulation of p97 has also been observed in various cancers. This study aims towards the characterization of the protein–protein interaction between p97 and p37 at the atomic level. We defined the interacting residues in p97 and p37. The knowledge will facilitate the design of unique small molecules inhibiting this interaction with insights into cancer therapy and drug design.
Results
The homology model of human p37 UBX domain was built from the X-ray crystal structure of p47 C-terminus from rat (PDB code:1S3S, G) as a template and assessed by model validation analysis. According to the HDOCK, HAWKDOCK, MM-GBSA binding free energy calculations and Arpeggio, we found that there are several hydrophobic and two hydrogen-bonding interactions between p37 UBX and p97 N-D1 domain. Residues of p37 UBX predicted to be involved in the interactions with p97 N-D1 domain interface are highly conserved among UBX cofactors.
Conclusion
This study provides a reliable structural insight into the p37-p97 complex binding sites at the atomic level though molecular docking coupled with molecular dynamics simulation. This can guide the rational design of small molecule drugs for inhibiting mutant p97 activity.
Collapse
|
10
|
Ayala I, Colanzi A. Structural Organization and Function of the Golgi Ribbon During Cell Division. Front Cell Dev Biol 2022; 10:925228. [PMID: 35813197 PMCID: PMC9263219 DOI: 10.3389/fcell.2022.925228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
The Golgi complex has a central role in the secretory traffic. In vertebrate cells it is generally organized in polarized stacks of cisternae that are laterally connected by membranous tubules, forming a structure known as Golgi ribbon. The steady state ribbon arrangement results from a dynamic equilibrium between formation and cleavage of the membrane tubules connecting the stacks. This balance is of great physiological relevance as the unlinking of the ribbon during G2 is required for mitotic entry. A block of this process induces a potent G2 arrest of the cell cycle, indicating that a mitotic “Golgi checkpoint” controls the correct pre-mitotic segregation of the Golgi ribbon. Then, after mitosis onset, the Golgi stacks undergo an extensive disassembly, which is necessary for proper spindle formation. Notably, several Golgi-associated proteins acquire new roles in spindle formation and mitotic progression during mitosis. Here we summarize the current knowledge about the basic principle of the Golgi architecture and its functional relationship with cell division to highlight crucial aspects that need to be addressed to help us understand the physiological significance of the ribbon and the pathological implications of alterations of this organization.
Collapse
|
11
|
Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3. J Virol 2022; 96:e0061122. [PMID: 35695579 PMCID: PMC9278118 DOI: 10.1128/jvi.00611-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeostasis is very limited. We used a 74-DUB library-based yeast two-hybrid assay and determined that a novel DUB, valosin-containing protein-interacting protein 1 (VCPIP1), interacted with HBx. VCPIP1 and its C-terminal amino acids 863 to 1221 upregulated the HBx protein expression, with or without HBV infection. Mechanistically, VCPIP1 stabilized HBx protein through a ubiquitin-independent pathway, which was validated by the HBx ubiquitination site mutant plasmid. Coimmunoprecipitation assays demonstrated the potency of VCPIP1 in recruiting 26S proteasome regulatory subunit 6A (PSMC3) and forming a ternary complex with HBx through mutual interaction. In vitro, purified His-tagged PSMC3 protein rescued HBx degradation induced by the 20S proteasome, and in vivo VCPIP1 synergized the mechanism. Functionally, HBx specifically binding to VCPIP1 significantly enhanced the transcriptional transactivation of HBx by activating NF-κB, AP-1, and SP-1 and inhibited hepatoma cell clonogenicity in Huh7 and HepG2 cells. Moreover, we further demonstrated that overexpression of VCPIP1 significantly affected the HBV covalently closed circular DNA (cccDNA) transcription in HBV-infected HepG2-NTCP cells. Altogether, our results indicate a novel mechanism by which VCPIP1 recruits PSMC3 to bind with HBx, stabilizing it in a ubiquitin-independent manner, which might be critical for developing DUB inhibitors in the future. IMPORTANCE HBx is a multifunctional viral oncoprotein that plays an essential role in the viral life cycle and hepatocarcinogenesis. HBx degradation occurs through the ubiquitin-proteasome system (UPS). However, whether novel compartments of the DUBs in the UPS also act in regulating HBx stability is not fully understood. Here, for the first time, we defined VCPIP1 as a novel DUB for preventing HBx degradation by the 20S proteasome in a ubiquitin-independent manner. PSMC3, encoding the 26S proteasome regulatory subunit, directly stabilized HBx through physical binding instead of a common approach in protein degradation, serving as the key downstream effector of VCPIP1 on HBx. Therefore, the ternary binding pattern between VCPIP1, HBx, and PSMC3 is initiated for the first time, which eventually promotes HBx stability and its functions. Our findings provide novel insights into host-virus cross talk by targeting DUBs in the UPS.
