1
|
Zhang X, Liu H, Cai P, Huang Z, Ma J, Luo L. Mdka produced by the activated HSCs drives bipotential progenitor cell redifferentiation during zebrafish biliary-mediated liver regeneration. Hepatology 2025; 81:1400-1415. [PMID: 39188045 DOI: 10.1097/hep.0000000000001031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND AND AIMS After extensive hepatocyte loss or impaired hepatocyte proliferation, liver regeneration occurs through trans-differentiation of biliary epithelial cells (BECs), which involves dedifferentiation of biliary epithelial cells into bipotential progenitor cells (BP-PCs) and subsequent redifferentiation of BP-PCs into nascent hepatocytes and biliary epithelial cells. Despite several studies on the redifferentiation process of BP-PCs into nascent hepatocytes, the contributions of nonparenchymal cells in this process remain poorly understood. APPROACH AND RESULTS Using the zebrafish severe liver injury model, we observed specific expression of midkine a (Mdka) in the activated HSCs through single-cell analyses and fluorescence in situ hybridization. Genetic mutation, pharmacological inhibition, whole-mount in situ hybridizations, and antibody staining demonstrated an essential role of mdka in the redifferentiation of BP-PCs during liver regeneration. Notably, we identified Nucleolin (Ncl), the potential receptor for Mdka, specifically expressed in BP-PCs, and its mutant recapitulated the mdka mutant phenotypes with impaired BP-PC redifferentiation. Mechanistically, the Mdka-Ncl axis drove Erk1 activation in BP-PCs during liver regeneration. Furthermore, overexpression of activated Erk1 partially rescued the defective liver regeneration in the mdka mutant. CONCLUSIONS The activated HSCs produce Mdka to drive the redifferentiation process of BP-PCs through activating Erk1 during the biliary-mediated liver regeneration, implying previously unappreciated contributions of nonparenchymal cells to this regeneration process.
Collapse
Affiliation(s)
- Xintao Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Huijuan Liu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Zhuofu Huang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianlong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Liver Cancer Institute of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Baskin A, Soudah N, Gilad N, Halevi N, Darlyuk-Saadon I, Schoffman H, Engelberg D. All intrinsically active Erk1/2 mutants autophosphorylate threonine207/188, a plausible regulator of the TEY motif phosphorylation. J Biol Chem 2025; 301:108509. [PMID: 40222547 DOI: 10.1016/j.jbc.2025.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025] Open
Abstract
The extracellular-activated kinases 1 & 2 (Erk1/2) are catalytically active when dually phosphorylated on a TEY motif located at the activation loop. In human patients with cardiac hypertrophy, Erk1/2 are phosphorylated on yet another activation loop's residue, T207/188. Intrinsically active variants of Erk1/2, mutated at R84/65, are also (auto)phosphorylated on T207/188. It is not known whether T207/188 phosphorylation is restricted to these cases, nor how it affects Erks' activity. We report that T207/188 phosphorylation is not rare, as we found that: 1) All known auto-activated Erk1/2 variants are phosphorylated on T207/188. 2) It occurs in various cell lines and mouse tissues. 3) It is extremely high in patients with skeletal muscle atrophies or myopathies. We propose that T207/188 controls the permissiveness of the TEY motif for phosphorylation because T207/188-mutated Erk1/2 and the yeast Erk/Mpk1 were efficiently dually phosphorylated when expressed in HEK293 or yeast cells, respectively. The T207/188-mutated Mpk1 was not TEY-phosphorylated in cells knocked out for MEKs, suggesting that its enhanced phosphorylation in wild-type cells is MEK-dependent. Thus, as T207/188-mutated Erk1/2 and Mpk1 recruit MEKs, the role of T207/188 is to impede MEKs' ability to phosphorylate Erks. T207/188 also impedes autophosphorylation as recombinant Erk2 mutated at T188 is spontaneously autophosphorylated, although exclusively on Y185. The role of T207/188 in regulating activation loop phosphorylation may be common to most Ser/Thr kinases, as 86% of them (in the human kinome) possess T207/188 orthologs, and 160 of them were already reported to be phosphorylated on this residue.
Collapse
Affiliation(s)
- Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nechama Gilad
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Neriya Halevi
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilona Darlyuk-Saadon
- Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore
| | - Hanan Schoffman
- Stein Family Mass Spectrometry Unit, The Research Infrastructure Center, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Klomp JE, Diehl JN, Klomp JA, Edwards AC, Yang R, Morales AJ, Taylor KE, Drizyte-Miller K, Bryant KL, Schaefer A, Johnson JL, Huntsman EM, Yaron TM, Pierobon M, Baldelli E, Prevatte AW, Barker NK, Herring LE, Petricoin EF, Graves LM, Cantley LC, Cox AD, Der CJ, Stalnecker CA. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024; 384:eadk0850. [PMID: 38843329 PMCID: PMC11301400 DOI: 10.1126/science.adk0850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/17/2024] [Indexed: 06/16/2024]
Abstract
To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.
