1
|
Cai X, Bai Y, Liang C, Zhou J, Liu Y, Guo J, Jing Y, Fang Y, Hu X, Wu J, Hu D. Piperine as a promising therapeutic agent for silicosis: Targeting the JAK2-STAT3 signaling pathway and alleviating inflammation and fibrosis. Int Immunopharmacol 2025; 153:114458. [PMID: 40106900 DOI: 10.1016/j.intimp.2025.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/24/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Silicosis, a pervasive and life-threatening occupational respiratory disease, poses a substantial global health burden, particularly affecting those in impacted communities and their families. Characterized by irreversible pulmonary fibrosis, the disease's complex pathogenesis remains poorly elucidated, presenting significant challenges for therapeutic intervention. This study integrates bioinformatics, network pharmacology, and experimental validation to explore the potential mechanisms and therapeutic drugs for silicosis. Initially, differentially expressed genes (DEGs) in silicosis were subjected to GO and KEGG pathway enrichment analysis. Subsequently, the DEGs were imported into the cMap database for drug prediction, leading to the identification of piperine (PIP) as a candidate drug for the treatment of silicosis. Network pharmacology analysis then determined the pharmacological targets of PIP and demonstrated its ability to modulate the JAK2-STAT3 signaling pathway. Finally, we validated the therapeutic effects and mechanisms of PIP in silicosis. In vivo, PIP significantly ameliorated inflammation and fibrosis induced by crystalline silica (CS) in a murine model of silicosis, including inflammatory cell infiltration, formation of inflammasomes, deposition of collagen fibers and extracellular matrix, and expression of inflammatory and fibrotic factors. In vitro, PIP inhibited CS-induced cytokine expression, ROS generation, macrophage apoptosis, and activation of the JAK2-STAT3 signaling pathways. Collectively, our research identifies and validates PIP as a promising candidate for the improvement of silicosis.
Collapse
Affiliation(s)
- Xiaolong Cai
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Huainan Xinhua Medical Group Xinhua Hospital, China.
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yifan Jing
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yujing Fang
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaofei Hu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Joint Research Center for Occupational Medicine and Health of IHM, School of Medicine, Anhui University of Science and Technology, Huainan City, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, China.
| |
Collapse
|
2
|
Matthaiou EI, El-Hafeez AAA, Sharifi H, Chatterjee P, Zinter M, Johansson P, Dhillon E, Chiu W, Qian J, Shaller B, Chang J, Pasupneti S, Borges CH, Omar S, Enejder A, Dhillon G, Gaudilliere B, Fortwendel J, Vyas JM, Hsu JL. Macrophage ferroptosis inhibits Aspergillus conidial killing in lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643092. [PMID: 40161807 PMCID: PMC11952544 DOI: 10.1101/2025.03.13.643092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Immune suppression heightens the risk for fungal infections, but the mechanisms that result in clinical disease are poorly understood. Here we demonstrate that macrophage ferroptosis, an iron-dependent form of regulated cell death, inhibits Aspergillus fumigatus ( Af ) killing. In a mouse tracheal transplant model of Af infection, we observed an increase in macrophage lipid peroxidation, a decreased expression of negative ferroptosis regulators Gpx4 and Slc7a11 , and an increase in positive regulators Ptgs2 and Nox2 , relative to syntransplants. Depletion of macrophages in transplant recipients decreased Af invasion. In vitro , iron overload reduced macrophage viability and decreased their capability to kill Af spores, through a decrease in lysosomal acidification and lysosomal loss. Treatment with ferrostatin-1, a ferroptosis inhibitor, and deferasirox (an iron chelator) restored Af killing. Ferroptotic alveolar macrophages isolated from lung transplant patients also showed a decreased ability to kill Af spores and the patients' bronchoalveolar lavage was characterized by higher iron levels and markers of ferroptotic stress compared to non-lung transplants. These characteristics were strongly correlated with a clinical history of fungal infections, independent of immune suppressive medications. Our findings indicate that macrophage ferroptosis augments the risk of invasive aspergillosis, representing a novel mechanism for host immune dysfunction.
Collapse
|
3
|
Scott O, Saran E, Freeman SA. The spectrum of lysosomal stress and damage responses: from mechanosensing to inflammation. EMBO Rep 2025; 26:1425-1439. [PMID: 40016424 PMCID: PMC11933331 DOI: 10.1038/s44319-025-00405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cells and tissues turn over their aged and damaged components in order to adapt to a changing environment and maintain homeostasis. These functions rely on lysosomes, dynamic and heterogeneous organelles that play essential roles in nutrient redistribution, metabolism, signaling, gene regulation, plasma membrane repair, and immunity. Because of metabolic fluctuations and pathogenic threats, lysosomes must adapt in the short and long term to maintain functionality. In response to such challenges, lysosomes deploy a variety of mechanisms that prevent the breaching of their membrane and escape of their contents, including pathogen-associated molecules and hydrolases. While transient permeabilization of the lysosomal membrane can have acute beneficial effects, supporting inflammation and antigen cross-presentation, sustained or repeated lysosomal perforations have adverse metabolic and transcriptional consequences and can lead to cell death. This review outlines factors contributing to lysosomal stress and damage perception, as well as remedial processes aimed at addressing lysosomal disruptions. We conclude that lysosomal stress plays widespread roles in human physiology and pathology, the understanding and manipulation of which can open the door to novel therapeutic strategies.
Collapse
Affiliation(s)
- Ori Scott
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
- Division of Clinical Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Ekambir Saran
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Gurzu IL, Handra CM, Ghita I, Otelea MR. Unveiling the threat of crystalline silica on the cardiovascular system. A comprehensive review of the current knowledge. Front Cardiovasc Med 2025; 12:1506846. [PMID: 40027509 PMCID: PMC11868085 DOI: 10.3389/fcvm.2025.1506846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction This paper aims to expose the link between occupational exposure to respirable crystalline silica (SiO2) and cardiovascular diseases (CVDs). Methods A comprehensive review of the literature was conducted, focusing on epidemiological studies that assessed the association between silicosis or SiO2 exposure and CVDs. Specific cardiovascular diseases, such as acute myocardial infarction, arrhythmias, pulmonary hypertension and pericarditis, were also pointed. Biomarkers commonly used in both silicosis and cardiovascular diseases were reviewed to underline the common pathological pathways. Results Published epidemiological data revealed a higher risk of ischemic heart disease, stroke, and hypertension in silica-exposed workers, even at low exposure levels. SiO2 exposure was linked to an increased risk of myocardial infarction, with potential mechanisms involving inflammation and platelet activation. Elevated risk of arrhythmias, particularly atrial fibrillation, correlated with occupational silica exposure. Consistent with the pathological mechanisms supporting the SiO2 exposure-CVDs relationship, biomarkers related to NLP3 inflammasome activation, reflecting oxidative stress, and revealing fibrosis have been presented. Conclusion Actual data support the relationship between occupational SiO2 exposure and various CVDs promoting cardiovascular monitoring in silica-exposed workers. Further studies are needed to identify specific/distinctive biomarkers to improve early detection of CVDs in silica exposed workers.