Collapse
|
12
|
Chiang TI, Hung YY, Wu MK, Huang YL, Kang HY. TNIP2 mediates GRβ-promoted inflammation and is associated with severity of major depressive disorder. Brain Behav Immun 2021; 95:454-461. [PMID: 33932528 DOI: 10.1016/j.bbi.2021.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
In depression, continual activation of the hypothalamic-pituitaryadrenal (HPA) axis with excess cortisol release leads to impair sensitivity of the glucocorticoid receptor (GR) and increase activity of the pro-inflammatory immune responses. Aberrant expression of GR has been associated with inflammation in patients with major depressive disorder (MDD). Our previous studies showed that the aberrant expression of TNFAIP3 gene, which encodes the NF-κB regulatory protein A20, TNFAIP3-associated proteins and Toll-like receptors (TLRs) are involved in inflammation-associated depression. However, the link between desensitization of GR actions and negative regulation of the TLRs-mediated inflammatory pathway in MDD is yet to be established. Here, we examined the association of depression severity, measured via the 17-item Hamilton Depression Rating Scale (HAMD-17), with the mRNA expression profiling of GRα, GRβ, TNFAIP3-interacting proteins (TNIP), including TNIP1, TNIP2, and TNIP3, and TNFAIP3-like proteins, such as cezanne1, cezanne2, trabid, and valosin-containing protein p97/p47 complex-interacting protein p135 (VCIP135), in monocytes from 69 patients with MDD and 42 healthy controls. Herein we found the mRNA expressions of GRβ and TNIP2 were significantly higher in monocytes from patients with MDD. Notably, TNIP2 level was positively correlated with the GRβ expression and severity of depression, as determined via Pearson's correlation analysis. Mechanistically, we demonstrated that overexpression of GRβ promotes the mRNA levels of TNIP2 and tumor necrosis factor alpha (TNF-α) in human monocytes. The promoting effect of GRβ on TNF-α expression was partially attenuated upon depletion of TNIP2, suggesting that TNIP2 was required for GRβ-mediated enhancement of TNF-α levels. Together, these results suggest that activation of GRβ/TNIP2/TNF-α axis may induce inflammation in MDD patients and targeting this newly identified pathway may help in the development of better therapeutic approaches to reduce the development of MDD.
Collapse
Affiliation(s)
- Ting-I Chiang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Yung Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Ling Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Uzquiano A, Cifuentes-Diaz C, Jabali A, Romero DM, Houllier A, Dingli F, Maillard C, Boland A, Deleuze JF, Loew D, Mancini GMS, Bahi-Buisson N, Ladewig J, Francis F. Mutations in the Heterotopia Gene Eml1/EML1 Severely Disrupt the Formation of Primary Cilia. Cell Rep 2020; 28:1596-1611.e10. [PMID: 31390572 DOI: 10.1016/j.celrep.2019.06.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Apical radial glia (aRGs) are predominant progenitors during corticogenesis. Perturbing their function leads to cortical malformations, including subcortical heterotopia (SH), characterized by the presence of neurons below the cortex. EML1/Eml1 mutations lead to SH in patients, as well as to heterotopic cortex (HeCo) mutant mice. In HeCo mice, some aRGs are abnormally positioned away from the ventricular zone (VZ). Thus, unraveling EML1/Eml1 function will clarify mechanisms maintaining aRGs in the VZ. We pinpoint an unknown EML1/Eml1 function in primary cilium formation. In HeCo aRGs, cilia are shorter, less numerous, and often found aberrantly oriented within vesicles. Patient fibroblasts and human cortical progenitors show similar defects. EML1 interacts with RPGRIP1L, a ciliary protein, and RPGRIP1L mutations were revealed in a heterotopia patient. We also identify Golgi apparatus abnormalities in EML1/Eml1 mutant cells, potentially upstream of the cilia phenotype. We thus reveal primary cilia mechanisms impacting aRG dynamics in physiological and pathological conditions.