Collapse
Affiliation(s)
- Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey A. Klomp
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - A. Cole Edwards
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Runying Yang
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis J. Morales
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Khalilah E. Taylor
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristina Drizyte-Miller
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jared L. Johnson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Emily M. Huntsman
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tomer M. Yaron
- Meyer Cancer Center, Weill Cornell Medicine; New York, NY 10065, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Elisa Baldelli
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Alex W. Prevatte
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie K. Barker
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Lee M. Graves
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lewis C. Cantley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill; Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation selection by ATP-competitive inhibitors and allosteric communication in ERK2. eLife 2024; 12:RP91507. [PMID: 38537148 PMCID: PMC10972564 DOI: 10.7554/elife.91507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
- Jake W Anderson
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David Vaisar
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | - David N Jones
- Department of Pharmacology, University of Colorado Anschutz Medical CenterBoulderUnited States
| | - Laurel M Pegram
- Department of Biochemistry, University of ColoradoBoulderUnited States
| | | | - Huifen Chen
- Genentech, Inc.South San FranciscoUnited States
| | | | - Natalie G Ahn
- Department of Biochemistry, University of ColoradoBoulderUnited States
| |
Collapse
|
5
|
Timofeev O, Giron P, Lawo S, Pichler M, Noeparast M. ERK pathway agonism for cancer therapy: evidence, insights, and a target discovery framework. NPJ Precis Oncol 2024; 8:70. [PMID: 38485987 PMCID: PMC10940698 DOI: 10.1038/s41698-024-00554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/18/2024] Open
Abstract
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
Collapse
Affiliation(s)
- Oleg Timofeev
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043, Marburg, Germany
| | - Philippe Giron
- Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Steffen Lawo
- CRISPR Screening Core Facility, Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Martin Pichler
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany
| | - Maxim Noeparast
- Translational Oncology, II. Med Clinics Hematology and Oncology, 86156, Augsburg, Germany.
| |
Collapse
|
6
|
Deschênes-Simard X, Malleshaiah M, Ferbeyre G. Extracellular Signal-Regulated Kinases: One Pathway, Multiple Fates. Cancers (Basel) 2023; 16:95. [PMID: 38201521 PMCID: PMC10778234 DOI: 10.3390/cancers16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review delves into the multifaceted aspects of ERK signaling and the intricate mechanisms underlying distinct cellular fates. ERK1 and ERK2 (ERK) govern proliferation, transformation, epithelial-mesenchymal transition, differentiation, senescence, or cell death, contingent upon activation strength, duration, and context. The biochemical mechanisms underlying these outcomes are inadequately understood, shaped by signaling feedback and the spatial localization of ERK activation. Generally, ERK activation aligns with the Goldilocks principle in cell fate determination. Inadequate or excessive ERK activity hinders cell proliferation, while balanced activation promotes both cell proliferation and survival. Unraveling the intricacies of how the degree of ERK activation dictates cell fate requires deciphering mechanisms encompassing protein stability, transcription factors downstream of ERK, and the chromatin landscape.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Montreal University Hospital Center (CHUM), Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Mohan Malleshaiah
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
| | - Gerardo Ferbeyre
- Montreal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada
- Montreal Cancer Institute, CR-CHUM, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
8
|
Anderson JW, Vaisar D, Jones DN, Pegram LM, Vigers GP, Chen H, Moffat JG, Ahn NG. Conformation Selection by ATP-competitive Inhibitors and Allosteric Communication in ERK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557258. [PMID: 37745518 PMCID: PMC10515847 DOI: 10.1101/2023.09.12.557258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.
Collapse
Affiliation(s)
| | - David Vaisar
- Department of Biochemistry, University of Colorado, Boulder, CO
| | - David N. Jones
- Department of Pharmacology, University of Colorado Anschutz Medical Center, Aurora, CO
| | - Laurel M. Pegram
- Department of Biochemistry, University of Colorado, Boulder, CO
- Present address: Loxo Oncology, Louisville, CO 80027
| | - Guy P. Vigers
- Array BioPharma, Inc., Boulder, CO
- Present address: Allium Consulting LLC, Boulder, CO 80304
| | - Huifen Chen
- Genentech, Inc. South San Francisco, CA, USA
| | | | - Natalie G. Ahn
- Department of Biochemistry, University of Colorado, Boulder, CO
| |
Collapse
|
9
|
Soudah N, Baskin A, Smorodinsky-Atias K, Beenstock J, Ganon Y, Hayouka R, Aboraya M, Livnah O, Ilouz R, Engelberg D. A conserved arginine within the αC-helix of Erk1/2 is a latch of autoactivation and of oncogenic capabilities. J Biol Chem 2023; 299:105072. [PMID: 37474104 PMCID: PMC10458722 DOI: 10.1016/j.jbc.2023.105072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.
