1
|
Draper-Barr G, Defelipe LA, Ruiz-Carrillo D, Gustavsson E, Landau M, García-Alai M. Sla2 is a core interaction hub for clathrin light chain and the Pan1/End3/Sla1 complex. Structure 2025:S0969-2126(25)00147-9. [PMID: 40347949 DOI: 10.1016/j.str.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
The interaction network of Sla2, a vital endocytic mid-coat adaptor protein, undergoes constant rearrangement. Sla2 serves as a scaffold linking the membrane to the actin cytoskeleton, with its role modulated by the clathrin light chain (CLC), which inhibits Sla2's function under certain conditions. We show that Sla2 has two independent binding sites for CLC: one previously described in homologs of fungi (Sla2) and metazoa (Hip1R), and a second found only in Fungi. We present the structural model of the Sla2 actin-binding domains in the context of regulatory structural domains by cryoelectron microscopy. We provide an interaction map of Sla2 and the regulatory proteins Sla1 and Pan1, predicted by AI modeling and confirmed by molecular biophysics techniques. Pan1 may compete with CLC for the conserved Sla2-binding site. These results enhance the mapping of crucial interactions at endocytic checkpoints and highlight the divergence between Metazoa and Fungi in this vital process.
Collapse
Affiliation(s)
- George Draper-Barr
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Lucas A Defelipe
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - David Ruiz-Carrillo
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Emil Gustavsson
- Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany
| | - Meytal Landau
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany; University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany; Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Maria García-Alai
- European Molecular Biology Laboratory, DESY, Building 25a, Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), DESY, Building 15, Hamburg 22607, Germany.
| |
Collapse
|
2
|
Zhang F, Tang Y, Zhou H, Li K, West JA, Griffin JL, Lilley KS, Zhang N. The Yeast Gsk-3 Kinase Mck1 Is Necessary for Cell Wall Remodeling in Glucose-Starved and Cell Wall-Stressed Cells. Int J Mol Sci 2025; 26:3534. [PMID: 40332024 PMCID: PMC12027387 DOI: 10.3390/ijms26083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The cell wall integrity (CWI) pathway is responsible for transcriptional regulation of cell wall remodeling in response to cell wall stress. How cell wall remodeling mediated by the CWI pathway is effected by inputs from other signaling pathways is not well understood. Here, we demonstrate that the Mck1 kinase cooperates with Slt2, the MAP kinase of the CWI pathway, to promote cell wall thickening in glucose-starved cells. Integrative analyses of the transcriptome, proteome and metabolic profiling indicate that Mck1 is required for the accumulation of UDP-glucose (UDPG), the substrate for β-glucan synthesis, through the activation of two regulons: the Msn2/4-dependent stress response and the Cat8-/Adr1-mediated metabolic reprogram dependent on the SNF1 complex. Analysis of the phosphoproteome suggests that similar to mammalian Gsk-3 kinases, Mck1 is involved in the regulation of cytoskeleton-dependent cellular processes, metabolism, signaling and transcription. Specifically, Mck1 may be implicated in the Snf1-dependent metabolic reprogram through PKA inhibition and SAGA (Spt-Ada-Gcn5 acetyltransferase)-mediated transcription activation, a hypothesis further underscored by the significant overlap between the Mck1- and Gcn5-activated transcriptomes. Phenotypic analysis also supports the roles of Mck1 in actin cytoskeleton-mediated exocytosis to ensure plasma membrane homeostasis and cell wall remodeling in cell wall-stressed cells. Together, these findings not only reveal the novel functions of Mck1 in metabolic reprogramming and polarized growth but also provide valuable omics resources for future studies to uncover the underlying mechanisms of Mck1 and other Gsk-3 kinases in cell growth and stress response.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingzhi Tang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Houjiang Zhou
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kaiqiang Li
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - James A. West
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| | - Nianshu Zhang
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (F.Z.); (K.L.)
| |
Collapse
|
3
|
Suo C, Gao Y, Yang S, Zhang W, Li C, Ma L, Xu Y, Lei J, Ding C, Li H, Zhang H, Sun T. The Endocytosis Adaptor Sla1 Facilitates Drug Susceptibility and Fungal Pathogenesis Through Sla1-Efg1 Regulating System in Candida albicans. Infect Drug Resist 2024; 17:4577-4588. [PMID: 39464835 PMCID: PMC11512525 DOI: 10.2147/idr.s483623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The role of endocytosis in Candida albicans drug-resistance and pathogenicity remains poorly understood, despite its importance as a fundamental component of intracellular trafficking. Objective In order to understand the role of endocytosis in Candida albicans cell wall integrity, drug resistance, and virulence. Methods Detection of intracellular endocytosis by FM4-64 staining; Scanning electron microscopy is used to detect cell wall components; Spot assay for detecting drug sensitivity; Co-ip is used to detect protein interactions. Results In this study, we found the functions of Sla1 in regulating endocytosis is conserved among pathogenic fungi. Our results also revealed that the deletion of the SLA1 gene altered cell wall properties, composition, and gene expression. In addition, we showed that C. albicans Sla1 was responsible for hyphal development in vitro and for fungal pathogenicity in a murine infection model. Intriguingly, sla1∆/∆ mutant demonstrated enhanced drug resistance, and Sla1 was found to interact with the transcription factor Efg1; the relationship between Sla1 and Efg1 impacts the expression of genes encoding components of the ergosterol biosynthesis pathway, including ERG1, EGR11, and ERG25. Discussion These findings have expanded our knowledge of the capabilities of Sla1 beyond its role as an endocytosis adapter and provided insights into a potential new therapeutic target for the treatment of fungal infections.
Collapse
Affiliation(s)
- Chenhao Suo
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Yiru Gao
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Sheng Yang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Wanli Zhang
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Chao Li
- Department of Emergency Medicine, the Second Affiliated Hospital of Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Lanjing Ma
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, People’s Republic of China
| | - Jianjun Lei
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Hailong Li
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - He Zhang
- Laboratory Animal Department, Northern Theater General Hospital, Shenyang, Liaoning, 110000, People’s Republic of China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, 100730, People’s Republic of China
- Clinical Biobank, Medical Research Center, National Science and Technology Key Infrastructure on Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People’s Republic of China
| |
Collapse
|
4
|
Marchando P, Hu G, Sun Y, Drubin DG. Polarized exocytosis and anionic phospholipid species implicated in the initiation of clathrin-mediated endocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617284. [PMID: 39416225 PMCID: PMC11482806 DOI: 10.1101/2024.10.08.617284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding of the mechanisms that initiate clathrin-mediated endocytosis (CME) is incomplete. Recent studies in budding yeast identified the endocytic adaptor protein Yap1801/Yap1802 (budding yeast AP180) as a key CME factor that promotes CME initiation in daughter cells during polarized growth, but how Yap1801/2 is recruited preferentially to the plasma membrane of daughter cells is not clear. The only known cargos for Yap1801/2 in yeast are the synaptobrevins Snc1 and Snc2, which act as v-SNARES for exocytic vesicles arriving at the plasma membrane and are essential for polarized cell growth. In this study, we analyze the spatiotemporal dynamics of functional, fluorescently-tagged Snc1/2 expressed from their endogenous loci and provide evidence that, in concert with anionic phospholipids, Snc1/2 recruit Yap1801/2 preferentially to growing daughter cells. These findings suggest that the coincidence of anionic phospholipids and Snc1/2 facilitates CME initiation in growing daughter cells and directly links polarized CME to polarized secretion.