Collapse
Affiliation(s)
- Ana Uzquiano
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Ammar Jabali
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Delfina M Romero
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Anne Houllier
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Camille Maillard
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91057 Evry, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, 3015CN Rotterdam, the Netherlands
| | - Nadia Bahi-Buisson
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR1163 Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP-Necker Enfants Malades University Hospital, Paris, France; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP-Necker Enfants Malades University Hospital, Paris, France
| | - Julia Ladewig
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, 75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
14
|
The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans 2020; 48:245-256. [PMID: 32010930 DOI: 10.1042/bst20190646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.
Collapse
|
15
|
Carlton JG, Jones H, Eggert US. Membrane and organelle dynamics during cell division. Nat Rev Mol Cell Biol 2020; 21:151-166. [DOI: 10.1038/s41580-019-0208-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
16
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
17
|
Carissimo G, Chan YH, Utt A, Chua TK, Bakar FA, Merits A, Ng LFP. VCP/p97 Is a Proviral Host Factor for Replication of Chikungunya Virus and Other Alphaviruses. Front Microbiol 2019; 10:2236. [PMID: 31636613 PMCID: PMC6787436 DOI: 10.3389/fmicb.2019.02236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved AAA+ ATPase valosin-containing protein (VCP) was previously shown to be a proviral host factor for several viruses from different viral families such as Flaviviridae, Picornaviridae, and Herpesviridae. VCP was shown to affect trafficking of Sindbis virus receptor and functions as a component of Semliki Forest virus (SFV) replicase compartment. However, the role of this cellular protein was not evaluated during replication of alphaviruses including chikungunya virus (CHIKV). Using siRNA, chemical inhibitors, and trans-replication assays, we show here that VCP is a proviral factor involved in the replication of CHIKV. Immunofluorescence assays confirmed that VCP co-localized with non-structural replicase proteins but not with dsRNA foci possibly due to VCP epitope unavailability. VCP pro-viral role is also observed with other alphaviruses such as o’nyong’nyong virus (ONNV) and SFV in different human cell lines. VCP proviral roles on several viral families now extend to replication of alphaviruses CHIKV and ONNV, emphasizing the pivotal role of VCP in virus–host interaction biology.
Collapse
Affiliation(s)
- Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Age Utt
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tze-Kwang Chua
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Farhana Abu Bakar
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Andres Merits
- Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Huang S, Wang Y. Golgi structure formation, function, and post-translational modifications in mammalian cells. F1000Res 2017; 6:2050. [PMID: 29225785 PMCID: PMC5710388 DOI: 10.12688/f1000research.11900.1] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
20
|
Ayala I, Colanzi A. Mitotic inheritance of the Golgi complex and its role in cell division. Biol Cell 2017; 109:364-374. [PMID: 28799169 DOI: 10.1111/boc.201700032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/30/2022]
Abstract
The Golgi apparatus plays essential roles in the processing and sorting of proteins and lipids, but it can also act as a signalling hub and a microtubule-nucleation centre. The Golgi complex (GC) of mammalian cells is composed of stacks connected by tubular bridges to form a continuous membranous system. In spite of this structural complexity, the GC is highly dynamic, and this feature becomes particularly evident during mitosis, when the GC undergoes a multi-step disassembly process that allows its correct partitioning and inheritance by daughter cells. Strikingly, different steps of Golgi disassembly control mitotic entry and progression, indicating that cells actively monitor Golgi integrity during cell division. Here, we summarise the basic mechanisms and the molecular players that are involved in Golgi disassembly, focussing in particular on recent studies that have revealed the fundamental signalling pathways that connect Golgi inheritance to mitotic entry and progression.