Collapse
Affiliation(s)
- Nadine Soudah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexey Baskin
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Smorodinsky-Atias
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Jonah Beenstock
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yifat Ganon
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruchama Hayouka
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mohammed Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Oded Livnah
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; The Wolfson Centre for Applied Structural Biology, Jerusalem, Israel
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - David Engelberg
- Department of Biological Chemistry, The Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel; Singapore-HUJ Alliance for Research and Enterprise, Mechanisms of Liver Inflammatory Diseases Program, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Solomon O, Alshanski I, Shitrit A, Chen YJ, Friedler A, Yitzchaik S. Using a Single Peptide to Electrochemically Sense Multiple Kinases. Biochemistry 2023; 62:351-357. [PMID: 36239671 DOI: 10.1021/acs.biochem.2c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Kinases are responsible for regulating cellular and physiological processes, and abnormal kinase activity is associated with various diseases. Therefore, kinases are being used as biomarkers for disease and developing methods for their sensing is highly important. Usually more than one kinase is involved in phosphorylating a target protein. However, kinase detection methods usually detect the activity of only one specific kinase. Here we describe an electrochemical kinase sensing tool for the selective detection of two kinases using the same target peptide. We demonstrate the sensing of kinases ERK2 and PKCδ. This is based on a single sensing element, a peptide that contains two distinct phosphorylation sites of these two kinases. Reversibility experiments with alkaline phosphatase and reaction with the electrochemically active ferrocene-labeled ATP showed that the mechanism of sensing is by detecting the enzymatic phosphorylation. Our approach can be further utilized to develop devices for the detection of multiple kinases and can be expanded to other types of enzymes involved in disease.
Collapse
Affiliation(s)
- Ohad Solomon
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Israel Alshanski
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ariel Shitrit
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei 115, Taiwan
| | - Assaf Friedler
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Solomon O, Shpilt Z, Sapir H, Marom S, Bibas S, Chen Y, Tshuva EY, Yitzchaik S, Friedler A. Peptide‐Based Inhibitors that Target the Docking Site of ERK2. Isr J Chem 2022. [DOI: 10.1002/ijch.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ohad Solomon
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Zohar Shpilt
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Hannah Sapir
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Shir Marom
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Shai Bibas
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica No. 128, Section2, Academia Road Taipei 115 Taiwan
| | - Edit Y. Tshuva
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Assaf Friedler
- Institute of Chemistry, T he Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
- Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
12
|
Pan X, Pei J, Wang A, Shuai W, Feng L, Bu F, Zhu Y, Zhang L, Wang G, Ouyang L. Development of small molecule extracellular signal-regulated kinases (ERKs) inhibitors for cancer therapy. Acta Pharm Sin B 2022; 12:2171-2192. [PMID: 35646548 PMCID: PMC9136582 DOI: 10.1016/j.apsb.2021.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/09/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaoli Pan
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Chakraborty K, Kar S, Rai B, Bhagat R, Naskar N, Seth P, Gupta A, Bhattacharjee A. Copper dependent ERK1/2 phosphorylation is essential for the viability of neurons and not glia. Metallomics 2022; 14:mfac005. [PMID: 35150272 PMCID: PMC8975716 DOI: 10.1093/mtomcs/mfac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
Intracellular copper [Cu(I)] has been hypothesized to play role in the differentiation of the neurons. This necessitates understanding the role of Cu(I) not only in the neurons but also in the glia considering their anatomical proximity, contribution towards ion homeostasis, and neurodegeneration. In this study, we did a systematic investigation of the changes in the cellular copper homeostasis during neuronal and glial differentiation and the pathways triggered by them. Our study demonstrates increased mRNA for the plasma membrane copper transporter CTR1 leading to increased Cu(I) during the neuronal (PC-12) differentiation. ATP7A is retained in the trans-Golgi network (TGN) despite high Cu(I) demonstrating its utilization towards the neuronal differentiation. Intracellular copper triggers pathways essential for neurite generation and ERK1/2 activation during the neuronal differentiation. ERK1/2 activation also accompanies the differentiation of the foetal brain derived neuronal progenitor cells. The study demonstrates that ERK1/2 phosphorylation is essential for the viability of the neurons. In contrast, differentiated C-6 (glia) cells contain low intracellular copper and significant downregulation of the ERK1/2 phosphorylation demonstrating that ERK1/2 activation does not regulate the viability of the glia. But ATP7A shows vesicular localization despite low copper in the glia. In addition to the TGN, ATP7A localizes into RAB11 positive recycling endosomes in the glial neurites. Our study demonstrates the role of copper dependent ERK1/2 phosphorylation in the neuronal viability. Whereas glial differentiation largely involves sequestration of Cu(I) into the endosomes potentially (i) for ready release and (ii) rendering cytosolic copper unavailable for pathways like the ERK1/2 activation.