Collapse
|
5
|
Fong JL, Ong Eng Yong V, Yeo C, Adamson C, Li L, Zhang D, Qiao Y. Biochemical Characterization of Recombinant Enterococcus faecalis EntV Peptide to Elucidate Its Antihyphal and Antifungal Mechanisms against Candida albicans. ACS Infect Dis 2024; 10:3408-3418. [PMID: 39137394 DOI: 10.1021/acsinfecdis.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Candida albicans is a common opportunistic fungus in humans, whose morphological switch between yeast and hyphae forms represents a key virulence trait. Developing strategies to inhibit C. albicans hyphal growth may provide insights into designs of novel antivirulent therapeutics. Importantly, the gut commensal bacterium, Enterococcus faecalis, secretes a bacteriocin EntV which has potent antivirulent and antifungal effects against C. albicans in infection models; however, hampered by the challenges to access large quantities of bioactive EntV, the detailed understanding of its mechanisms on C. albicans has remained elusive. In this work, we biochemically reconstituted the proteolytic cleavage reaction to obtain recombinant EntV88-His6 on a large preparative scale, providing facile access to the C-terminal EntV construct. Under in vitro C. albicans hyphal assay with specific inducers, we demonstrated that EntV88-His6 exhibits potent bioactivity against GlcNAc-triggered hyphal growth. Moreover, with fluorescent FITC-EntV88-His6, we revealed that EntV88-His6 enters C. albicans via endocytosis and perturbs the proper localization of the polarisome scaffolding Spa2 protein. Our findings provide important clues on EntV's mechanism of action. Surprisingly, we showed that EntV88-His6 does not affect C. albicans yeast cell growth but potently exerts cytotoxicity against C. albicans under hyphal-inducing conditions in vitro. The combination of EntV88-His6 and GlcNAc displays rapid killing of C. albicans, rendering it a promising antivirulent and antifungal agent.
Collapse
Affiliation(s)
- Jia Li Fong
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Victor Ong Eng Yong
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Claresta Yeo
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Christopher Adamson
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanxin Li
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| | - Dan Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
6
|
Sun Y, Yeam A, Kuo J, Iwamoto Y, Hu G, Drubin DG. The conserved protein adaptors CALM/AP180 and FCHo1/2 cooperatively recruit Eps15 to promote the initiation of clathrin-mediated endocytosis in yeast. PLoS Biol 2024; 22:e3002833. [PMID: 39316607 PMCID: PMC11451990 DOI: 10.1371/journal.pbio.3002833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/04/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Clathrin-mediated endocytosis (CME) is a critical trafficking process that begins when an elaborate endocytic protein network is established at the plasma membrane. Interaction of early endocytic proteins with anionic phospholipids and/or cargo has been suggested to trigger CME initiation. However, the exact mechanism by which CME sites are initiated has not been fully elucidated. In the budding yeast Saccharomyces cerevisiae, higher levels of anionic phospholipids and cargo molecules exist in the newly formed daughter cell compared to the levels in the mother cell during polarized growth. Taking advantage of this asymmetry, we quantitatively compared CME proteins in S. cerevisiae mother versus daughter cells, observing differences in the dynamics and composition of key endocytic proteins. Our results show that CME site initiation occurs preferentially on regions of the plasma membrane with a relatively higher density of endocytic cargo and/or acidic phospholipids. Furthermore, our combined live cell-imaging and yeast genetics analysis provided evidence for a molecular mechanism in which CME sites are initiated when Yap1801 and Yap1802 (yeast CALM/AP180) and Syp1 (yeast FCHo1/2) coordinate with anionic phospholipids and cargo molecules to trigger Ede1 (yeast Eps15)-centric CME initiation complex assembly at the plasma membrane.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Albert Yeam
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jonathan Kuo
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Gean Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
7
|
Liu D, Yuan H, Chen S, Ferro-Novick S, Novick P. Different ER-plasma membrane tethers play opposing roles in autophagy of the cortical ER. Proc Natl Acad Sci U S A 2024; 121:e2321991121. [PMID: 38838012 PMCID: PMC11181077 DOI: 10.1073/pnas.2321991121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The endoplasmic reticulum (ER) undergoes degradation by selective macroautophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins within its lumen. In yeast, actin assembly at sites of contact between the cortical ER (cER) and endocytic pits acts to displace elements of the ER from their association with the plasma membrane (PM) so they can interact with the autophagosome assembly machinery near the vacuole. A collection of proteins tether the cER to the PM. Of these, Scs2/22 and Ist2 are required for cER-phagy, most likely through their roles in lipid transport, while deletion of the tricalbins, TCB1/2/3, bypasses those requirements. An artificial ER-PM tether blocks cER-phagy in both the wild type (WT) and a strain lacking endogenous tethers, supporting the importance of cER displacement from the PM. Scs2 and Ist2 can be cross-linked to the selective cER-phagy receptor, Atg40. The COPII cargo adaptor subunit, Lst1, associates with Atg40 and is required for cER-phagy. This requirement is also bypassed by deletion of the ER-PM tethers, suggesting a role for Lst1 prior to the displacement of the cER from the PM during cER-phagy. Although pexophagy and mitophagy also require actin assembly, deletion of ER-PM tethers does not bypass those requirements. We propose that within the context of rapamycin-induced cER-phagy, Scs2/22, Ist2, and Lst1 promote the local displacement of an element of the cER from the cortex, while Tcb1/2/3 act in opposition, anchoring the cER to the plasma membrane.
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093-0668
| | - Hua Yuan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093-0668
| | - Shuliang Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093-0668
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093-0668
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA92093-0668
| |
Collapse
|
8
|
Yu M, Ma D, Eszterhas S, Rollenhagen C, Lee SA. The Early Endocytosis Gene PAL1 Contributes to Stress Tolerance and Hyphal Formation in Candida albicans. J Fungi (Basel) 2023; 9:1097. [PMID: 37998902 PMCID: PMC10672141 DOI: 10.3390/jof9111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The endocytic and secretory pathways of the fungal pathogen Candida albicans are fundamental to various key cellular processes such as cell growth, cell wall integrity, protein secretion, hyphal formation, and pathogenesis. Our previous studies focused on several candidate genes involved in early endocytosis, including ENT2 and END3, that play crucial roles in such processes. However, much remains to be discovered about other endocytosis-related genes and their contributions toward Candida albicans secretion and virulence. In this study, we examined the functions of the early endocytosis gene PAL1 using a reverse genetics approach based on CRISPR-Cas9-mediated gene deletion. Saccharomyces cerevisiae Pal1 is a protein in the early coat complex involved in clathrin-mediated endocytosis that is later internalized with the coat. The C. albicans pal1Δ/Δ null mutant demonstrated increased resistance to the antifungal agent caspofungin and the cell wall stressor Congo Red. In contrast, the null mutant was more sensitive to the antifungal drug fluconazole and low concentrations of SDS than the wild type (WT) and the re-integrant (KI). While pal1Δ/Δ can form hyphae and a biofilm, under some hyphal-inducing conditions, it was less able to demonstrate filamentous growth when compared to the WT and KI. The pal1Δ/Δ null mutant had no defect in clathrin-mediated endocytosis, and there were no changes in virulence-related processes compared to controls. Our results suggest that PAL1 has a role in susceptibility to antifungal agents, cell wall integrity, and membrane stability related to early endocytosis.