Collapse
Affiliation(s)
- Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Naples, 80131, Italy
| |
Collapse
|
21
|
The AAA+ ATPase p97, a cellular multitool. Biochem J 2017; 474:2953-2976. [PMID: 28819009 PMCID: PMC5559722 DOI: 10.1042/bcj20160783] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Collapse
|
22
|
Affiliation(s)
- Tycho E.T. Mevissen
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
23
|
Huang S, Tang D, Wang Y. Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle. Dev Cell 2017; 38:73-85. [PMID: 27404360 DOI: 10.1016/j.devcel.2016.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
Abstract
The Golgi apparatus undergoes a ubiquitin-dependent disassembly and reassembly process during each cycle of cell division. Here we report the identification of the Golgi t-SNARE syntaxin 5 (Syn5) as the ubiquitinated substrate. Syn5 is monoubiquitinated by the ubiquitin ligase HACE1 in early mitosis and deubiquitinated by the deubiquitinase VCIP135 in late mitosis. Syn5 ubiquitination on lysine 270 (K270) in the SNARE domain impairs the interaction between Syn5 and the cognate v-SNARE Bet1 but increases its binding to p47, the adaptor protein of p97. Expression of the Syn5 K270R mutant in cells impairs post-mitotic Golgi reassembly. Therefore, monoubiquitination of Syn5 in early mitosis disrupts SNARE complex formation. Subsequently, ubiquitinated Syn5 recruits p97/p47 to the mitotic Golgi fragments and promotes post-mitotic Golgi reassembly upon ubiquitin removal by VCIP135. Overall, this study reveals both the substrate and the mechanism of ubiquitin-mediated regulation of Golgi membrane dynamics during the cell cycle.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Danming Tang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Zhang X, Smits AH, van Tilburg GBA, Jansen PWTC, Makowski MM, Ovaa H, Vermeulen M. An Interaction Landscape of Ubiquitin Signaling. Mol Cell 2017; 65:941-955.e8. [PMID: 28190767 DOI: 10.1016/j.molcel.2017.01.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/06/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Intracellular signaling via the covalent attachment of different ubiquitin linkages to protein substrates is fundamental to many cellular processes. Although linkage-selective ubiquitin interactors have been studied on a case-by-case basis, proteome-wide analyses have not been conducted yet. Here, we present ubiquitin interactor affinity enrichment-mass spectrometry (UbIA-MS), a quantitative interaction proteomics method that makes use of chemically synthesized diubiquitin to enrich and identify ubiquitin linkage interactors from crude cell lysates. UbIA-MS reveals linkage-selective diubiquitin interactions in multiple cell types. For example, we identify TAB2 and TAB3 as novel K6 diubiquitin interactors and characterize UCHL3 as a K27-linkage selective interactor that regulates K27 polyubiquitin chain formation in cells. Additionally, we show a class of monoubiquitin and K6 diubiquitin interactors whose binding is induced by DNA damage. We expect that our proteome-wide diubiquitin interaction landscape and established workflows will have broad applications in the ongoing efforts to decipher the complex language of ubiquitin signaling.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Gabrielle B A van Tilburg
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Matthew M Makowski
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066CX, the Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden 2333ZA, the Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen 6525, the Netherlands.