Collapse
Affiliation(s)
- Irina Luciana Gurzu
- Preventive and Interdisciplinarity Medicine Department, “Grigore T Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Claudia Mariana Handra
- Occupational Medicine Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Isabel Ghita
- Pharmacy and Pharmacology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Marina Ruxandra Otelea
- Occupational Medicine Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
5
|
Du SL, Zhou YT, Hu HJ, Lin L, Zhang ZQ. Silica-induced ROS in alveolar macrophages and its role on the formation of pulmonary fibrosis via polarizing macrophages into M2 phenotype: a review. Toxicol Mech Methods 2025; 35:89-100. [PMID: 39223849 DOI: 10.1080/15376516.2024.2400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Alveolar macrophages (AMs), the first line against the invasion of foreign invaders, play a predominant role in the pathogenesis of silicosis. Studies have shown that inhaled silica dust is recognized and engulfed by AMs, resulting in the production of large amounts of silica-induced reactive oxygen species (ROS), including particle-derived ROS and macrophage-derived ROS. These ROS change the microenvironment of the AMs where the macrophage phenotype is stimulated to swift from M0 to M1 and/or M2, and ultimately emerge as the M2 phenotype to trigger silicosis. This is a complex process accompanied by various molecular biological events. Unfortunately, the detailed processes and mechanisms have not been systematically described. In this review, we first systematically introduce the process of ROS induced by silica in AMs. Then, describe the role and molecular mechanism of M2-type macrophage polarization caused by silica-induced ROS. Finally, we review the mechanism of pulmonary fibrosis induced by M2 polarized AMs. We conclude that silica-induced ROS initiate the fibrotic process of silicosis by inducing macrophage into M2 phenotype, and that targeted intervention of silica-induced ROS in AMs can reprogram the macrophage polarization and ameliorate the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Shu-Ling Du
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Yu-Ting Zhou
- School of Public Health, Jining Medical University, Jining, China
| | - Hui-Jie Hu
- School of Public Health, Shandong Second Medical University, Weifang, China
- School of Public Health, Jining Medical University, Jining, China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
7
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+-sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. Proc Natl Acad Sci U S A 2024; 121:e2318412121. [PMID: 38781205 PMCID: PMC11145288 DOI: 10.1073/pnas.2318412121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Madeline M. Motsinger
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Jiaqian Li
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Kevin P. Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
| | - Phyllis I. Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI48109
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI48109
| |
Collapse
|
8
|
Qin X, Niu Z, Chen H, Hu Y. Macrophage-derived exosomal HMGB3 regulates silica-induced pulmonary inflammation by promoting M1 macrophage polarization and recruitment. Part Fibre Toxicol 2024; 21:12. [PMID: 38454505 PMCID: PMC10918916 DOI: 10.1186/s12989-024-00568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/10/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Chronic inflammation and fibrosis are characteristics of silicosis, and the inflammatory mediators involved in silicosis have not been fully elucidated. Recently, macrophage-derived exosomes have been reported to be inflammatory modulators, but their role in silicosis has not been explored. The purpose of the present study was to investigate the role of macrophage-derived exosomal high mobility group box 3 (HMGB3) in silica-induced pulmonary inflammation. METHODS The induction of the inflammatory response and the recruitment of monocytes/macrophages were evaluated by immunofluorescence, flow cytometry and transwell assays. The expression of inflammatory cytokines was examined by RT-PCR and ELISA, and the signalling pathways involved were examined by western blot analysis. RESULTS HMGB3 expression was increased in exosomes derived from silica-exposed macrophages. Exosomal HMGB3 significantly upregulated the expression of inflammatory cytokines, activated the STAT3/MAPK (ERK1/2 and p38)/NF-κB pathways in monocytes/macrophages, and promoted the migration of these cells by CCR2. CONCLUSIONS Exosomal HMGB3 is a proinflammatory modulator of silica-induced inflammation that promotes the inflammatory response and recruitment of monocytes/macrophages by regulating the activation of the STAT3/MAPK/NF-κB/CCR2 pathways.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhiyuan Niu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Hui Chen
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yongbin Hu
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Chen W, Motsinger MM, Li J, Bohannon KP, Hanson PI. Ca 2+ -sensor ALG-2 engages ESCRTs to enhance lysosomal membrane resilience to osmotic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578682. [PMID: 38352356 PMCID: PMC10862787 DOI: 10.1101/2024.02.04.578682] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the cathepsin C-metabolized osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that widely used concentrations of GPN rupture only a small fraction of lysosomes, but surprisingly trigger Ca 2+ release from nearly all. Chelating cytoplasmic Ca 2+ using BAPTA makes lysosomes more likely to rupture under GPN-induced stress, suggesting that Ca 2+ plays a role in protecting or rapidly repairing lysosomal membranes. Mechanistically, we establish that GPN causes the Ca 2+ -sensitive protein Apoptosis Linked Gene-2 (ALG-2) and interacting ESCRT proteins to redistribute onto lysosomes, improving their resistance to membrane stress created by GPN as well as the lysosomotropic drug chlorpromazine. Furthermore, we show that activating the cation channel TRPML1, with or without blocking the endoplasmic reticulum Ca 2+ pump, creates local Ca 2+ signals that protect lysosomes from rupture by recruiting ALG-2 and ESCRTs without any membrane damage. These findings reveal that Ca 2+ , through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress. SIGNIFICANCE As the degradative hub of the cell, lysosomes are full of toxic content that can spill into the cytoplasm. There has been much recent interest in how cells sense and repair lysosomal membrane damage using ESCRTs and cholesterol to rapidly fix "nanoscale damage". Here, we extend understanding of how ESCRTs contribute by uncovering a preventative role of the ESCRT machinery. We show that ESCRTs, when recruited by the Ca 2+ -sensor ALG-2, play a critical role in stabilizing the lysosomal membrane against osmotically-induced rupture. This finding suggests that cells have mechanisms not just for repairing but also for actively protecting lysosomes from stress-induced membrane damage.
Collapse
|
10
|
Thompson JA, Kashon ML, McKinney W, Fedan JS. High-fat Western diet alters crystalline silica-induced airway epithelium ion transport but not airway smooth muscle reactivity. BMC Res Notes 2024; 17:13. [PMID: 38172968 PMCID: PMC10765734 DOI: 10.1186/s13104-023-06672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES Silicosis is an irreversible occupational lung disease resulting from crystalline silica inhalation. Previously, we discovered that Western diet (HFWD)-consumption increases susceptibility to silica-induced pulmonary inflammation and fibrosis. This study investigated the potential of HFWD to alter silica-induced effects on airway epithelial ion transport and smooth muscle reactivity. METHODS Six-week-old male F344 rats were fed a HFWD or standard rat chow (STD) and exposed to silica (Min-U-Sil 5®, 15 mg/m3, 6 h/day, 5 days/week, for 39 d) or filtered air. Experimental endpoints were measured at 0, 4, and 8 weeks post-exposure. Transepithelial potential difference (Vt), short-circuit current (ISC) and transepithelial resistance (Rt) were measured in tracheal segments and ion transport inhibitors [amiloride, Na+ channel blocker; NPPB; Cl- channel blocker; ouabain, Na+, K+-pump blocker] identified changes in ion transport pathways. Changes in airway smooth muscle reactivity to methacholine (MCh) were investigated in the isolated perfused trachea preparation. RESULTS Silica reduced basal ISC at 4 weeks and HFWD reduced the ISC response to amiloride at 0 week compared to air control. HFWD + silica exposure induced changes in ion transport 0 and 4 weeks after treatment compared to silica or HFWD treatments alone. No effects on airway smooth muscle reactivity to MCh were observed.