Collapse
Affiliation(s)
- Miranda Yu
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA;
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
| | - Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Christiane Rollenhagen
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Samuel A. Lee
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
9
|
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. SCIENCE ADVANCES 2023; 9:eadi1535. [PMID: 37831774 PMCID: PMC10575576 DOI: 10.1126/sciadv.adi1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Forces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown. Here, we present new in vivo force sensors that induce protein condensation under force. We measured the forces on the fission yeast Huntingtin-Interacting Protein 1 Related (HIP1R) homolog End4p, a protein that links the membrane to the actin cytoskeleton. End4p is under ~19-piconewton force near the actin cytoskeleton, ~11 piconewtons near the clathrin lattice, and ~9 piconewtons near the plasma membrane. Our results demonstrate that forces are collected and redistributed across the endocytic machinery.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Huaizhou Jin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Nanobiology Institute, Yale University, West Haven, CT 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
10
|
Zhang X, Wang C, Qi L, Wang S, Chen Y, Kong Z, Li S, Zhang X, Zhang Z, Liu J, Wang D. The tandem EH domains of End3 cooperate to interact with dual XPF motifs of Sla1 for the connection of early and late stages in fungal endocytosis. Biochem Biophys Res Commun 2023; 663:147-153. [PMID: 37121125 DOI: 10.1016/j.bbrc.2023.04.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/22/2023] [Indexed: 05/02/2023]
Abstract
Clathrin-mediated endocytosis (CME) is imperative for physiological processes in eukaryotic cells. In fungi, the Pan1/End3/Sla1 complex controls the transition between early and late stages of CME. Although it is acknowledged that End3 uses its N-terminal to interact with the C-terminal of Sla1, detailed mechanism remains obscure. Magnaporthe oryzae, the pathogenic fungus of rice, cause blast disease that threatens rice production worldwide. Here we report the detailed interaction mechanism between End3 and Sla1 of M. oryzae, i.e. MoEnd3 and MoSla1. The two EH domains of MoEnd3 (MoEnd3-EH1 and MoEnd3-EH2) is different both in evolution and calcium binding, but are indispensable for conformational stability of each other, an unreported effect of tandem-arranged EH domains. MoEnd3-EH1 and MoEnd3-EH2 interact with peptide MoSla11145-1155 containing a NPF motif with a conserved mode, and MoEnd3-EHs (containing both EH1 and EH2 domains) binds MoSla11145-1155 with a higher affinity, supporting the synergetic effect of EH domains. In addition, MoEnd3-EHs also recognize peptide MoSla1971-981 with a new MPF motif that has not been reported before, while Sla1 of yeast contains a DPF motif that bears EH domain interaction ability. Collectively, our research shows that the two EH domains of End3 synergize to interact with dual XPF motifs of Sla1, which conforms to a bivalent receptor-bivalent ligand model to improve both affinity and specificity.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Chao Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Zibo Academy of Agricultural Sciences, Shandong, 255000, China
| | - Linlu Qi
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shiwei Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yitong Chen
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhiwei Kong
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Saijie Li
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xin Zhang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, And Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Dongli Wang
- Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Sakamoto R, Banerjee DS, Yadav V, Chen S, Gardel ML, Sykes C, Banerjee S, Murrell MP. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Commun Biol 2023; 6:325. [PMID: 36973388 PMCID: PMC10043271 DOI: 10.1038/s42003-023-04684-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/07/2023] [Indexed: 03/28/2023] Open
Abstract
The accumulation and transmission of mechanical stresses in the cell cortex and membrane determines the mechanics of cell shape and coordinates essential physical behaviors, from cell polarization to cell migration. However, the extent that the membrane and cytoskeleton each contribute to the transmission of mechanical stresses to coordinate diverse behaviors is unclear. Here, we reconstitute a minimal model of the actomyosin cortex within liposomes that adheres, spreads and ultimately ruptures on a surface. During spreading, accumulated adhesion-induced (passive) stresses within the membrane drive changes in the spatial assembly of actin. By contrast, during rupture, accumulated myosin-induced (active) stresses within the cortex determine the rate of pore opening. Thus, in the same system, devoid of biochemical regulation, the membrane and cortex can each play a passive or active role in the generation and transmission of mechanical stress, and their relative roles drive diverse biomimetic physical behaviors.
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Deb Sankar Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Sheng Chen
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA
| | - Margaret L Gardel
- Department of Physics, University of Chicago, Chicago, IL, 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Sciences and Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Cecile Sykes
- Laboratoire de Physique, l'Ecole Normale Supérieure, Paris, France
| | - Shiladitya Banerjee
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 10 Hillhouse Avenue, New Haven, CT, USA.
- Systems Biology Institute, 850 West Campus Drive, West Haven, CT, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, USA.
| |
Collapse
|
12
|
Hummel DR, Kaksonen M. Spatio-temporal regulation of endocytic protein assembly by SH3 domains in yeast. Mol Biol Cell 2023; 34:ar19. [PMID: 36696224 PMCID: PMC10011730 DOI: 10.1091/mbc.e22-09-0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clathrin-mediated endocytosis is a conserved eukaryotic membrane trafficking pathway that is driven by a sequentially assembled molecular machinery that contains over 60 different proteins. SH3 domains are the most abundant protein-protein interaction domain in this process, but the function of most SH3 domains in protein dynamics remains elusive. Using mutagenesis and live-cell fluorescence microscopy in the budding yeast Saccharomyces cerevisiae, we dissected SH3-mediated regulation of the endocytic pathway. Our data suggest that multiple SH3 domains regulate the actin nucleation-promoting Las17-Vrp1 complex, and that the network of SH3 interactions coordinates both Las17-Vrp1 assembly and dissociation. Furthermore, most endocytic SH3 domain proteins use the SH3 domain for their own recruitment, while a minority use the SH3 domain to recruit other proteins and not themselves. Our results provide a dynamic map of SH3 functions in yeast endocytosis and a framework for SH3 interaction network studies across biology.
Collapse
Affiliation(s)
- Daniel R Hummel
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| |
Collapse
|
13
|
Cai D, Li X, Xu Q, Li H, Liu R, Chen J, Jiang X, Sun J, Lai C, Bai W. Cyanidin-3- O-glucoside and protocatechuic acid alleviate heat stress-induced testicular damage. Food Funct 2023; 14:2200-2211. [PMID: 36756975 DOI: 10.1039/d2fo03423a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Testicular hyperthermia induced by unhealthy living habits and pathological or occupational factors can cause spermatogenic dysfunction with an outcome of sub-fertility or even infertility. Cyanidin-3-O-glucoside (C3G) is the most typical anthocyanin in foods that has been recognized as an antioxidant with promising protection for male reproduction. However, its specific effect against testicular hyperthermia and the mechanisms involving its primary gastrointestinal metabolite protocatechuic acid (PCA) are still unexplored. In the present study, testicular hyperthermia in mice was established by employing a single hot water bath at 43 °C for 30 min. C3G and PCA were intragastrically given to investigate their prevention ability against heat stress-induced testicular damage. It was found that C3G and PCA restored the external diameter and thickness, and alleviated atrophy and vacuolation of seminiferous tubules. Simultaneously, C3G and PCA enhanced testicular heat stress tolerance through reducing superfluous eIF2α phosphorylation and stress granule formation. C3G and PCA effectively improved the testicular antioxidant system and regulated the IRE1α-XBP1 pathway, contributing to mitigatory spermatogenesis dysfunction and testicular damage. This finding revealed that anthocyanins were the novel compounds for alleviating testicular damage, and provided a reliable theoretical basis for improving male fertility disturbed by heat stress.
Collapse
Affiliation(s)
- Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Qingjie Xu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Haiwei Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Jiali Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Caiyong Lai
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
14
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
15
|
Enshoji M, Miyano Y, Yoshida N, Nagano M, Watanabe M, Kunihiro M, Siekhaus DE, Toshima JY, Toshima J. Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway. J Cell Biol 2022; 221:213415. [PMID: 35984332 PMCID: PMC9396825 DOI: 10.1083/jcb.202112138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Endocytosis is a multistep process involving the sequential recruitment and action of numerous proteins. This process can be divided into two phases: an early phase, in which sites of endocytosis are formed, and a late phase in which clathrin-coated vesicles are formed and internalized into the cytosol, but how these phases link to each other remains unclear. In this study, we demonstrate that anchoring the yeast Eps15-like protein Pan1p to the peroxisome triggers most of the events occurring during the late phase at the peroxisome. At this ectopic location, Pan1p recruits most proteins that function in the late phases-including actin nucleation promoting factors-and then initiates actin polymerization. Pan1p also recruited Prk1 kinase and actin depolymerizing factors, thereby triggering disassembly immediately after actin assembly and inducing dissociation of endocytic proteins from the peroxisome. These observations suggest that Pan1p is a key regulator for initiating, processing, and completing the late phase of endocytosis.