Collapse
Affiliation(s)
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Bhawana Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Reshma Bhagat
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
14
|
Solomon O, Sapir H, Mervinetsky E, Chen Y, Friedler A, Yitzchaik S. Kinase Sensing Based on Protein Interactions at the Catalytic Site. Chemistry 2022; 28:e202104227. [DOI: 10.1002/chem.202104227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Ohad Solomon
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Hannah Sapir
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Evgeniy Mervinetsky
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Yu‐Ju Chen
- Institute of Chemistry Academia Sinica No. 128, Section2, Academia Road Taipei 115 Taiwan
| | - Assaf Friedler
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| | - Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Safra Campus, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
15
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
16
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
17
|
Xie M, Wu Z, Ying S, Liu L, Zhao C, Yao C, Zhang Z, Luo C, Wang W, Zhao D, Zhang J, Qiu W, Wang Y. Sublytic C5b-9 induces glomerular mesangial cell proliferation via ERK1/2-dependent SOX9 phosphorylation and acetylation by enhancing Cyclin D1 in rat Thy-1 nephritis. Exp Mol Med 2021; 53:572-590. [PMID: 33811247 PMCID: PMC8102557 DOI: 10.1038/s12276-021-00589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 02/01/2023] Open
Abstract
Glomerular mesangial cell (GMC) proliferation is a histopathological alteration in human mesangioproliferative glomerulonephritis (MsPGN) or in animal models of MsPGN, e.g., the rat Thy-1 nephritis (Thy-1N) model. Although sublytic C5b-9 assembly on the GMC membrane can trigger cell proliferation, the mechanisms are still undefined. We found that sublytic C5b-9-induced rat GMC proliferation was driven by extracellular signal-regulated kinase 1/2 (ERK1/2), sry-related HMG-box 9 (SOX9), and Cyclin D1. Here, ERK1/2 phosphorylation was a result of the calcium influx-PKC-α-Raf-MEK1/2 axis activated by sublytic C5b-9, and Cyclin D1 gene transcription was enhanced by ERK1/2-dependent SOX9 binding to the Cyclin D1 promoter (-582 to -238 nt). In addition, ERK1/2 not only interacted with SOX9 in the cell nucleus to mediate its phosphorylation at serine residues 64 (a new site identified by mass spectrometry) and 181 (a known site), but also indirectly induced SOX9 acetylation by elevating the expression of general control non-repressed protein 5 (GCN5), which together resulted in Cyclin D1 synthesis and GMC proliferation. Moreover, our in vivo experiments confirmed that silencing these genes ameliorated the lesions of Thy-1N rats and reduced SOX9 phosphorylation, acetylation and Cyclin D1 expression. Furthermore, the renal tissue sections of MsPGN patients also showed higher phosphorylation or expression of ERK1/2, SOX9, and Cyclin D1. In summary, these findings suggest that sublytic C5b-9-induced GMC proliferation in rat Thy-1N requires SOX9 phosphorylation and acetylation via enhanced Cyclin D1 gene transcription, which may provide a new insight into human MsPGN pathogenesis.
Collapse
Affiliation(s)
- Mengxiao Xie
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.412676.00000 0004 1799 0784Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhijiao Wu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Shuai Ying
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Longfei Liu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Department of Central Laboratory, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, One West Huanghe Road, Huai’an, Jiangsu 223300 China
| | - Chenhui Zhao
- grid.412676.00000 0004 1799 0784Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Chunlei Yao
- grid.412676.00000 0004 1799 0784Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029 China
| | - Zhiwei Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Can Luo
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wenbo Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Dan Zhao
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Jing Zhang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China
| | - Wen Qiu
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| | - Yingwei Wang
- grid.89957.3a0000 0000 9255 8984Department of Immunology, and Key Laboratory of Immunological Environment and Disease, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Antibody Technology of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166 China
| |
Collapse
|
18
|
Noor SI, Hoffmann M, Rinis N, Bartels MF, Winterhalter PR, Hoelscher C, Hennig R, Himmelreich N, Thiel C, Ruppert T, Rapp E, Strahl S. Glycosyltransferase POMGNT1 deficiency strengthens N-cadherin-mediated cell-cell adhesion. J Biol Chem 2021; 296:100433. [PMID: 33610554 PMCID: PMC7994789 DOI: 10.1016/j.jbc.2021.100433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.