Collapse
Affiliation(s)
- Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, 1000 Frederick Lane, Morgantown, WV, 26508, USA.
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| |
Collapse
|
11
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
12
|
Favor OK, Rajasinghe LD, Wierenga KA, Maddipati KR, Lee KSS, Olive AJ, Pestka JJ. Crystalline silica-induced proinflammatory eicosanoid storm in novel alveolar macrophage model quelled by docosahexaenoic acid supplementation. Front Immunol 2023; 14:1274147. [PMID: 38022527 PMCID: PMC10665862 DOI: 10.3389/fimmu.2023.1274147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Phagocytosis of inhaled crystalline silica (cSiO2) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO2-triggered oxylipin responses, in vitro investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO2-induced eicosanoids. Methods We first compared how delivery of 25 µM DHA as ethanolic suspensions or as bovine serum albumin (BSA) complexes to C57BL/6 FLAMs impacts phospholipid fatty acid content. We subsequently treated FLAMs with 25 µM ethanolic DHA or ethanol vehicle (VEH) for 24 h, with or without LPS priming for 2 h, and with or without cSiO2 for 1.5 or 4 h and then measured oxylipin production by LC-MS lipidomics targeting for 156 oxylipins. Results were further related to concurrent proinflammatory cytokine production and cell death induction. Results DHA delivery as ethanolic suspensions or BSA complexes were similarly effective at increasing ω-3 PUFA content of phospholipids while decreasing the ω-6 PUFA arachidonic acid (ARA) and the ω-9 monounsaturated fatty acid oleic acid. cSiO2 time-dependently elicited myriad ARA-derived eicosanoids consisting of prostaglandins, leukotrienes, thromboxanes, and hydroxyeicosatetraenoic acids in unprimed and LPS-primed FLAMs. This cSiO2-induced eicosanoid storm was dramatically suppressed in DHA-supplemented FLAMs which instead produced potentially pro-resolving DHA-derived docosanoids. cSiO2 elicited marked IL-1α, IL-1β, and TNF-α release after 1.5 and 4 h of cSiO2 exposure in LPS-primed FLAMs which was significantly inhibited by DHA. DHA did not affect cSiO2-triggered death induction in unprimed FLAMs but modestly enhanced it in LPS-primed FLAMs. Discussion FLAMs are amenable to lipidome modulation by DHA which suppresses cSiO2-triggered production of ARA-derived eicosanoids and proinflammatory cytokines. FLAMs are a potential in vitro alternative to primary AMs for investigating interventions against early toxicant-triggered inflammation in the lung.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lichchavi D. Rajasinghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | | | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Andrew J. Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Lin YJ, Yang CC, Lee IT, Wu WB, Lin CC, Hsiao LD, Yang CM. Reactive Oxygen Species-Dependent Activation of EGFR/Akt/p38 Mitogen-Activated Protein Kinase and JNK1/2/FoxO1 and AP-1 Pathways in Human Pulmonary Alveolar Epithelial Cells Leads to Up-Regulation of COX-2/PGE 2 Induced by Silica Nanoparticles. Biomedicines 2023; 11:2628. [PMID: 37893002 PMCID: PMC10604097 DOI: 10.3390/biomedicines11102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The risk of lung exposure to silica nanoparticles (SiNPs) and related lung inflammatory injury is increasing with the wide application of SiNPs in a variety of industries. A growing body of research has revealed that cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) up-regulated by SiNP toxicity has a role during pulmonary inflammation. The detailed mechanisms underlying SiNP-induced COX-2 expression and PGE2 synthesis remain unknown. The present study aims to dissect the molecular components involved in COX-2/PGE2 up-regulated by SiNPs in human pulmonary alveolar epithelial cells (HPAEpiCs) which are one of the major targets while SiNPs are inhaled. In the present study, we demonstrated that SiNPs induced COX-2 expression and PGE2 release, which were inhibited by pretreatment with a reactive oxygen species (ROS) scavenger (edaravone) or the inhibitors of proline-rich tyrosine kinase 2 (Pyk2, PF-431396), epidermal growth factor receptor (EGFR, AG1478), phosphatidylinositol 3-kinase (PI3K, LY294002), protein kinase B (Akt, Akt inhibitor VIII), p38 mitogen-activated protein kinase (MAPK) (p38 MAPK inhibitor VIII), c-Jun N-terminal kinases (JNK)1/2 (SP600125), Forkhead Box O1 (FoxO1, AS1842856), and activator protein 1 (AP-1, Tanshinone IIA). In addition, we also found that SiNPs induced ROS-dependent Pyk2, EGFR, Akt, p38 MAPK, and JNK1/2 activation in these cells. These signaling pathways induced by SiNPs could further cause c-Jun and FoxO1 activation and translocation from the cytosol to the nucleus. AP-1 and FoxO1 activation could increase COX-2 and PGE2 levels induced by SiNPs. Finally, the COX-2/PGE2 axis might promote the inflammatory responses in HPAEpiCs. In conclusion, we suggested that SiNPs induced COX-2 expression accompanied by PGE2 synthesis mediated via ROS/Pyk2/EGFR/PI3K/Akt/p38 MAPK- and JNK1/2-dependent FoxO1 and AP-1 activation in HPAEpiCs.
Collapse
Affiliation(s)
- Yan-Jyun Lin
- Institute of Translational Medicine and New Drug Development, College of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo Branch, Kwei-San, Tao-Yuan 33305, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Pharmacology, College of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
14
|
Tian X, Wei Y, Hou R, Liu X, Tian Y, Zhao P, Li J. Yangqing Chenfei formula alleviates silica-induced pulmonary inflammation in rats by inhibiting macrophage M1 polarization. Chin Med 2023; 18:79. [PMID: 37381044 DOI: 10.1186/s13020-023-00787-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Yangqing Chenfei formula (YCF) is a traditional Chinese medicine formula for early-stage silicosis. However, the therapeutic mechanism is unclear. The purpose of this study was to determine the mechanism for the effects of YCF on early-stage experimental silicosis. METHODS The anti-inflammatory and anti-fibrotic effects of YCF were determined in a silicosis rat model, which was established by intratracheal instillation of silica. The anti-inflammatory efficacy and molecular mechanisms of YCF were examined in a lipopolysaccharide (LPS)/interferon (IFN)-γ-induced macrophage inflammation model. Network pharmacology and transcriptomics were integrated to analyze the active components, corresponding targets, and anti-inflammatory mechanisms of YCF, and these mechanisms were validated in vitro. RESULTS Oral administration of YCF attenuated the pathological changes, reduced inflammatory cell infiltration, inhibited collagen deposition, decreased the levels of inflammatory factors, and reduced the number of M1 macrophages in the lung tissue of rats with silicosis. YCF5, the effective fraction of YCF, significantly attenuated the inflammatory factors induced by LPS and IFN-γ in M1 macrophages. Network pharmacology analysis showed that YCF contained 185 active components and 988 protein targets, which were mainly associated with inflammation-related signaling pathways. Transcriptomic analysis showed that YCF regulated 117 reversal genes mainly associated with the inflammatory response. Integrative analysis of network pharmacology and transcriptomics indicated that YCF suppressed M1 macrophage-mediated inflammation by regulating signaling networks, including the mTOR, mitogen-activated protein kinases (MAPK), PI3K-Akt, NF-κB, and JAK-STAT signaling pathways. In vitro studies confirmed that the active components of YCF significantly decreased the levels of p-mTORC1, p-P38, and p-P65 by suppressing the activation of related-pathways. CONCLUSION YCF significantly attenuated the inflammatory response in rats with silicosis via the suppression of macrophage M1 polarization by inhibiting a "multicomponent-multitarget-multipathway" network.