Collapse
Affiliation(s)
- Mariko Enshoji
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Yoshiko Miyano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Nao Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Minami Watanabe
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Mayumi Kunihiro
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Daria E. Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Junko Y. Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan,School of Health Science, Tokyo University of Technology, Ota-ku, Tokyo, Japan,Junko Y. Toshima:
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan,Correspondence to Jiro Toshima:
| |
Collapse
|
16
|
Menon D, Hummel D, Kaksonen M. Regulation of membrane scission in yeast endocytosisDepartment of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland. Mol Biol Cell 2022; 33:ar114. [PMID: 35976707 DOI: 10.1091/mbc.e21-07-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During clathrin-mediated endocytosis, a flat plasma membrane is shaped into an invagination that undergoes scission to form a vesicle. In mammalian cells, the force that drives the transition from invagination to vesicle is primarily provided by the GTPase dynamin that acts in concert with crescent-shaped BAR domain proteins. In yeast cells, the mechanism of endocytic scission is unclear. The yeast BAR domain protein complex Rvs161/167 (Rvs) nevertheless plays an important role in this process: deletion of Rvs dramatically reduces scission efficiency. A mechanistic understanding of the influence of Rvs on scission however, remains incomplete. We used quantitative live-cell imaging and genetic manipulation to understand the recruitment and function of Rvs and other late-stage proteins at yeast endocytic sites. We found that arrival of Rvs at endocytic sites is timed by interaction of its BAR domain with specific membrane curvature. A second domain of Rvs167 - the SH3 domain - affects localization efficiency of Rvs. We show that Myo3, one of the two type-I myosins in Saccharomyces cerevisiae, has a role in recruiting Rvs167 via the SH3 domain. Removal of the SH3 domain also affects assembly and disassembly of actin and impedes membrane invagination. Our results indicate that both BAR and SH3 domains are important for the role of Rvs as a regulator of scission. We tested other proteins implicated in vesicle formation in Saccharomyces cerevisiae, and found that neither synaptojanins nor dynamin contribute directly to membrane scission. We propose that recruitment of Rvs BAR domains delays scission and allows invaginations to grow by stabilizing them. We also propose that vesicle formation is dependent on the force exerted by the actin network.
Collapse
Affiliation(s)
- Deepikaa Menon
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Daniel Hummel
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry and National Centre of Competence in Research, Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Chen Y, Zeng W, Yu S, Chen J, Zhou J. Gene co-expression network analysis reveals the positive impact of endocytosis and mitochondria-related genes over nitrogen metabolism in Saccharomyces cerevisiae. Gene 2022; 821:146267. [PMID: 35150821 DOI: 10.1016/j.gene.2022.146267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Nitrogen metabolism is essential for most cellular activities. Therefore, a deep understanding of its regulatory mechanisms is necessary for the efficient utilization of nitrogen sources for Saccharomyces cerevisiae. In this study, a gene co-expression network was constructed for S. cerevisiae S288C with different nitrogen sources. From this, a key gene co-expression module related to nitrogen source preference utilization was obtained, and 10 hub genes centrally located in the co-expression network were identified. Functional studies verified that the endocytosis-related genes CAP1 and END3 significantly increased the utilization of multiple non-preferred amino acids and reduced the accumulation of the harmful nitrogen metabolite precursor urea by regulating amino acid transporters and TOR pathway. The mitochondria-related gene ATP12, MRPL22, MRP1 and NAM9 significantly increased the utilization of multiple non-preferred amino acids and reduced accumulation of the urea by coordinately regulating nitrogen catabolism repression, Ssy1p-Ptr3p-Ssy5p signaling sensor system, amino acid transporters, TOR pathway and urea metabolism-related pathways. Furthermore, these data revealed the potential positive effects of endocytosis and mitochondrial ribosomes protein translation on nitrogen source preference. This study provides new analytical perspectives for complex regulatory networks involving nitrogen metabolism in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Kozak M, Kaksonen M. Condensation of Ede1 promotes the initiation of endocytosis. eLife 2022; 11:72865. [PMID: 35412456 PMCID: PMC9064294 DOI: 10.7554/elife.72865] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/01/2022] [Indexed: 11/27/2022] Open
Abstract
Clathrin-mediated endocytosis is initiated by a network of weakly interacting proteins through a poorly understood mechanism. Ede1, the yeast homolog of mammalian Eps15, is an early-arriving endocytic protein and a key initiation factor. In the absence of Ede1, most other early endocytic proteins lose their punctate localization and endocytic uptake is decreased. We show that in yeast cells, cytosolic concentration of Ede1 is buffered at a critical level. Excess amounts of Ede1 form large condensates which recruit other endocytic proteins and exhibit properties of phase-separated liquid droplets. We demonstrate that the central region of Ede1, containing a coiled-coil and a prion-like region, is essential for both the condensate formation and the function of Ede1 in endocytosis. The functionality of Ede1 mutants lacking the central region can be partially rescued by an insertion of heterologous prion-like domains. Conversely, fusion of a heterologous lipid-binding domain with the central region of Ede1 can promote clustering into stable plasma membrane domains. We propose that the ability of Ede1 to form condensed networks supports the clustering of early endocytic proteins and promotes the initiation of endocytosis.
Collapse
Affiliation(s)
- Mateusz Kozak
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Abouelezz A, Almeida-Souza L. The mammalian endocytic cytoskeleton. Eur J Cell Biol 2022; 101:151222. [DOI: 10.1016/j.ejcb.2022.151222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
|
20
|
Candida albicans END3 Mediates Endocytosis and Has Subsequent Roles in Cell Wall Integrity, Morphological Switching, and Tissue Invasion. Microbiol Spectr 2022; 10:e0188021. [PMID: 35234488 PMCID: PMC8941917 DOI: 10.1128/spectrum.01880-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of endocytosis in Candida albicans secretion, filamentation, and virulence remains poorly understood, despite its importance as a fundamental component of intracellular trafficking. Given that secretory mutants display defects in endocytosis, we have focused our attention on endocytic mutants to understand the interconnection between endocytosis and other secretory pathways. Using a reverse-genetic approach based upon CRISPR-Cas9 mediated gene deletion, we studied the functions of the gene END3, which plays a key role in clathrin-based endocytosis. In the end3Δ/Δ null mutant, clathrin-mediated endocytosis was substantially reduced. While in vitro growth, cell morphology, and vacuoles appeared normal, the mutant was impaired in actin patch formation, filamentous growth, biofilm formation, cell wall integrity, and extracellular protease secretion. In addition, susceptibility to various antifungal agents was altered. Consistent with the inability to form hyphae, in an in vitro keratinocyte infection model, the null mutant displayed reduced damage of mammalian adhesion zippers and host cell death. Thus, C. albicans END3 has a role in efficient endocytosis that is required for cell wall integrity, protein secretion, hyphal formation, and virulence-related processes. These findings suggest that impaired endocytosis subsequently affects other secretory pathways, providing evidence of the interconnection between these processes. IMPORTANCE Candida albicans is a fungal commensal organism that can cause serious opportunistic infections in immunocompromised patients leading to substantial complications and mortality. A better understanding of the microbe's biology to develop more effective therapeutic and diagnostic tools is required as invasive candidiasis is a problem of continued clinical importance. This study focuses on endocytosis, an important but incompletely understood cellular mechanism needed to uptake nutrients and communicate with a cell's environment. In this study, we have assessed the role of endocytosis in cell wall integrity, biofilm formation, and tissue invasion in C. albicans. These findings will improve our understanding of cellular mechanisms underlying endocytosis and will inform us of the interconnection with other intracellular transport processes.
Collapse
|
21
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
22
|
ER-phagy requires the assembly of actin at sites of contact between the cortical ER and endocytic pits. Proc Natl Acad Sci U S A 2022; 119:2117554119. [PMID: 35101986 PMCID: PMC8833162 DOI: 10.1073/pnas.2117554119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2021] [Indexed: 01/03/2023] Open
Abstract
Portions of the endoplasmic reticulum (ER) are degraded by autophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins. We show that ER-phagy requires assembly of actin at sites of contact between the edges of ER sheets and endocytic pits on the plasma membrane. Actin assembly may help to bring an element of the ER carrying the selective autophagy receptor Atg40 into the cell interior, where it associates with Atg11, a scaffold needed to recruit components for autophagosome assembly. Understanding the mechanism by which regions of the ER are selected for degradation and sequestered within autophagosomes may help in the development of novel approaches to treat diseases that result from the accumulation of misfolded proteins within the ER. Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.