Collapse
Affiliation(s)
- Sina Ibne Noor
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Marcus Hoffmann
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Natalie Rinis
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Markus F Bartels
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Patrick R Winterhalter
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - Christina Hoelscher
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany
| | - Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Christian Thiel
- Center for Child and Adolescent Medicine, Department Pediatrics I, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany; glyXera GmbH, Magdeburg, Germany
| | - Sabine Strahl
- Centre for Organismal Studies (COS), Glycobiology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
19
|
Yan ZP, Li JT, Zeng N, Ni GX. Role of extracellular signal-regulated kinase 1/2 signaling underlying cardiac hypertrophy. Cardiol J 2020; 28:473-482. [PMID: 32329039 PMCID: PMC8169190 DOI: 10.5603/cj.a2020.0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/17/2020] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac hypertrophy is the result of increased myocardial cell size responding to an increased workload and developmental signals. These extrinsic and intrinsic stimuli as key drivers of cardiac hypertrophy have spurred efforts to target their associated signaling pathways. The extracellular signal-regulated kinases 1/2 (ERK1/2), as an essential member of mitogen-activated protein kinases (MAPKs), has been widely recognized for promoting cardiac growth. Several modified transgenic mouse models have been generated through either affecting the upstream kinase to change ERK1/2 activity, manipulating the direct role of ERK1/2 in the heart, or targeting phosphatases or MAPK scaffold proteins to alter total ERK1/2 activity in response to an increased workload. Using these models, both regulation of the upstream events and modulation of each isoform and indirect effector could provide important insights into how ERK1/2 modulates cardiomyocyte biology. Furthermore, a plethora of compounds, inhibitors, and regulators have emerged in consideration of ERK, or its MAPK kinases, are possible therapeutic targets against cardiac hypertrophic diseases. Herein, is a review of the available evidence regarding the exact role of ERK1/2 in regulating cardiac hypertrophy and a discussion of pharmacological strategy for treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Zhi-Peng Yan
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Jie-Ting Li
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Ni Zeng
- First Affiliated Hospital of Fujian Medical University, #20 Chazhong Rd., 350005 fuzhou, China
| | - Guo-Xin Ni
- Beijing Sport University, #48 Information Road, Beijing, 100084 Beijing, China.
| |
Collapse
|
20
|
Mutations That Confer Drug-Resistance, Oncogenicity and Intrinsic Activity on the ERK MAP Kinases-Current State of the Art. Cells 2020; 9:cells9010129. [PMID: 31935908 PMCID: PMC7016714 DOI: 10.3390/cells9010129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Unique characteristics distinguish extracellular signal-regulated kinases (Erks) from other eukaryotic protein kinases (ePKs). Unlike most ePKs, Erks do not autoactivate and they manifest no basal activity; they become catalysts only when dually phosphorylated on neighboring Thr and Tyr residues and they possess unique structural motifs. Erks function as the sole targets of the receptor tyrosine kinases (RTKs)-Ras-Raf-MEK signaling cascade, which controls numerous physiological processes and is mutated in most cancers. Erks are therefore the executers of the pathway’s biology and pathology. As oncogenic mutations have not been identified in Erks themselves, combined with the tight regulation of their activity, Erks have been considered immune against mutations that would render them intrinsically active. Nevertheless, several such mutations have been generated on the basis of structure-function analysis, understanding of ePK evolution and, mostly, via genetic screens in lower eukaryotes. One of the mutations conferred oncogenic properties on Erk1. The number of interesting mutations in Erks has dramatically increased following the development of Erk-specific pharmacological inhibitors and identification of mutations that cause resistance to these compounds. Several mutations have been recently identified in cancer patients. Here we summarize the mutations identified in Erks so far, describe their properties and discuss their possible mechanism of action.
Collapse
|
21
|
The Dephosphorylation of p70S6 (Thr389) Kinase as a Marker of l-Glutamate-Induced Excitotoxicity Related to Diabetes Disturbances—an Unconventional In Vitro Model. Neurotox Res 2020; 37:628-639. [DOI: 10.1007/s12640-019-00155-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
|
22
|
Kushnir T, Bar-Cohen S, Mooshayef N, Lange R, Bar-Sinai A, Rozen H, Salzberg A, Engelberg D, Paroush Z. An Activating Mutation in ERK Causes Hyperplastic Tumors in a scribble Mutant Tissue in Drosophila. Genetics 2020; 214:109-120. [PMID: 31740452 PMCID: PMC6944410 DOI: 10.1534/genetics.119.302794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Receptor tyrosine kinase signaling plays prominent roles in tumorigenesis, and activating oncogenic point mutations in the core pathway components Ras, Raf, or MEK are prevalent in many types of cancer. Intriguingly, however, analogous oncogenic mutations in the downstream effector kinase ERK have not been described or validated in vivo To determine if a point mutation could render ERK intrinsically active and oncogenic, we have assayed in Drosophila the effects of a mutation that confers constitutive activity upon a yeast ERK ortholog and has also been identified in a few human tumors. Our analyses indicate that a fly ERK ortholog harboring this mutation alone (RolledR80S), and more so in conjunction with the known sevenmaker mutation (RolledR80S+D334N), suppresses multiple phenotypes caused by loss of Ras-Raf-MEK pathway activity, consistent with an intrinsic activity that is independent of upstream signaling. Moreover, expression of RolledR80S and RolledR80S+D334N induces tissue overgrowth in an established Drosophila cancer model. Our findings thus demonstrate that activating mutations can bestow ERK with pro-proliferative, tumorigenic capabilities and suggest that Drosophila represents an effective experimental system for determining the oncogenicity of ERK mutants and their response to therapy.