Collapse
Affiliation(s)
- Xinrong Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yu Wei
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Runsu Hou
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Xinguang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China
| | - Peng Zhao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed By Henan Province & Education Ministry of P.R. China, Zhengzhou, 450046, Henan Province, China.
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, China.
| |
Collapse
|
15
|
Ma J, Wang J, Ma C, Cai Q, Wu S, Hu W, Yang J, Xue J, Chen J, Liu X. Wnt5a/Ca 2+ signaling regulates silica-induced ferroptosis in mouse macrophages by altering ER stress-mediated redox balance. Toxicology 2023; 490:153514. [PMID: 37075931 DOI: 10.1016/j.tox.2023.153514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Silicosis is a chronic pulmonary disease characterized by diffuse fibrosis of lung caused by the deposition of silica dust (SiO2). The inhaled silica-induced oxidative stress, ROS production and macrophage ferroptosis are key drivers of the pathological process of silicosis. However, mechanisms that involved in the silica-induced macrophage ferroptosis and its contributions to pathogenesis of silicosis remain elusive. In the present study, we showed that silica induced murine macrophage ferroptosis, accompanied by elevation of inflammatory responses, Wnt5a/Ca2+ signaling activation, and concurrent increase of endoplasmic reticulum (ER) stress and mitochondrial redox imbalance in vitro and vivo. Mechanistic study further demonstrated that Wnt5a/Ca2+ signaling played a key role in silica-induced macrophage ferroptosis by modulating ER stress and mitochondrial redox balance. The presence of Wnt5a/Ca2+ signaling ligand Wnt5a protein increased the silica-induced macrophage ferroptosis by activating ER-mediated immunoglobulin heavy chain binding protein (Bip)-C/EBP homology protein (Chop) signaling cascade, reducing the expression of negative regulators of ferroptosis, glutathione peroxidase 4 (Gpx4) and solute carrier family 7 member 11 (Slc7a11), subsequentially increasing lipid peroxidation. The pharmacologic inhibition of Wnt5a signaling or block of calcium flow exhibited an opposite effect to Wnt5a, resulted in the reduction of ferroptosis and the expression of Bip-Chop signaling molecules. These findings were further corroborated by the addition of ferroptosis activator Erastin or inhibitor ferrostatin-1. These results provide a mechanism by which silica activates Wnt5a/Ca2+ signaling and ER stress, sequentially leads to redox imbalance and ferroptosis in mouse macrophage cells.
Collapse
Affiliation(s)
- Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Jiaqi Wang
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| | - Wenfeng Hu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Juan Chen
- Institute of Human Stem Cells, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia University, Yinchuan, Ningxia 750004, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, United State.
| |
Collapse
|
16
|
Perrigue PM, Henschke A, Grześkowiak BF, Przysiecka Ł, Jaskot K, Mielcarek A, Coy E, Moya SE. Cellular uptake and retention studies of silica nanoparticles utilizing senescent fibroblasts. Sci Rep 2023; 13:475. [PMID: 36627308 PMCID: PMC9832065 DOI: 10.1038/s41598-022-26979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Understanding the interplay between nanoparticles (NPs) and cells is essential to designing more efficient nanomedicines. Previous research has shown the role of the cell cycle having impact on the efficiency of cellular uptake and accumulation of NPs. However, there is a limited investigation into the biological fate of NPs in cells that are permanently withdrawn from the cell cycle. Here we utilize senescent WI-38 fibroblasts, which do not divide and provide a definitive model for tracking the biological fate of silica nanoparticles (SiNPs) independent of cell cycle. We use several methods to measure the cellular uptake kinetics and intracellular retention of SiNPs, including confocal laser scanning microscopy (CLSM), flow cytometry, and transmission electron microscopy (TEM). We demonstrate that SiNPs readily enter into senescent cells. Once internalized, SiNPs do not exit and accumulate in the cytoplasm for long term. Our study provides a basis for future development of NP-based tools that can detect and target senescent cells for therapy.
Collapse
Affiliation(s)
- Patrick M. Perrigue
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Agata Henschke
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Bartosz F. Grześkowiak
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Łucja Przysiecka
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Kaja Jaskot
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Angelika Mielcarek
- grid.5633.30000 0001 2097 3545NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland.
| | - Sergio E. Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| |
Collapse
|
17
|
Gao YM, Chiu SH, Busa P, Liu CL, Kankala RK, Lee CH. Engineered Mesoporous Silica-Based Core-Shell Nanoarchitectures for Synergistic Chemo-Photodynamic Therapies. Int J Mol Sci 2022; 23:ijms231911604. [PMID: 36232904 PMCID: PMC9569459 DOI: 10.3390/ijms231911604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Combinatorial therapies have garnered enormous interest from researchers in efficiently devastating malignant tumors through synergistic effects. To explore the combinatorial approach, multiple therapeutic agents are typically loaded in the delivery vehicles, controlling their release profiles and executing subsequent therapeutic purposes. Herein, we report the fabrication of core (silica)-shell (mesoporous silica nanoparticles, MSNs) architectures to deliver methylene blue (MB) and cupric doxorubicin (Dox) as model drugs for synergistic photodynamic therapy (PDT), chemotherapy, and chemodynamic therapy (CDT). MB, as the photosensitizer, is initially loaded and stabilized in the silica core for efficient singlet oxygen generation under light irradiation towards PDT. The most outside shell with imidazole silane-modified MSNs is immobilized with a chemotherapeutic agent of Dox molecules through the metal (Copper, Cu)-ligand coordination interactions, achieving the pH-sensitive release and triggering the production of intracellular hydrogen peroxide and subsequent Fenton-like reaction-assisted Cu-catalyzed free radicals for CDT. Further, the designed architectures are systematically characterized using various physicochemical characterization techniques and demonstrate the potent anti-cancer efficacy against skin melanoma. Together our results demonstrated that the MSNs-based core-shell nanoarchitectures have great potential as an effective strategy in synergistically ablating cancer through chemo-, chemodynamic, and photodynamic therapies.