Collapse
|
23
|
Novick P, Liu D, Ferro-Novick S. Autophagy of the ER requires actin assembly driven by the interaction of ER with endocytic pits. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:25152564221093215. [PMID: 37102157 PMCID: PMC10129067 DOI: 10.1177/25152564221093215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 04/28/2023]
Abstract
Autophagy of the cortical ER in budding yeast was unexpectedly found to require End3, a component of the endocytic machinery that promotes the assembly of actin at endocytic pits on the plasma membrane. The cortical ER transiently interacts with invaginating endocytic pits through a linkage consisting of VAP proteins, oxysterol binding proteins and type I myosins. These proteins are required for actin assembly and for autophagy of the ER. Assembly of actin at these contact sites may direct the movement of ER away from the cortex towards sites of autophagosome assembly.
Collapse
Affiliation(s)
- Peter Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA
| | - Dongmei Liu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA
| | - Susan Ferro-Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, USA
| |
Collapse
|
24
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
25
|
Candida albicans ENT2 Contributes to Efficient Endocytosis, Cell Wall Integrity, Filamentation, and Virulence. mSphere 2021; 6:e0070721. [PMID: 34585966 PMCID: PMC8550084 DOI: 10.1128/msphere.00707-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epsins play a pivotal role in the formation of endocytic vesicles and potentially provide a linkage between endocytic and other trafficking pathways. We identified a Candida albicans epsin, ENT2, that bears homology to the Saccharomyces cerevisiae early endocytosis genes ENT1 and ENT2 and studied its functions by a reverse genetic approach utilizing CRISPR-Cas9-mediated gene deletion. The C. albicans ent2Δ/Δ null mutant displayed cell wall defects and altered antifungal drug sensitivity. To define the role of C. albicans ENT2 in endocytosis, we performed assays with the lipophilic dye FM4-64 that revealed greatly reduced uptake in the ent2Δ/Δ mutant. Next, we showed that the C. albicans ent2Δ/Δ mutant was unable to form hyphae and biofilms. Assays for virulence properties in an in vitro keratinocyte infection model demonstrated reduced damage of mammalian adhesion zippers and host cell death from the ent2Δ/Δ mutant. We conclude that C. albicans ENT2 has a role in efficient endocytosis, a process that is required for maintaining cell wall integrity, hyphal formation, and virulence-defining traits. IMPORTANCE The opportunistic fungal pathogen Candida albicans is an important cause of invasive infections in hospitalized patients and a source of considerable morbidity and mortality. Despite its clinical importance, we still need to improve our ability to diagnose and treat this common pathogen. In order to support these advancements, a greater understanding of the biology of C. albicans is needed. In these studies, we are focused on the fundamental biological process of endocytosis, of which little is directly known in C. albicans. In addition to studying the function of a key gene in this process, we are examining the role of endocytosis in the virulence-related processes of filamentation, biofilm formation, and tissue invasion. These studies will provide greater insight into the role of endocytosis in causing invasive fungal infections.
Collapse
|
26
|
CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus Colletotrichum gloeosporioides. Int J Mol Sci 2021; 22:ijms22084029. [PMID: 33919762 PMCID: PMC8103510 DOI: 10.3390/ijms22084029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023] Open
Abstract
The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.
Collapse
|
27
|
Wilfling F, Lee CW, Erdmann PS, Zheng Y, Sherpa D, Jentsch S, Pfander B, Schulman BA, Baumeister W. A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Mol Cell 2020; 80:764-778.e7. [PMID: 33207182 PMCID: PMC7721475 DOI: 10.1016/j.molcel.2020.10.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Autophagy eliminates cytoplasmic content selected by autophagy receptors, which link cargo to the membrane-bound autophagosomal ubiquitin-like protein Atg8/LC3. Here, we report a selective autophagy pathway for protein condensates formed by endocytic proteins in yeast. In this pathway, the endocytic protein Ede1 functions as a selective autophagy receptor. Distinct domains within Ede1 bind Atg8 and mediate phase separation into condensates. Both properties are necessary for an Ede1-dependent autophagy pathway for endocytic proteins, which differs from regular endocytosis and does not involve other known selective autophagy receptors but requires the core autophagy machinery. Cryo-electron tomography of Ede1-containing condensates, at the plasma membrane and in autophagic bodies, shows a phase-separated compartment at the beginning and end of the Ede1-mediated selective autophagy route. Our data suggest a model for autophagic degradation of macromolecular protein complexes by the action of intrinsic autophagy receptors.
Collapse
Affiliation(s)
- Florian Wilfling
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Chia-Wei Lee
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Philipp S Erdmann
- Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| | - Yumei Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dawafuti Sherpa
- Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Stefan Jentsch
- Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA; Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
28
|
Pedersen RTA, Hassinger JE, Marchando P, Drubin DG. Spatial regulation of clathrin-mediated endocytosis through position-dependent site maturation. J Cell Biol 2020; 219:211446. [PMID: 33053166 PMCID: PMC7545360 DOI: 10.1083/jcb.202002160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
During clathrin-mediated endocytosis (CME), over 50 different proteins assemble on the plasma membrane to reshape it into a cargo-laden vesicle. It has long been assumed that cargo triggers local CME site assembly in Saccharomyces cerevisiae based on the discovery that cortical actin patches, which cluster near exocytic sites, are CME sites. Quantitative imaging data reported here lead to a radically different view of which CME steps are regulated and which steps are deterministic. We quantitatively and spatially describe progression through the CME pathway and pinpoint a cargo-sensitive regulatory transition point that governs progression from the initiation phase of CME to the internalization phase. Thus, site maturation, rather than site initiation, accounts for the previously observed polarized distribution of actin patches in this organism. While previous studies suggested that cargo ensures its own internalization by regulating either CME initiation rates or frequency of abortive events, our data instead identify maturation through a checkpoint in the pathway as the cargo-sensitive step.
Collapse
Affiliation(s)
- Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Julian E Hassinger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Paul Marchando
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
29
|
Tolsma TO, Febvre HP, Olson DM, Di Pietro SM. Cargo-mediated recruitment of the endocytic adaptor protein Sla1 in S. cerevisiae. J Cell Sci 2020; 133:jcs247684. [PMID: 32907853 PMCID: PMC7578355 DOI: 10.1242/jcs.247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Endocytosis of plasma membrane proteins is mediated by their interaction with adaptor proteins. Conversely, emerging evidence suggests that adaptor protein recruitment to the plasma membrane may depend on binding to endocytic cargo. To test this idea, we analyzed the yeast adaptor protein Sla1, which binds membrane proteins harboring the endocytic signal NPFxD via the Sla1 SHD1 domain. Consistently, SHD1 domain point mutations that disrupted NPFxD binding caused a proportional reduction in Sla1-GFP recruitment to endocytic sites. Furthermore, simultaneous SHD1 domain point mutation and deletion of the C-terminal LxxQxTG repeat (SR) region linking Sla1 to coat proteins Pan1 and End3 resulted in total loss of Sla1-GFP recruitment to the plasma membrane. These data suggest that multiple interactions are needed for recruitment of Sla1 to the membrane. Interestingly, a Sla1 fragment containing just the third SH3 domain, which binds ubiquitin, and the SHD1 domain displayed broad surface localization, suggesting plasma membrane recruitment is mediated by interaction with both NPFxD-containing and ubiquitylated plasma membrane proteins. Our results also imply that a Sla1 NPF motif adjacent to the SR region might regulate the Sla1-cargo interaction, mechanistically linking Sla1 cargo binding to endocytic site recruitment.
Collapse
Affiliation(s)
- Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Deanna M Olson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
30
|
Miklavc P, Frick M. Actin and Myosin in Non-Neuronal Exocytosis. Cells 2020; 9:cells9061455. [PMID: 32545391 PMCID: PMC7348895 DOI: 10.3390/cells9061455] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular secretion depends on exocytosis of secretory vesicles and discharge of vesicle contents. Actin and myosin are essential for pre-fusion and post-fusion stages of exocytosis. Secretory vesicles depend on actin for transport to and attachment at the cell cortex during the pre-fusion phase. Actin coats on fused vesicles contribute to stabilization of large vesicles, active vesicle contraction and/or retrieval of excess membrane during the post-fusion phase. Myosin molecular motors complement the role of actin. Myosin V is required for vesicle trafficking and attachment to cortical actin. Myosin I and II members engage in local remodeling of cortical actin to allow vesicles to get access to the plasma membrane for membrane fusion. Myosins stabilize open fusion pores and contribute to anchoring and contraction of actin coats to facilitate vesicle content release. Actin and myosin function in secretion is regulated by a plethora of interacting regulatory lipids and proteins. Some of these processes have been first described in non-neuronal cells and reflect adaptations to exocytosis of large secretory vesicles and/or secretion of bulky vesicle cargoes. Here we collate the current knowledge and highlight the role of actomyosin during distinct phases of exocytosis in an attempt to identify unifying molecular mechanisms in non-neuronal secretory cells.