Collapse
Affiliation(s)
- Tatyana Kushnir
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shaked Bar-Cohen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Navit Mooshayef
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, 138602, Singapore
| | - Rotem Lange
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Allan Bar-Sinai
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Helit Rozen
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - David Engelberg
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, 138602, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
23
|
Sang D, Pinglay S, Wiewiora RP, Selvan ME, Lou HJ, Chodera JD, Turk BE, Gümüş ZH, Holt LJ. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. eLife 2019; 8:38805. [PMID: 31407663 PMCID: PMC6692128 DOI: 10.7554/elife.38805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/03/2019] [Indexed: 01/21/2023] Open
Abstract
Protein kinases are crucial to coordinate cellular decisions and therefore their activities are strictly regulated. Previously we used ancestral reconstruction to determine how CMGC group kinase specificity evolved (Howard et al., 2014). In the present study, we reconstructed ancestral kinases to study the evolution of regulation, from the inferred ancestor of CDKs and MAPKs, to modern ERKs. Kinases switched from high to low autophosphorylation activity at the transition to the inferred ancestor of ERKs 1 and 2. Two synergistic amino acid changes were sufficient to induce this change: shortening of the β3-αC loop and mutation of the gatekeeper residue. Restoring these two mutations to their inferred ancestral state led to a loss of dependence of modern ERKs 1 and 2 on the upstream activating kinase MEK in human cells. Our results shed light on the evolutionary mechanisms that led to the tight regulation of a kinase that is central in development and disease.
Collapse
Affiliation(s)
- Dajun Sang
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| | - Sudarshan Pinglay
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| | - Rafal P Wiewiora
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States.,Memorial Sloan Kettering Cancer Center, New York, United States
| | - Myvizhi E Selvan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - John D Chodera
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Medical Center, New York, United States
| |
Collapse
|
24
|
Activation loop dynamics are controlled by conformation-selective inhibitors of ERK2. Proc Natl Acad Sci U S A 2019; 116:15463-15468. [PMID: 31311868 DOI: 10.1073/pnas.1906824116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.
Collapse
|
25
|
Flores K, Yadav SS, Katz AA, Seger R. The Nuclear Translocation of Mitogen-Activated Protein Kinases: Molecular Mechanisms and Use as Novel Therapeutic Target. Neuroendocrinology 2019; 108:121-131. [PMID: 30261516 DOI: 10.1159/000494085] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascades are central signaling pathways that play a central role in the regulation of most stimulated cellular processes including proliferation, differentiation, stress response and apoptosis. Currently 4 such cascades are known, each termed by its downstream MAPK components: the extracellular signal-regulated kinase 1/2 (ERK1/2), cJun-N-terminal kinase (JNK), p38 and ERK5. One of the hallmarks of these cascades is the stimulated nuclear translocation of their MAPK components using distinct mechanisms. ERK1/2 are shuttled into the nucleus by importin7, JNK and p38 by a dimer of importin3 with either importin9 or importin7, and ERK5 by importin-α/β. Dysregulation of these cascades often results in diseases, including cancer and inflammation, as well as developmental and neurological disorders. Much effort has been invested over the years in developing inhibitors to the MAPK cascades to combat these diseases. Although some inhibitors are already in clinical use or clinical trials, their effects are hampered by development of resistance or adverse side-effects. Recently, our group developed 2 myristoylated peptides: EPE peptide, which inhibits the interaction of ERK1/2 with importin7, and PERY peptide, which prevents JNK/p38 interaction with either importin7 or importin9. These peptides block the nuclear translocation of their corresponding kinases, resulting in prevention of several cancers, while the PERY peptide also inhibits inflammation-induced diseases. These peptides provide a proof of concept for the use of the nuclear translocation of MAPKs as therapeutic targets for cancer and/or inflammation.
Collapse
Affiliation(s)
- Karen Flores
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Suresh Singh Yadav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot,
| |
Collapse
|
26
|
Abstract
We have shown that cytoplasmic actin isoforms play different roles in neoplastic cell transformation. β-Cytoplasmic actin acts as a tumor suppressor, affecting epithelial differentiation, cell growth, cell invasion and tumor growth of colon and lung carcinoma cells. In contrast, γ-cytoplasmic actin enhances malignant features of tumor cells whose actin network regulation is carried out via the γ-actin isoform. The goal of this study was to describe the role of cytoplasmic actins in cell cycle regulation of breast cancer cell lines MCF-7 and MDA-MB-231. The distinct roles of each cytoplasmic actin in the cell cycle driving were observed. β-Actin as well as γ-actin down-regulation inhibited proliferation of breast cancer cells, but only down-regulation of β-actin induced a significant decrease in diploid cell population and accumulation of tetraploid cells. Down-regulation of β-actin stimulated cyclin A2, B1 and D3 expression, whereas down-regulation of γ-actin reduced expression of these cyclins in both cell lines. Moreover, cyclin B1 and γ-actin were co-localized in mitotic control and β-actin-deficient cells. In mitotic MCF-7 cells down-regulation of β-actin caused an enrichment of prophase/metaphase population compared with control. γ-Actin down-regulation induced telophase enrichment. ERK1/2 and γ-actin co-localization and possible selective binding were revealed in MCF7 cells. β-Actin down-regulation induced ERK1/2 activation, while γ-actin down-regulation led to reduction of p-ERK1/2. A direct interaction of ERK1/2 with γ-actin and cyclin A2 in the same protein complex was also discovered. We suggest that γ-actin down-regulation leads to decrease of cyclin A2 level, inhibits ERK1/2 signaling and deceleration of breast cancer cells proliferation.