Collapse
Affiliation(s)
- Yue-Mei Gao
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Shih-Han Chiu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Prabhakar Busa
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chen-Lun Liu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
- Correspondence: ; Tel.: +886-3-8903677
| |
Collapse
|
18
|
Pulmonary Toxicity of Silica Linked to Its Micro- or Nanometric Particle Size and Crystal Structure: A Review. NANOMATERIALS 2022; 12:nano12142392. [PMID: 35889616 PMCID: PMC9318389 DOI: 10.3390/nano12142392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Silicon dioxide (SiO2) is a mineral compound present in the Earth’s crust in two mineral forms: crystalline and amorphous. Based on epidemiological and/or biological evidence, the pulmonary effects of crystalline silica are considered well understood, with the development of silicosis, emphysema, chronic bronchitis, or chronic obstructive pulmonary disease. The structure and capacity to trigger oxidative stress are recognized as relevant determinants in crystalline silica’s toxicity. In contrast, natural amorphous silica was long considered nontoxic, and was often used as a negative control in experimental studies. However, as manufactured amorphous silica nanoparticles (or nanosilica or SiNP) are becoming widely used in industrial applications, these paradigms must now be reconsidered at the nanoscale (<100 nm). Indeed, recent experimental studies appear to point towards significant toxicity of manufactured amorphous silica nanoparticles similar to that of micrometric crystalline silica. In this article, we present an extensive review of the nontumoral pulmonary effects of silica based on in vitro and in vivo experimental studies. The findings of this review are presented both for micro- and nanoscale particles, but also based on the crystalline structure of the silica particles.
Collapse
|
19
|
Leinardi R, Longo Sanchez-Calero C, Huaux F. Think Beyond Particle Cytotoxicity: When Self-Cellular Components Released After Immunogenic Cell Death Explain Chronic Disease Development. FRONTIERS IN TOXICOLOGY 2022; 4:887228. [PMID: 35846433 PMCID: PMC9284505 DOI: 10.3389/ftox.2022.887228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged perturbation of the immune system following the release of a plethora of self-molecules (known as damage-associated molecular patterns, DAMPs) by stressed or dying cells triggers acute and chronic pathological responses. DAMPs are commonly released after plasma membrane damage or complete rupture due to immunogenic cell death (ICD), upon numerous stressors including infectious and toxic agents. The set of DAMPs released after ICD include mature proinflammatory cytokines and alarmins, but also polymeric macromolecules. These self-intracellular components are recognized by injured and healthy surrounding cells via innate receptors, and induce upregulation of stress-response mechanisms, including inflammation. In this review, by overstepping the simple toxicological evaluation, we apply ICD and DAMP concepts to silica cytotoxicity, providing new insights on the mechanisms driving the progress and/or the exacerbation of certain SiO2–related pathologies. Finally, by proposing self-DNA as new crucial DAMP, we aim to pave the way for the development of innovative and easy-to-perform predictive tests to better identify the hazard of fine and ultrafine silica particles. Importantly, such mechanisms could be extended to nano/micro plastics and diesel particles, providing strategic advice and reports on their health issues.
Collapse
|
20
|
Sharma VK, Stark M, Fridman N, Assaraf YG, Gross Z. Doubly Stimulated Corrole for Organelle-Selective Antitumor Cytotoxicity. J Med Chem 2022; 65:6100-6115. [PMID: 35434997 DOI: 10.1021/acs.jmedchem.1c02085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Balancing between safety and efficacy of cancer chemotherapeutics is achievable by relying on internal and/or external stimuli for selective and on-demand antitumor cytotoxicity. We now introduce the difluorophosphorus(V) corrole PC-Im, a theranostic agent with a pH-sensitive N-methylimidazole moiety. Structure/activity relationships, via comparison with the permanently charged PC-ImM+ and the lipophilic PC, uncovered the exceptional features of PC-Im: nanoparticular and monomeric at neutral and low pH, respectively, 10-fold increased light-induced singlet oxygen production at acidic pH, internalization into malignant cells within minutes, and selective accumulation within lysosomes. Submillimolar PC-Im concentrations are tolerable in the dark, while illumination induces nanomolar cytotoxic effects due to a multiplicity of cellular deleterious events: endoplasmic reticulum fragmentation, lysosome fusion and exocytosis, calcium leakage, mitochondrial fission, and swelling. PC-Im emerges as an antitumor agent, whose potency is triggered by endogenous and exogenous stimuli, assuring its cytotoxicity will occur selectively upon lysosomal accumulation and solely upon light activation.
Collapse
Affiliation(s)
- Vinay K Sharma
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
21
|
Thompson JA, Johnston RA, Price RE, Hubbs AF, Kashon ML, McKinney W, Fedan JS. High-fat Western diet consumption exacerbates silica-induced pulmonary inflammation and fibrosis. Toxicol Rep 2022; 9:1045-1053. [PMID: 35936059 PMCID: PMC9350629 DOI: 10.1016/j.toxrep.2022.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption. HFWD exacerbates silica (SIL)-induced lung injury at 8 wk post-exposure. HFWD+SIL increases BAL cells and LDH compared to STD+SIL. HFWD+SIL increases BAL proinflammatory cytokines compared to STD+SIL. Histopathology confirms exacerbated lung injury HFWD+silica treatment.