Collapse
Affiliation(s)
- Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester M5 4WT, UK
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Correspondence: (P.M.); (M.F.); Tel.: +44-0161-295-3395 (P.M.); +49-731-500-23115 (M.F.); Fax: +49-731-500-23242 (M.F.)
| |
Collapse
|
31
|
Ma W, Chang J, Tong J, Ho U, Yau B, Kebede MA, Thorn P. Arp2/3 nucleates F-actin coating of fusing insulin granules in pancreatic β cells to control insulin secretion. J Cell Sci 2020; 133:jcs236794. [PMID: 32079655 DOI: 10.1242/jcs.236794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/05/2020] [Indexed: 01/11/2023] Open
Abstract
F-actin dynamics are known to control insulin secretion, but the point of intersection with the stimulus-secretion cascade is unknown. Here, using multiphoton imaging of β cells isolated from Lifeact-GFP transgenic mice, we show that glucose stimulation does not cause global changes in subcortical F-actin. Instead, we observe spatially discrete and transient F-actin changes around each fusing granule. This F-actin remodelling is dependent on actin nucleation and is observed for granule fusion induced by either glucose or high potassium stimulation. Using GFP-labelled proteins, we identify local enrichment of Arp3, dynamin 2 and clathrin, all occurring after granule fusion, suggesting early recruitment of an endocytic complex to the fusing granules. Block of Arp2/3 activity with drugs or shRNA inhibits F-actin coating, traps granules at the cell membrane and reduces insulin secretion. Block of formin-mediated actin nucleation also blocks F-actin coating, but has no effect on insulin secretion. We conclude that local Arp2/3-dependent actin nucleation at the sites of granule fusion plays an important role in post-fusion granule dynamics and in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Wei Ma
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Jenny Chang
- School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia
| | - Jason Tong
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Uda Ho
- School of Biomedical Sciences, University of Queensland, St Lucia 4072, Australia
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| | - Peter Thorn
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
32
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
33
|
Sun Y, Schöneberg J, Chen X, Jiang T, Kaplan C, Xu K, Pollard TD, Drubin DG. Direct comparison of clathrin-mediated endocytosis in budding and fission yeast reveals conserved and evolvable features. eLife 2019; 8:50749. [PMID: 31829937 PMCID: PMC6908435 DOI: 10.7554/elife.50749] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022] Open
Abstract
Conserved proteins drive clathrin-mediated endocytosis (CME), which from yeast to humans involves a burst of actin assembly. To gain mechanistic insights into this process, we performed a side-by-side quantitative comparison of CME in two distantly related yeast species. Though endocytic protein abundance in S. pombe and S. cerevisiae is more similar than previously thought, membrane invagination speed and depth are two-fold greater in fission yeast. In both yeasts, accumulation of ~70 WASp molecules activates the Arp2/3 complex to drive membrane invagination. In contrast to budding yeast, WASp-mediated actin nucleation plays an essential role in fission yeast endocytosis. Genetics and live-cell imaging revealed core CME spatiodynamic similarities between the two yeasts, although the assembly of two zones of actin filaments is specific for fission yeast and not essential for CME. These studies identified conserved CME mechanisms and species-specific adaptations with broad implications that are expected to extend from yeast to humans.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Johannes Schöneberg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xuyan Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Charlotte Kaplan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Thomas D Pollard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Department of Cell Biology, Yale University, New Haven, United States.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
34
|
Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E, Lange JJ, Rodríguez Gama A, Box A, Unruh JR, Cook M, Halfmann R. Quantifying Nucleation In Vivo Reveals the Physical Basis of Prion-like Phase Behavior. Mol Cell 2019; 71:155-168.e7. [PMID: 29979963 PMCID: PMC6086602 DOI: 10.1016/j.molcel.2018.06.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/26/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023]
Abstract
Protein self-assemblies modulate protein activities over biological timescales that can exceed the lifetimes of the proteins or even the cells that harbor them. We hypothesized that these timescales relate to kinetic barriers inherent to the nucleation of ordered phases. To investigate nucleation barriers in living cells, we developed distributed amphifluoric FRET (DAmFRET). DAmFRET exploits a photoconvertible fluorophore, heterogeneous expression, and large cell numbers to quantify via flow cytometry the extent of a protein's self-assembly as a function of cellular concentration. We show that kinetic barriers limit the nucleation of ordered self-assemblies and that the persistence of the barriers with respect to concentration relates to structure. Supersaturation resulting from sequence-encoded nucleation barriers gave rise to prion behavior and enabled a prion-forming protein, Sup35 PrD, to partition into dynamic intracellular condensates or to form toxic aggregates. Our results suggest that nucleation barriers govern cytoplasmic inheritance, subcellular organization, and proteotoxicity.
Collapse
Affiliation(s)
- Tarique Khan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Tejbir S Kandola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jianzheng Wu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | - Ellen Ketter
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Malcolm Cook
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
35
|
Pedersen RTA, Drubin DG. Type I myosins anchor actin assembly to the plasma membrane during clathrin-mediated endocytosis. J Cell Biol 2019; 218:1138-1147. [PMID: 30659101 PMCID: PMC6446854 DOI: 10.1083/jcb.201810005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022] Open
Abstract
Actin assembly and type I myosins are both required for clathrin-mediated endocytosis. Here Pedersen and Drubin show that type I myosins anchor actin assembly factors to the plasma membrane at sites of clathrin-mediated endocytosis, facilitating force generation by actin assembly. The actin cytoskeleton generates forces on membranes for a wide range of cellular and subcellular morphogenic events, from cell migration to cytokinesis and membrane trafficking. For each of these processes, filamentous actin (F-actin) interacts with membranes and exerts force through its assembly, its associated myosin motors, or both. These two modes of force generation are well studied in isolation, but how they are coordinated in cells is mysterious. During clathrin-mediated endocytosis, F-actin assembly initiated by the Arp2/3 complex and several proteins that compose the WASP/myosin complex generates the force necessary to deform the plasma membrane into a pit. Here we present evidence that type I myosin is the key membrane anchor for endocytic actin assembly factors in budding yeast. By mooring actin assembly factors to the plasma membrane, this myosin organizes endocytic actin networks and couples actin-generated forces to the plasma membrane to drive invagination and scission. Through this unexpected mechanism, myosin facilitates force generation independent of its motor activity.
Collapse
Affiliation(s)
- Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
36
|
Bairwa G, Caza M, Horianopoulos L, Hu G, Kronstad J. Role of clathrin-mediated endocytosis in the use of heme and hemoglobin by the fungal pathogen Cryptococcus neoformans. Cell Microbiol 2018; 21:e12961. [PMID: 30291809 DOI: 10.1111/cmi.12961] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/29/2022]
Abstract
Heme is a major source of iron for pathogens of humans, and its use is critical in determining the outcome of infection and disease. Cryptococcus neoformans is an encapsulated fungal pathogen that causes life-threatening infections in immunocompromised individuals. C. neoformans effectively uses heme as an iron source, but the underlying mechanisms are poorly defined. Non-iron metalloporphyrins (MPPs) are toxic analogues of heme and are thought to enter microbial cells via endogenous heme acquisition systems. We therefore carried out a mutant screen for susceptibility against manganese MPP (MnMPP) to identify new components for heme uptake in C. neoformans. We identified several genes involved in signalling, DNA repair, sugar metabolism, and trafficking that play important roles in susceptibility to MnMPP and in the use of heme as an iron source. We focused on investigating the role of clathrin-mediated endocytosis (CME) and found that several components of CME including Chc1, Las17, Rvs161, and Rvs167 are required for growth on heme and hemoglobin and for endocytosis and intracellular trafficking of these molecules. We show that the hemoglobin uptake process in C. neoformans involves clathrin heavy chain, Chc1, which appears to colocalise with hemoglobin-containing vesicles and to potentially assist in proper delivery of hemoglobin to the vacuole. Additionally, C. neoformans strains lacking Chc1, Las17, Rvs161, or Rvs167 were defective in the elaboration of several key virulence factors, and a las17 mutant was avirulent in a mouse model of cryptococcosis. Overall, this study unveils crucial functions of CME in the use of heme iron by C. neoformans and reveals a role for CME in fungal pathogenesis.