| |
Collapse
|
25
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
26
|
Ohyama K, Yoshimi H, Aibara N, Nakamura Y, Miyata Y, Sakai H, Fujita F, Imaizumi Y, Chauhan AK, Kishikawa N, Kuroda N. Immune complexome analysis reveals the specific and frequent presence of immune complex antigens in lung cancer patients: A pilot study. Int J Cancer 2016; 140:370-380. [DOI: 10.1002/ijc.30455] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Kaname Ohyama
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
- Nagasaki University Research Centre for Genomic Instability and Carcinogenesis (NRGIC); Nagasaki Japan
| | - Haruka Yoshimi
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Nozomi Aibara
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Yoichi Nakamura
- Second Department of Internal Medicine; Nagasaki University Hospital, Nagasaki University; Nagasaki Japan
| | - Yasuyoshi Miyata
- Department of Urology, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Hideki Sakai
- Department of Urology, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Fumihiko Fujita
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Yoshitaka Imaizumi
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit; Bomb Disease Institute, Nagasaki University; Nagasaki Japan
| | - Anil K Chauhan
- Division of Adult and Pediatric Rheumatology; Saint Louis University School of Medicine; St. Louis MO
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences; Nagasaki University; Nagasaki Japan
| |
Collapse
|
27
|
Han K, Zhao D, Liu Y, Liu Q, Huang X, Yang J, An F, Li Y. Quantitative Proteomic Analysis of Duck Ovarian Follicles Infected with Duck Tembusu Virus by Label-Free LC-MS. Front Microbiol 2016; 7:463. [PMID: 27066001 PMCID: PMC4815560 DOI: 10.3389/fmicb.2016.00463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/21/2016] [Indexed: 12/15/2022] Open
Abstract
Duck Tembusu virus (DTMUV) is a newly emerging pathogenic flavivirus that has caused massive economic losses to the duck industry in China. DTMUV infection mainly results in significant decreases in egg production in egg-laying ducks within 1–2 weeks post infection. However, information on the comparative protein expression of host tissues in response to DTMUV infection is limited. In the present study, the cellular protein response to DTMUV infection in duck ovarian follicles was analyzed using nano-flow high-performance liquid chromatography-electrospray tandem mass spectrometry. Quantitative proteomic analysis revealed 131 differentially expressed proteins, among which 53 were up regulated and 78 were down regulated. The identified proteins were involved in the regulation of essential processes such as cellular structure and integrity, RNA processing, protein biosynthesis and modification, vesicle transport, signal transduction, and mitochondrial pathway. Some selected proteins that were found to be regulated in DTMUV-infected tissues were screened by quantitative real-time PCR to examine their regulation at the transcriptional level, western blot analysis was used to validate the changes of some selected proteins on translational level. To our knowledge, this study is the first to analyze the proteomic changes in duck ovarian follicles following DTMUV infection. The protein-related information obtained in this study may be useful to understand the host response to DTMUV infection and the inherent mechanism of DTMUV replication and pathogenicity.
Collapse
Affiliation(s)
- Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Fengjiao An
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Lab of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
28
|
McDowell G, Philpott A. New Insights Into the Role of Ubiquitylation of Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:35-88. [DOI: 10.1016/bs.ircmb.2016.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Valente C, Colanzi A. Mechanisms and Regulation of the Mitotic Inheritance of the Golgi Complex. Front Cell Dev Biol 2015; 3:79. [PMID: 26734607 PMCID: PMC4679863 DOI: 10.3389/fcell.2015.00079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, the Golgi complex is structured in the form of a continuous membranous system composed of stacks connected by tubular bridges: the "Golgi ribbon." At the onset of mitosis, the Golgi complex undergoes a multi-step fragmentation process that is required for its correct partition into the dividing cells. Importantly, inhibition of Golgi disassembly results in cell-cycle arrest at the G2 stage, which indicates that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Moreover, mitotic Golgi disassembly correlates with the release of a set of Golgi-localized proteins that acquire specific functions during mitosis, such as mitotic spindle formation and regulation of the spindle checkpoint. Most of these events are regulated by small GTPases of the Arf and Rab families. Here, we review recent studies that are revealing the fundamental mechanisms, the molecular players, and the biological significance of mitotic inheritance of the Golgi complex in mammalian cells. We also briefly comment on how Golgi partitioning is coordinated with mitotic progression.
Collapse
Affiliation(s)
- Carmen Valente
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council Naples, Italy
| |
Collapse
|