Collapse
|
22
|
Zhao Y, Xu G, Li H, Chang M, Xiong C, Tao Y, Guan Y, Li Y, Yao S. Genome-wide mRNA profiling identifies the NRF2-regulated lymphocyte oxidative stress status in patients with silicosis. J Occup Med Toxicol 2021; 16:40. [PMID: 34517882 PMCID: PMC8436508 DOI: 10.1186/s12995-021-00332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immunomodulatory abnormalities of silicosis are related to the lymphocyte oxidative stress state. The potential effect of antioxidant therapy on silicosis may depend on the variation in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated antioxidant genes in peripheral blood mononuclear cells (PBMCs). As NRF2 is a redox-sensitive transcription factor, its possible roles and underlying mechanism in the treatment of silicosis need to be clarified. METHODS Ninety-two male patients with silicosis and 87 male healthy volunteers were randomly selected. PBMCs were isolated from fresh blood from patients with silicosis and healthy controls. The lymphocyte oxidative stress state was investigated by evaluating NRF2 expression and NRF2-dependent antioxidative genes in PBMCs from patients with silicosis. Key differentially expressed genes (DEGs) and signaling pathways were identified utilizing RNA sequencing (RNA-Seq) and bioinformatics technology. Gene set enrichment analysis was used to identify the differences in NRF2 signaling networks between patients with silicosis and healthy controls. RESULTS The number of monocytes was significantly higher in patients with silicosis than that of healthy controls. Furthermore, RNA-Seq findings were confirmed using quantitative polymerase chain reaction and revealed that NRF2-regulated DEGs were associated with glutathione metabolism, transforming growth factor-β, and the extracellular matrix receptor interaction signaling pathway in PBMCs from patients with silicosis. The top 10 hub genes were identified by PPI analysis: SMAD2, MAPK3, THBS1, SMAD3, ITGB3, integrin alpha-V (ITGAV), von Willebrand factor (VWF), BMP4, CD44, and SMAD7. CONCLUSIONS These findings suggest that NRF2 signaling regulates the lymphocyte oxidative stress state and may contribute to fibrogenic responses in human PBMCs. Therefore, NRF2 might serve as a novel preventive and therapeutic candidate for silicosis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China.,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Cheng Xiong
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingjun Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province, 063009, People's Republic of China. .,School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
23
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
24
|
Randall's plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 2021; 17:417-433. [PMID: 33514941 DOI: 10.1038/s41581-020-00392-1] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
Idiopathic calcium oxalate (CaOx) stones often develop attached to Randall's plaque present on kidney papillary surfaces. Similar to the plaques formed during vascular calcification, Randall's plaques consist of calcium phosphate crystals mixed with an organic matrix that is rich in proteins, such as inter-α-trypsin inhibitor, as well as lipids, and includes membrane-bound vesicles or exosomes, collagen fibres and other components of the extracellular matrix. Kidney tissue surrounding Randall's plaques is associated with the presence of classically activated, pro-inflammatory macrophages (also termed M1) and downregulation of alternatively activated, anti-inflammatory macrophages (also termed M2). In animal models, crystal deposition in the kidneys has been associated with the production of reactive oxygen species, inflammasome activation and increased expression of molecules implicated in the inflammatory cascade, including osteopontin, matrix Gla protein and fetuin A (also known as α2-HS-glycoprotein). Many of these molecules, including osteopontin and matrix Gla protein, are well known inhibitors of vascular calcification. We propose that conditions of urine supersaturation promote kidney damage by inducing the production of reactive oxygen species and oxidative stress, and that the ensuing inflammatory immune response promotes Randall's plaque initiation and calcium stone formation.
Collapse
|
25
|
A Positive Feed Forward Loop between Wnt/ β-Catenin and NOX4 Promotes Silicon Dioxide-Induced Epithelial-Mesenchymal Transition of Lung Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3404168. [PMID: 33376577 PMCID: PMC7744200 DOI: 10.1155/2020/3404168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Silicosis is a chronic fibrotic lung disease caused by the accumulation of silica dust in the distal lung. Canonical Wnt signaling and NADPH oxidase 4 (NOX4) have been demonstrated to play a crucial role in the pathogenesis of pulmonary fibrosis including silicosis. However, the underlying mechanisms of crosstalk between these two signalings are not fully understood. In the present study, we aimed to explore the interaction of Wnt/β-catenin and NOX4 of human epithelial cells in response to an exposure of silica dust. Results demonstrated an elevated expression of key components of Wnt/β-catenin signaling and NOX4 in the lungs of silicon dioxide- (SiO2-) induced silicosis mice. Furthermore, the activated Wnt/β-catenin and NOX4 signaling are accompanied by an inhibition of cell proliferation, an increase of ROS production and cell apoptosis, and an upregulation of profibrogenic factors in BEAS-2B human lung epithelial cells exposed to SiO2. A mechanistic study further demonstrated that the Wnt3a-mediated activation of canonical Wnt signaling could augment the SiO2-induced NOX4 expression and reactive oxygen species (ROS) production but reduced glutathione (GSH), while Wnt inhibitor DKK1 exhibited an opposite effect to Wnt3a. Vice versa, an overexpression of NOX4 further activated SiO2-induced Wnt/β-catenin signaling and NFE2-related factor 2 (Nrf2) antioxidant response along with a reduction of GSH, whereas the shRNA-mediated knockdown of NOX4 showed an opposite effect to NOX4 overexpression. These results imply a positive feed forward loop between Wnt/β-catenin and NOX4 signaling that may promote epithelial-mesenchymal transition (EMT) of lung epithelial cells in response to an exposure of silica dust, which may thus provide an insight into the profibrogenic role of Wnt/β-catenin and NOX4 crosstalk in lung epithelial cell injury and pathogenesis of silicosis.
Collapse
|
26
|
Bohannon KP, Hanson PI. ESCRT puts its thumb on the nanoscale: Fixing tiny holes in endolysosomes. Curr Opin Cell Biol 2020; 65:122-130. [PMID: 32731154 PMCID: PMC7578027 DOI: 10.1016/j.ceb.2020.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
The ESCRT (endosomal complex required for transport) machinery remodels membranes to bud vesicles away from the cytoplasm. In addition to this classic role, ESCRTs are now understood to repair damage in the plasma membrane, nuclear envelope, and throughout the endolysosomal network. Wounds in endolysosomal membranes are caused by pathogens, particulates, and other chemical or metabolic stresses. Nanoscale damage in these membranes promotes activation and engagement of ESCRT proteins. A full understanding of damage signals, molecular sensing, and the mechanism of membrane repair is yet to be developed. Nevertheless, a triggering role for calcium and ESCRT-I in recruiting ESCRT-III machinery for membrane remodeling is a repeated theme in functional studies of this response. In our current understanding of the continuum of cellular responses to lipid bilayer damage, the ESCRT machinery is fast, sensitive, and deployed independently of other systems.
Collapse
Affiliation(s)
- Kevin P Bohannon
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Leinardi R, Pavan C, Yedavally H, Tomatis M, Salvati A, Turci F. Cytotoxicity of fractured quartz on THP-1 human macrophages: role of the membranolytic activity of quartz and phagolysosome destabilization. Arch Toxicol 2020; 94:2981-2995. [PMID: 32592078 PMCID: PMC7415752 DOI: 10.1007/s00204-020-02819-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
The pathogenicity of quartz involves lysosomal alteration in alveolar macrophages. This event triggers the inflammatory cascade that may lead to quartz-induced silicosis and eventually lung cancer. Experiments with synthetic quartz crystals recently showed that quartz dust is cytotoxic only when the atomic order of the crystal surfaces is upset by fracturing. Cytotoxicity was not observed when quartz had as-grown, unfractured surfaces. These findings raised questions on the potential impact of quartz surfaces on the phagolysosomal membrane upon internalization of the particles by macrophages. To gain insights on the surface-induced cytotoxicity of quartz, as-grown and fractured quartz particles in respirable size differing only in surface properties related to fracturing were prepared and physico-chemically characterized. Synthetic quartz particles were compared to a well-known toxic commercial quartz dust. Membranolysis was assessed on red blood cells, and quartz uptake, cell viability and effects on lysosomes were assessed on human PMA-differentiated THP-1 macrophages, upon exposing cells to increasing concentrations of quartz particles (10–250 µg/ml). All quartz samples were internalized, but only fractured quartz elicited cytotoxicity and phagolysosomal alterations. These effects were blunted when uptake was suppressed by incubating macrophages with particles at 4 °C. Membranolysis, but not cytotoxicity, was quenched when fractured quartz was incubated with cells in protein-supplemented medium. We propose that, upon internalization, the phagolysosome environment rapidly removes serum proteins from the quartz surface, restoring quartz membranolytic activity in the phagolysosomes. Our findings indicate that the cytotoxic activity of fractured quartz is elicited by promoting phagolysosomal membrane alteration.