Collapse
Affiliation(s)
- Gaurav Bairwa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
38
|
Live-cell imaging of early coat protein dynamics during clathrin-mediated endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1566-1578. [PMID: 30077636 DOI: 10.1016/j.bbamcr.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Clathrin-mediated endocytosis is an essential process that is mediated by the stepwise appearance or disappearance of many different proteins at the plasma membrane. In the budding yeast, these proteins are categorized into at least five modules, according to their spatiotemporal dynamics. Among them, the dynamics of proteins in the late coat module are well characterized, but those in the early coat module still remain unclear because of the lack of a suitable fluorescent marker with sufficient brightness to allow analysis. To examine the dynamics of early coat proteins, in this study we tagged four representative early coat proteins with 3GFP, and expressed them in a single cell. This cell exhibited a significant increase in the fluorescence intensity of early coat proteins relative to that of each 3GFP-tagged protein. Using this strain, we performed a detailed analysis of early coat proteins, including their precise lifetime, changes in fluorescence intensity, and motility on the plasma membrane. We found that early coat proteins move on the plasma membrane before internalization. Additionally, we expressed these 3GFP-tagged proteins in mutants with deletion of genes related to endocytosis, and found four mutants - end3Δ, las17Δ, sla2Δ, and clc1Δ- in which the lifetime of early coat proteins was markedly increased. Interestingly, deletion of the CLC1 gene dramatically reduced the internalization of early coat proteins whereas internalization of actin patches was largely unchanged, suggesting that the clc1Δ mutant might have a defect in the link between the early coat and actin modules.
Collapse
|
39
|
Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P, Monster JL, Picco A, Nédélec F, Kaksonen M, Ries J. Systematic Nanoscale Analysis of Endocytosis Links Efficient Vesicle Formation to Patterned Actin Nucleation. Cell 2018; 174:884-896.e17. [PMID: 30057119 PMCID: PMC6086932 DOI: 10.1016/j.cell.2018.06.032] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/27/2018] [Accepted: 06/13/2018] [Indexed: 11/18/2022]
Abstract
Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.
Collapse
Affiliation(s)
- Markus Mund
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Johannes Albertus van der Beek
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Serge Dmitrieff
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences
| | - Jooske Louise Monster
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
40
|
Miao Y, Tipakornsaowapak T, Zheng L, Mu Y, Lewellyn E. Phospho-regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS J 2018; 285:2762-2784. [PMID: 29722136 DOI: 10.1111/febs.14493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
Actin filament assembly contributes to the endocytic pathway pleiotropically, with active roles in clathrin-dependent and clathrin-independent endocytosis as well as subsequent endosomal trafficking. Endocytosis comprises a series of dynamic events, including the initiation of membrane curvature, bud invagination, vesicle abscission and subsequent vesicular transport. The ultimate success of endocytosis requires the coordinated activities of proteins that trigger actin polymerization, recruit actin-binding proteins (ABPs) and organize endocytic proteins (EPs) that promote membrane curvature through molecular crowding or scaffolding mechanisms. A particularly interesting phenomenon is that multiple EPs and ABPs contain a substantial percentage of intrinsically disordered regions (IDRs), which can contribute to protein coacervation and phase separation. In addition, intrinsically disordered proteins (IDPs) frequently contain sites for post-translational modifications (PTMs) such as phosphorylation, and these modifications exhibit a high preference for IDR residues [Groban ES et al. (2006) PLoS Comput Biol 2, e32]. PTMs are implicated in regulating protein function by modulating the protein conformation, protein-protein interactions and the transition between order and disorder states of IDPs. The molecular mechanisms by which IDRs of ABPs and EPs fine-tune actin assembly and endocytosis remain mostly unexplored and elusive. In this review, we analyze protein sequences of budding yeast EPs and ABPs, and discuss the potential underlying mechanisms for regulating endocytosis and actin assembly through the emerging concept of IDR-mediated protein multivalency, coacervation, and phase transition, with an emphasis on the phospho-regulation of IDRs. Finally, we summarize the current understanding of how these mechanisms coordinate actin cytoskeleton assembly and membrane curvature formation during endocytosis in budding yeast.
Collapse
Affiliation(s)
- Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Liangzhen Zheng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Eric Lewellyn
- Department of Biology, Division of Natural Sciences, St Norbert College, De Pere, WI, USA
| |
Collapse
|
41
|
A Flow Cytometry-Based Phenotypic Screen To Identify Novel Endocytic Factors in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2018. [PMID: 29540444 PMCID: PMC5940143 DOI: 10.1534/g3.118.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endocytosis is a fundamental process for internalizing material from the plasma membrane, including many transmembrane proteins that are selectively internalized depending on environmental conditions. In most cells, the main route of entry is clathrin-mediated endocytosis (CME), a process that involves the coordinated activity of over 60 proteins; however, there are likely as-yet unidentified proteins involved in cargo selection and/or regulation of endocytosis. We performed a mutagenic screen to identify novel endocytic genes in Saccharomyces cerevisiae expressing the methionine permease Mup1 tagged with pHluorin (pHl), a pH-sensitive GFP variant whose fluorescence is quenched upon delivery to the acidic vacuole lumen. We used fluorescence-activated cell sorting to isolate mutagenized cells with elevated fluorescence, resulting from failure to traffic Mup1-pHl cargo to the vacuole, and further assessed subcellular localization of Mup1-pHl to characterize the endocytic defects in 256 mutants. A subset of mutant strains was classified as having general endocytic defects based on mislocalization of additional cargo proteins. Within this group, we identified mutations in four genes encoding proteins with known roles in endocytosis: the endocytic coat components SLA2, SLA1, and EDE1, and the ARP3 gene, whose product is involved in nucleating actin filaments to form branched networks. All four mutants demonstrated aberrant dynamics of the endocytic machinery at sites of CME; moreover, the arp3R346H mutation showed reduced actin nucleation activity in vitro. Finally, whole genome sequencing of two general endocytic mutants identified mutations in conserved genes not previously implicated in endocytosis, KRE33 and IQG1, demonstrating that our screening approach can be used to identify new components involved in endocytosis.
Collapse
|
42
|
Kuzmin E, VanderSluis B, Wang W, Tan G, Deshpande R, Chen Y, Usaj M, Balint A, Mattiazzi Usaj M, van Leeuwen J, Koch EN, Pons C, Dagilis AJ, Pryszlak M, Wang ZY, Hanchard J, Riggi M, Xu K, Heydari H, San Luis BJ, Shuteriqi E, Zhu H, Van Dyk N, Sharifpoor S, Costanzo M, Loewith R, Caudy A, Bolnick D, Brown GW, Andrews BJ, Boone C, Myers CL. Systematic analysis of complex genetic interactions. Science 2018; 360:eaao1729. [PMID: 29674565 PMCID: PMC6215713 DOI: 10.1126/science.aao1729] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
To systematically explore complex genetic interactions, we constructed ~200,000 yeast triple mutants and scored negative trigenic interactions. We selected double-mutant query genes across a broad spectrum of biological processes, spanning a range of quantitative features of the global digenic interaction network and tested for a genetic interaction with a third mutation. Trigenic interactions often occurred among functionally related genes, and essential genes were hubs on the trigenic network. Despite their functional enrichment, trigenic interactions tended to link genes in distant bioprocesses and displayed a weaker magnitude than digenic interactions. We estimate that the global trigenic interaction network is ~100 times as large as the global digenic network, highlighting the potential for complex genetic interactions to affect the biology of inheritance, including the genotype-to-phenotype relationship.