Collapse
Affiliation(s)
- Vera Dugina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina Shagieva
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | | | - Pavel Kopnin
- b Blokhin Russian Cancer Research Center , Moscow , Russia
| |
Collapse
|
27
|
Mutlak M, Schlesinger-Laufer M, Haas T, Shofti R, Ballan N, Lewis YE, Zuler M, Zohar Y, Caspi LH, Kehat I. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy. Int J Cardiol 2018; 270:204-213. [PMID: 29857938 DOI: 10.1016/j.ijcard.2018.05.068] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. METHODS We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. RESULTS The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. CONCLUSIONS The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload.
Collapse
Affiliation(s)
- Michael Mutlak
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Schlesinger-Laufer
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Tali Haas
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Rona Shofti
- The Pre-Clinical Research Authority Unit, The Technion, Israel Institute of Technology, Haifa, Israel
| | - Nimer Ballan
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Yair E Lewis
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Zuler
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Medical Center, Haifa 31096, Israel
| | - Lilac H Caspi
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Izhak Kehat
- The Rappaport Institute and the Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel; Department of Cardiology and the Clinical Research Institute at Rambam, Rambam Medical Center, Haifa 31096, Israel.
| |
Collapse
|
28
|
Yurko N, Liu X, Yamazaki T, Hoque M, Tian B, Manley JL. MPK1/SLT2 Links Multiple Stress Responses with Gene Expression in Budding Yeast by Phosphorylating Tyr1 of the RNAP II CTD. Mol Cell 2017; 68:913-925.e3. [PMID: 29220656 DOI: 10.1016/j.molcel.2017.11.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 12/28/2022]
Abstract
The RNA polymerase II largest subunit C-terminal domain consists of repeated YSPTSPS heptapeptides. The role of tyrosine-1 (Tyr1) remains incompletely understood, as, for example, mutating all Tyr1 residues to Phe (Y1F) is lethal in vertebrates but a related mutant has only a mild phenotype in S. pombe. Here we show that Y1F substitution in budding yeast resulted in a strong slow-growth phenotype. The Y1F strain was also hypersensitive to several different cellular stresses that involve MAP kinase signaling. These phenotypes were all linked to transcriptional changes, and we also identified genetic and biochemical interactions between Tyr1 and both transcription initiation and termination factors. Further studies uncovered defects related to MAP kinase I (Slt2) pathways, and we provide evidence that Slt2 phosphorylates Tyr1 in vitro and in vivo. Our study has thus identified Slt2 as a Tyr1 kinase, and in doing so provided links between stress response activation and Tyr1 phosphorylation.
Collapse
Affiliation(s)
- Nathan Yurko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Takashi Yamazaki
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
29
|
Beenstock J, Mooshayef N, Engelberg D. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Trends Biochem Sci 2016; 41:938-953. [DOI: 10.1016/j.tibs.2016.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/18/2022]
|
30
|
Brenan L, Andreev A, Cohen O, Pantel S, Kamburov A, Cacchiarelli D, Persky NS, Zhu C, Bagul M, Goetz EM, Burgin AB, Garraway LA, Getz G, Mikkelsen TS, Piccioni F, Root DE, Johannessen CM. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants. Cell Rep 2016; 17:1171-1183. [PMID: 27760319 PMCID: PMC5120861 DOI: 10.1016/j.celrep.2016.09.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/01/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022] Open
Abstract
Tumor-specific genomic information has the potential to guide therapeutic strategies and revolutionize patient treatment. Currently, this approach is limited by an abundance of disease-associated mutants whose biological functions and impacts on therapeutic response are uncharacterized. To begin to address this limitation, we functionally characterized nearly all (99.84%) missense mutants of MAPK1/ERK2, an essential effector of oncogenic RAS and RAF. Using this approach, we discovered rare gain- and loss-of-function ERK2 mutants found in human tumors, revealing that, in the context of this assay, mutational frequency alone cannot identify all functionally impactful mutants. Gain-of-function ERK2 mutants induced variable responses to RAF-, MEK-, and ERK-directed therapies, providing a reference for future treatment decisions. Tumor-associated mutations spatially clustered in two ERK2 effector-recruitment domains yet produced mutants with opposite phenotypes. This approach articulates an allele-characterization framework that can be scaled to meet the goals of genome-guided oncology.