Collapse
Affiliation(s)
- Riccardo Leinardi
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Cristina Pavan
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Université Catholique de Louvain, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Harita Yedavally
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Maura Tomatis
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.
| | - Francesco Turci
- "G. Scansetti" Interdepartmental Center for Studies On Asbestos and Other Toxic Particulates, Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
28
|
Collins MK, Shotland AM, Wade MF, Atif SM, Richards DK, Torres-Llompart M, Mack DG, Martin AK, Fontenot AP, McKee AS. A role for TNF-α in alveolar macrophage damage-associated molecular pattern release. JCI Insight 2020; 5:134356. [PMID: 32255768 DOI: 10.1172/jci.insight.134356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2020] [Indexed: 01/22/2023] Open
Abstract
Chronic beryllium disease (CBD) is a metal hypersensitivity/autoimmune disease in which damage-associated molecular patterns (DAMPs) promote a break in T cell tolerance and expansion of Be2+/self-peptide-reactive CD4+ T cells. In this study, we investigated the mechanism of cell death induced by beryllium particles in alveolar macrophages (AMs) and its impact on DAMP release. We found that phagocytosis of Be led to AM cell death independent of caspase, receptor-interacting protein kinases 1 and 3, or ROS activity. Before cell death, Be-exposed AMs secreted TNF-α that boosted intracellular stores of IL-1α followed by caspase-8-dependent fragmentation of DNA. IL-1α and nucleosomal DNA were subsequently released from AMs upon loss of plasma membrane integrity. In contrast, necrotic AMs released only unfragmented DNA and necroptotic AMs released only IL-1α. In mice exposed to Be, TNF-α promoted release of DAMPs and was required for the mobilization of immunogenic DCs, the expansion of Be-reactive CD4+ T cells, and pulmonary inflammation in a mouse model of CBD. Thus, early autocrine effects of particle-induced TNF-α on AMs led to a break in peripheral tolerance. This potentially novel mechanism may underlie the known relationship between fine particle inhalation, TNF-α, and loss of peripheral tolerance in T cell-mediated autoimmune disease and hypersensitivities.
Collapse
Affiliation(s)
- Morgan K Collins
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Abigail M Shotland
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Morgan F Wade
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Shaikh M Atif
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | | | | | - Douglas G Mack
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Allison K Martin
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine
| | - Andrew P Fontenot
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amy S McKee
- Division of Allergy, Asthma and Clinical Immunology, Department of Medicine.,Department of Immunology and Microbiology, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
29
|
Zhao Y, Xu G, Li H, Chang M, Guan Y, Li Y, Wu W, Yao S. Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice. Toxicol Lett 2020; 323:57-66. [PMID: 32017981 DOI: 10.1016/j.toxlet.2020.01.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 02/05/2023]
Abstract
Oxidative stress and inflammatory processes are proposed to mediate the development of silicosis. However, antioxidant therapy has not produced consistent results during the treatment of silicosis. α-Lipoic acid synthesized by lipoic acid synthase is a powerful anti-oxidant and helps protect mitochondria. Thus far, the effect of endogenous α-Lipoic acid on silicosis has not been elucidated yet. We established an experimental model of silicosis with wildtype and LiasH/H mice, a new antioxidant mouse model which has overexpressed Lias gene (∼150 %) relative to its wild type counterpart. We systemically examined main pathological changes of pulmonary fibrosis, and explored α-lipoic acid effects on oxidative stress, inflammatory and pulmonary fibrosis biomarkers in silica-instillated mice. In LiasH/H mice over-expression of lipoic acid alleviated the severity of major pathological alterations in the early stage of pulmonary fibrosis induced by silica compared with wild type mice. Silica significantly increased oxidative stress in both wild type and LiasH/H mice. The antioxidant defense was strengthen including increased NRF2 and LIAS production in LiasH/H mice. Relieved oxidative stress resulted in decreased inflammatory response and secretion of chemokines. LiasH/H mice reduced chronic inflammatory response and inhibition of NF-κB activity after silica instillation. The LiasH/H mouse model overexpression of lipoic acid synthase gene retarded the development of silica-induced pulmonary fibrosis. Strengthen antioxidant defense by increased lipoic acid synthase is a potential strategy for protection against silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Yingzheng Zhao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Haibin Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Meiyu Chang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Yi Guan
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China
| | - Yuchun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China
| | - Sanqiao Yao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei Province 063009, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, PR China.
| |
Collapse
|
30
|
Repeated vs. Acute Exposure of RAW264.7 Mouse Macrophages to Silica Nanoparticles: A Bioaccumulation and Functional Change Study. NANOMATERIALS 2020; 10:nano10020215. [PMID: 32012675 PMCID: PMC7074975 DOI: 10.3390/nano10020215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
Abstract
Synthetic amorphous silica is used in various applications such as cosmetics, food, or rubber reinforcement. These broad uses increase human exposure, and thus the potential risk related to their short- and long-term toxicity for both consumers and workers. These potential risks have to be investigated, in a global context of multi-exposure, as encountered in human populations. However, most of the in vitro research on the effects of amorphous silica has been carried out in an acute exposure mode, which is not the most relevant when trying to assess the effects of occupational exposure. As a first step, the effects of repeated exposure of macrophages to silica nanomaterials have been investigated. The experiments have been conducted on in vitro macrophage cell line RAW264.7 (cell line from an Abelson murine leukemia virus-induced tumor), as this cell type is an important target cell in toxicology of particulate materials. The bioaccumulation of nanomaterials and the persistence of their effects have been studied. The experiments carried out include the viability assay and functional tests (phagocytosis, NO and reactive oxygen species dosages, and production of pro- and anti-inflammatory cytokines) using flow cytometry, microscopy and spectrophotometry. Accumulation of silica nanoparticles (SiO2 NP) was observed in both exposure scenarii. However, differences in the biological effects between the exposure scenarii have also been observed. For phagocytosis, NO production and Tumor Necrosis Factor (TNF) release, repeated exposure tended to induce fewer effects than acute exposure. Nevertheless, repeated exposure still induces alterations in the macrophage responses and thus represents a scenario to be tested in detail.
Collapse
|
31
|
Rubio L, Pyrgiotakis G, Beltran-Huarac J, Zhang Y, Gaurav J, Deloid G, Spyrogianni A, Sarosiek KA, Bello D, Demokritou P. Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Part Fibre Toxicol 2019; 16:40. [PMID: 31665028 PMCID: PMC6819463 DOI: 10.1186/s12989-019-0325-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Amorphous silica nanoparticles (SiO2 NPs) have been regarded as relatively benign nanomaterials, however, this widely held opinion has been questioned in recent years by several reports on in vitro and in vivo toxicity. Surface chemistry, more specifically the surface silanol content, has been identified as an important toxicity modulator for SiO2 NPs. Here, quantitative relationships between the silanol content on SiO2 NPs, free radical generation and toxicity have been identified, with the purpose of synthesizing safer-by-design fumed silica nanoparticles. RESULTS Consistent and statistically significant trends were seen between the total silanol content, cell membrane damage, and cell viability, but not with intracellular reactive oxygen species (ROS), in the macrophages RAW264.7. SiO2 NPs with lower total silanol content exhibited larger adverse cellular effects. The SAEC epithelial cell line did not show any sign of toxicity by any of the nanoparticles. Free radical generation and surface reactivity of these nanoparticles were also influenced by the temperature of combustion and total silanol content. CONCLUSION Surface silanol content plays an important role in cellular toxicity and surface reactivity, although it might not be the sole factor influencing fumed silica NP toxicity. It was demonstrated that synthesis conditions for SiO2 NPs influence the type and quantity of free radicals, oxidative stress, nanoparticle interaction with the biological milieu they come in contact with, and determine the specific mechanisms of toxicity. We demonstrate here that it is possible to produce much less toxic fumed silicas by modulating the synthesis conditions.