Collapse
Affiliation(s)
- Elena Kuzmin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Yiqun Chen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Attila Balint
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Jolanda van Leeuwen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Andrius J Dagilis
- Department of Integrative Biology, 1 University Station C0990, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Pryszlak
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Zi Yang Wang
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Julia Hanchard
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Margot Riggi
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
- iGE3 (Institute of Genetics and Genomics of Geneva), 1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland
| | - Kaicong Xu
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Hamed Heydari
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Ermira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Hongwei Zhu
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Nydia Van Dyk
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Sara Sharifpoor
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, Geneva 1211, Switzerland
- iGE3 (Institute of Genetics and Genomics of Geneva), 1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, 1211 Geneva, Switzerland
| | - Amy Caudy
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Daniel Bolnick
- Department of Integrative Biology, 1 University Station C0990, University of Texas at Austin, Austin, TX 78712, USA
| | - Grant W Brown
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Biochemistry, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Brenda J Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Bar-Yosef H, Gildor T, Ramírez-Zavala B, Schmauch C, Weissman Z, Pinsky M, Naddaf R, Morschhäuser J, Arkowitz RA, Kornitzer D. A Global Analysis of Kinase Function in Candida albicans Hyphal Morphogenesis Reveals a Role for the Endocytosis Regulator Akl1. Front Cell Infect Microbiol 2018; 8:17. [PMID: 29473018 PMCID: PMC5809406 DOI: 10.3389/fcimb.2018.00017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/12/2018] [Indexed: 11/22/2022] Open
Abstract
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Collapse
Affiliation(s)
- Hagit Bar-Yosef
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Tsvia Gildor
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | | | - Christian Schmauch
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Ziva Weissman
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Mariel Pinsky
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Rawi Naddaf
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Robert A Arkowitz
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute Biology Valrose, Université Côte d'Azur, Nice, France
| | - Daniel Kornitzer
- B. Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Rappaport Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
44
|
|
45
|
Lewellyn EB, Miao Y. Quantitative Analysis of Clathrin-Mediated Endocytosis in Yeast by Live Cell Fluorescence Microscopy. Methods Mol Biol 2018; 1847:225-237. [PMID: 30129021 DOI: 10.1007/978-1-4939-8719-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The budding yeast Saccharomyces cerevisiae has provided a useful model for studying clathrin-mediated endocytosis due to ease of genetic manipulation and crosssectional imaging of individual endocytic sites. This protocol describes a method for using live cell fluorescence microscopy to analyze clathrin-mediated endocytosis and the contributions of actin to the process.
Collapse
Affiliation(s)
- Eric B Lewellyn
- Department of Biology, Lawrence University, Appleton, WI, USA.
- Department of Biology, St. Norbert College, De Pere, WI, USA.
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
46
|
Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. eLife 2017; 6. [PMID: 28813247 PMCID: PMC5559269 DOI: 10.7554/elife.29140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior. DOI:http://dx.doi.org/10.7554/eLife.29140.001 Actin is one of the most abundant proteins in yeast, mammalian and other eukaryotic cells. It assembles into long chains known as filaments that the cell uses to generate forces for various purposes. For example, actin filaments are needed to pull part of the membrane surrounding the cell inwards to bring molecules from the external environment into the cell by a process called endocytosis. In yeast, a member of the WASP family of proteins promotes the assembly of actin filaments around the site where endocytosis will occur. To achieve this, WASP interacts with several other proteins including WIP and myosin, a motor protein that moves along actin filaments to generate mechanical forces. However, it was not clear how these proteins work together to trigger actin filaments to assemble at the right place and time. Sun et al. addressed this question by studying yeast cells with genetic mutations affecting one or more of these proteins. The experiments show that WASP, myosin and WIP are recruited to sites where endocytosis is about to occur through specific interactions with other proteins. For example, a region of WASP known as the proline-rich domain can bind to proteins that contain an “SH3” domain. WASP and WIP arrive first, stimulating actin to assemble in an “all and nothing” manner and attracting myosin to the actin. Further experiments indicate that WASP and WIP need to reach a threshold level before actin starts to assemble. The findings of Sun et al. suggest that WASP and WIP play key roles in establishing the network of proteins needed for actin filaments to assemble during endocytosis. These proteins are needed for many other processes in yeast and other cells, including mammalian cells. Therefore, the next steps will be to investigate whether WASP and WIP use the same mechanism to operate in other situations. DOI:http://dx.doi.org/10.7554/eLife.29140.002
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole T Leong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astou Tangara
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
47
|
MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 2017. [PMID: 28628655 PMCID: PMC5491321 DOI: 10.1371/journal.ppat.1006449] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells respond to environmental stimuli when cell surface receptors are bound by environmental ligands. The binding initiates a signal transduction cascade that results in the appropriate intracellular responses. Studies have shown that endocytosis is critical for receptor internalization and signaling activation. In the rice blast fungus Magnaporthe oryzae, a non-canonical G-protein coupled receptor, Pth11, and membrane sensors MoMsb2 and MoSho1 are thought to function upstream of G-protein/cAMP signaling and the Pmk1 MAPK pathway to regulate appressorium formation and pathogenesis. However, little is known about how these receptors or sensors are internalized and transported into intracellular compartments. We found that the MoEnd3 protein is important for endocytic transport and that the ΔMoend3 mutant exhibited defects in efficient internalization of Pth11 and MoSho1. The ΔMoend3 mutant was also defective in Pmk1 phosphorylation, autophagy, appressorium formation and function. Intriguingly, restoring Pmk1 phosphorylation levels in ΔMoend3 suppressed most of these defects. Moreover, we demonstrated that MoEnd3 is subject to regulation by MoArk1 through protein phosphorylation. We also found that MoEnd3 has additional functions in facilitating the secretion of effectors, including Avr-Pia and AvrPiz-t that suppress rice immunity. Taken together, our findings suggest that MoEnd3 plays a critical role in mediating receptor endocytosis that is critical for the signal transduction-regulated development and virulence of M. oryzae.
Collapse
|
48
|
TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol 2017; 37:MCB.00627-16. [PMID: 28069741 PMCID: PMC5359421 DOI: 10.1128/mcb.00627-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022] Open
Abstract
Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis.
Collapse
|
49
|
Abstract
Clathrin-mediated endocytosis is an essential cellular process that involves the concerted assembly and disassembly of many different proteins at the plasma membrane. In yeast, live-cell imaging has shown that the spatiotemporal dynamics of these proteins is highly stereotypical. Recent work has focused on determining how the timing and functions of endocytic proteins are regulated. In this Cell Science at a Glance article and accompanying poster, we review our current knowledge of the timeline of endocytic site maturation and discuss recent works focusing on how phosphorylation, ubiquitylation and lipids regulate various aspects of the process.
Collapse
Affiliation(s)
- Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
50
|
Lewellyn EB, Pedersen RTA, Hong J, Lu R, Morrison HM, Drubin DG. An Engineered Minimal WASP-Myosin Fusion Protein Reveals Essential Functions for Endocytosis. Dev Cell 2016; 35:281-94. [PMID: 26555049 DOI: 10.1016/j.devcel.2015.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Abstract
Actin polymerization powers membrane deformation during many processes, including clathrin-mediated endocytosis (CME). During CME in yeast, actin polymerization is triggered and coordinated by a six-protein WASP/Myosin complex that includes WASP, class I myosins (Myo3 and Myo5), WIP (Vrp1), and two other proteins. We show that a single engineered protein can replace this entire complex while still supporting CME. This engineered protein reveals that the WASP/Myosin complex has four essential activities: recruitment to endocytic sites, anchorage to the plasma membrane, Arp2/3 activation, and transient actin filament binding by the motor domain. The requirement for both membrane and F-actin binding reveals that myosin-mediated coupling between actin filaments and the base of endocytic sites is essential for allowing actin polymerization to drive membrane invagination.
Collapse
Affiliation(s)
- Eric B Lewellyn
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, Lawrence University, Appleton, WI 54911, USA
| | - Ross T A Pedersen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jessica Hong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huntly M Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|