Collapse
Affiliation(s)
- Lisa Brenan
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Ofir Cohen
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sasha Pantel
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Atanas Kamburov
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Davide Cacchiarelli
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cong Zhu
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mukta Bagul
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eva M Goetz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alex B Burgin
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Levi A Garraway
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - David E Root
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
31
|
Goshen-Lago T, Goldberg-Carp A, Melamed D, Darlyuk-Saadon I, Bai C, Ahn NG, Admon A, Engelberg D. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 2016; 27:2771-83. [PMID: 27413009 PMCID: PMC5007096 DOI: 10.1091/mbc.e16-03-0167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
MAPKs are catalytically and biologically active only when dually phosphorylated on a TEY motif. Mutations in the yeast MAPK Mpk1 are described that render it fully functional when mutated in its TEY motif and even when it carries a kinase-dead mutation. MAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop’s TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity. Cells lacking MPK1, or the genes encoding the relevant MEKs, MKK1 and MKK2, do not proliferate under cell wall stress, imposed, for example, by caffeine. Mutants of Mpk1, Mpk1(Y268C) and Mpk1(Y268A), function independently of Mkk1 and Mkk2. We show that these variants are phosphorylated at their activation loop in mkk1∆mkk2∆ and mkk1∆mkk2∆pbs2∆ste7∆ cells, suggesting that they autophosphorylate. However, strikingly, when Y268C/A mutations were combined with the kinase-dead mutation, K54R, or mutations at the TEY motif, T190A+Y192F, the resulting proteins still allowed mkk1∆mkk2∆ cells to proliferate under caffeine stress. Mutating the equivalent residue, Tyr-280/Tyr-261, in Erk1/Erk2 significantly impaired Erk1/2’s catalytic activity. This study describes the first case in which a MAPK, Erk/Mpk1, imposes a phenotype via a mechanism that is independent of TEY phosphorylation and an unusual case in which an equivalent mutation in a highly conserved domain of yeast and mammalian Erks causes an opposite effect.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Anat Goldberg-Carp
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Chen Bai
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| |
Collapse
|
32
|
Tighter αC-helix-αL16-helix interactions seem to make p38α less prone to activation by autophosphorylation than Hog1. Biosci Rep 2016; 36:BSR20160020. [PMID: 26987986 PMCID: PMC4847175 DOI: 10.1042/bsr20160020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/16/2016] [Indexed: 12/18/2022] Open
Abstract
A structural element termed ‘hydrophobic core’ is a suppressor of spontaneous autophosphorylation in Hog1 and p38s. Practically any mutation in this core of Hog1, but not of p38, evokes spontaneous autophosphorylation. This inherent autophosphorylation suppressor is tighter in mammalian's p38s. Many eukaryotic protein kinases (EPKs) are autoactivated through autophosphorylation of their activation loop. Mitogen-activated protein (MAP) kinases do not autophosphorylate spontaneously; relying instead upon mitogen-activated protein kinase (MAPK) kinases (MKKs) for their activation loop phosphorylation. Yet, in previous studies we identified mutations in the yeast MAPK high osmolarity glycerol (Hog1) that render it capable of spontaneous autophosphorylation and consequently intrinsically active (MKK-independent). Four of the mutations occurred in hydrophobic residues, residing in the αC-helix, which is conserved in all EPKs, and in the αL16-helix that is unique to MAPKs. These four residues interact together forming a structural element termed ‘hydrophobic core’. A similar element exists in the Hog1’s mammalian orthologues p38s. Here we show that the ‘hydrophobic core’ is a loose suppressor of Hog1’s autophosphorylation. We inserted 18 point mutations into this core, 17 of which were able to render Hog1 MKK-independent. In p38s, however, only a very few mutations in the equivalent residues rendered these proteins intrinsically active. Structural analysis revealed that a salt bridge between the αC-helix and the αL16-helix that exists in p38α may not exist in Hog1. This bond further stabilizes the ‘hydrophobic core’ of p38, making p38 less prone to de-repressing its concealed autophosphorylation. Mutating equivalent hydrophobic residues in Jnk1 and Erk2 has no effect on their autophosphorylation. We propose that specific structural elements developed in the course of evolution to suppress spontaneous autophosphorylation of Hog1/p38. The suppressors were kept wobbly, probably to allow activation by induced autophosphorylation, but became stricter in mammalian p38s than in the yeast Hog1.
Collapse
|
33
|
Lai S, Pelech S. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1. Mol Biol Cell 2016; 27:1040-50. [PMID: 26823016 PMCID: PMC4791125 DOI: 10.1091/mbc.e15-07-0527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/20/2016] [Indexed: 02/05/2023] Open
Abstract
The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signal-regulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases.
Collapse
Affiliation(s)
- Shenshen Lai
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Steven Pelech
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada Kinexus Bioinformatics Corporation, Vancouver, BC V6P 6T3, Canada
| |
Collapse
|