Collapse
Affiliation(s)
- Laura Rubio
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, 665 Huntington, Boston, MA, 02115, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, 665 Huntington, Boston, MA, 02115, USA
| | - Juan Beltran-Huarac
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, 665 Huntington, Boston, MA, 02115, USA
| | - Yipei Zhang
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Joshi Gaurav
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Glen Deloid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, 665 Huntington, Boston, MA, 02115, USA
| | - Anastasia Spyrogianni
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Center, Department of Environmental Health, Harvard T. H. Chan School of Public School, Harvard University, 665 Huntington, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Effects of abnormal expression of fusion and fission genes on the morphology and function of lung macrophage mitochondria in SiO2-induced silicosis fibrosis in rats in vivo. Toxicol Lett 2019; 312:181-187. [DOI: 10.1016/j.toxlet.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/11/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
|
33
|
Yan Q, He B, Hao G, Liu Z, Tang J, Fu Q, Jiang C. KLF9 aggravates ischemic injury in cardiomyocytes through augmenting oxidative stress. Life Sci 2019; 233:116641. [DOI: 10.1016/j.lfs.2019.116641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
|
34
|
Wang Z, Zeng S, Joshi GN, Smith AT, Zeng H, Wei Z, Yu X, Pokhrel M, Mao Y, Wang W, Sun L. Design and Fabrication of Highly Photoluminescent Carbon-Incorporated Silica from Rice Husk Biomass. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhaofeng Wang
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Songshan Zeng
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Gaurav N. Joshi
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, 220 Longwood Avenue, Goldenson 553, Boston, Massachusetts 02115, United States
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andrew T. Smith
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Huidan Zeng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zichao Wei
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xiaoyuan Yu
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Biomaterials, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Madhab Pokhrel
- Department of Chemistry and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Yuanbing Mao
- Department of Chemistry and School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Weixing Wang
- Ministry of Education Key Laboratory of Enhanced Heat Transfer & Energy Conservation, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
35
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
36
|
Skowyra ML, Schlesinger PH, Naismith TV, Hanson PI. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 2018; 360:360/6384/eaar5078. [PMID: 29622626 PMCID: PMC6195421 DOI: 10.1126/science.aar5078] [Citation(s) in RCA: 341] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022]
Abstract
Endolysosomes can be damaged by diverse materials. Terminally damaged compartments are degraded by lysophagy, but pathways that repair salvageable organelles are poorly understood. Here we found that the endosomal sorting complex required for transport (ESCRT) machinery, known to mediate budding and fission on endolysosomes, also plays an essential role in their repair. ESCRTs were rapidly recruited to acutely injured endolysosomes through a pathway requiring calcium and ESCRT-activating factors that was independent of lysophagy. We used live-cell imaging to demonstrate that ESCRTs responded to small perforations in endolysosomal membranes and enabled compartments to recover from limited damage. Silica crystals that disrupted endolysosomes also triggered ESCRT recruitment. ESCRTs thus provide a defense against endolysosomal damage likely to be relevant in physiological and pathological contexts.
Collapse
Affiliation(s)
- Michael L Skowyra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Wong AO, Marthi M, Mendel ZI, Gregorka B, Swanson MS, Swanson JA. Renitence vacuoles facilitate protection against phagolysosomal damage in activated macrophages. Mol Biol Cell 2018; 29:657-668. [PMID: 29282279 PMCID: PMC6004576 DOI: 10.1091/mbc.e17-07-0486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
As professional phagocytes, macrophages are susceptible to endolysosomal membrane damage inflicted by the pathogens and noxious particles they ingest. Whether macrophages have mechanisms for limiting such damage is not well understood. Previously, we reported a phenomenon, termed "inducible renitence," in which lipopolysaccharide (LPS) activation of macrophages protected their endolysosomes against damage initiated by the phagocytosis of silica beads. To gain mechanistic insight into the process, we analyzed the kinetics of renitence and morphological features of LPS-activated versus resting macrophages following silica bead-mediated injury. We discovered novel vacuolar structures that form in LPS-activated but not resting macrophages following silica bead phagocytosis. Because of their correlation with renitence and damage-resistant nature, we termed these structures "renitence vacuoles" (RVs). RVs formed coincident with silica bead uptake in a process associated with membrane ruffling and macropinocytosis. However, unlike normal macropinosomes (MPs), which shrink within 20 min of formation, RVs persisted around bead-containing phagosomes. RVs fused with lysosomes, whereas associated phagosomes typically did not. These findings are consistent with a model in which RVs, as persistent MPs, prevent fusion between damaged phagosomes and intact lysosomes and thereby preserve endolysosomal integrity.
Collapse
Affiliation(s)
- Amanda O Wong
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matangi Marthi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zachary I Mendel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Brian Gregorka
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joel A Swanson
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
38
|
Farris BY, Antonini JM, Fedan JS, Mercer RR, Roach KA, Chen BT, Schwegler-Berry D, Kashon ML, Barger MW, Roberts JR. Pulmonary toxicity following acute coexposures to diesel particulate matter and α-quartz crystalline silica in the Sprague-Dawley rat. Inhal Toxicol 2017; 29:322-339. [PMID: 28967277 PMCID: PMC6545482 DOI: 10.1080/08958378.2017.1361487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.
Collapse
Affiliation(s)
- Breanne Y. Farris
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Jeffrey S. Fedan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Robert R. Mercer
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark W. Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
39
|
Single Cell Analysis of Phagocytosis, Phagosome Maturation, Phagolysosomal Leakage, and Cell Death Following Exposure of Macrophages to Silica Particles. Methods Mol Biol 2017; 1519:55-77. [PMID: 27815873 DOI: 10.1007/978-1-4939-6581-6_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic inhalation of silica in various occupational settings results in the development of silicosis, a disease characterized by lung fibrosis. Uptake of silica particles by alveolar macrophages results in cell death and this is one of the contributing factors to the development of silicosis. We have characterized the uncoated or protein-coated (non-opsonized) and Fc receptor-mediated (antibody-opsonized) routes of silica phagocytosis and toxicity. Numerous microscopy techniques and fluorescent probes are outlined in this chapter to carefully measure particle uptake, by macrophages, phagosome maturation, phagosomal reactive oxygen species generation, phagolysosomal leakage, and cell death.
Collapse
|