1
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of dopamine receptor antagonists and radiation on mouse neural stem/progenitor cells. Radiother Oncol 2024; 201:110562. [PMID: 39341503 PMCID: PMC11987595 DOI: 10.1016/j.radonc.2024.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dopamine receptor antagonists have recently been identified as potential anti-cancer agents in combination with radiation, and a first drug of this class is in clinical trials against pediatric glioma. Radiotherapy causes cognitive impairment primarily by eliminating neural stem/progenitor cells and subsequent loss of neurogenesis, along with inducing inflammation, vascular damage, and synaptic alterations. Here, we tested the combined effects of dopamine receptor antagonists and radiation on neural stem/progenitor cells. METHODS Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of EGFP, the effects of dopamine receptor antagonists alone or in combination with radiation on neural stem/progenitor cells were assessed in sphere-formation assays, extreme limiting dilution assays, flow cytometry and real-time PCR in vitro and in vivo in both sexes. RESULTS We report that hydroxyzine and trifluoperazine exhibited sex-dependent effects on murine newborn neural stem/progenitor cells in vitro. In contrast, amisulpride, nemonapride, and quetiapine, when combined with radiation, significantly increased the number of neural stem/progenitor cells in both sexes. In vivo, trifluoperazine showed sex-dependent effects on adult neural stem/progenitor cells, while amisulpride demonstrated significant effects in both sexes. Further, amisulpride increased sphere forming capacity and stem cell frequency in both sexes when compared to controls. CONCLUSION We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exists, making it a novel combination therapy against glioblastoma. Normal tissue toxicity following this treatment scheme likely differs depending on age and sex and should be taken into consideration when designing clinical trials.
Collapse
Affiliation(s)
- Ling He
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States.
| | - Kruttika Bhat
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Angeliki Ioannidis
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, United States; Jonsson Comprehensive Cancer Center at UCLA, United States; Department of Neurosurgery, David Geffen School of Medicine at UCLA, United States
| |
Collapse
|
2
|
Marni R, Malla M, Chakraborty A, Voonna MK, Bhattacharyya PS, Kgk D, Malla RR. Combination of ionizing radiation and 2-thio-6-azauridine induces cell death in radioresistant triple negative breast cancer cells by downregulating CD151 expression. Cancer Chemother Pharmacol 2024; 94:685-706. [PMID: 39167147 DOI: 10.1007/s00280-024-04709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). METHODS The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. RESULTS The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. CONCLUSION These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM (Deemed to Be University), GITAM School of Technology, Visakhapatnam, 530045, A.P, India
| | | | - Murali Krishna Voonna
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | | | - Deepak Kgk
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
3
|
Kanai R, Kanemaru SI, Yamaguchi T, Kita SI, Miwa T, Kumazawa A, Okamoto J, Yoshida M, Harada H, Maetani T. Outcomes of regenerative treatment for over 200 patients with tympanic membrane perforation. Auris Nasus Larynx 2024; 51:259-265. [PMID: 37891031 DOI: 10.1016/j.anl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVE To evaluate outcomes of a regenerative treatment (RT) for over 200 patients with tympanic membrane perforation (TMP). The RT-TMP method involves a gelatin sponge, basic fibroblast growth factor (bFGF) and fibrin glue. METHODS The study population included 216 patients and 234 ears (male: female =100:116; age 1-93 years). All enrolled patients were treated with RT-TMP in which TMP edges were disrupted mechanically and a gelatin sponge immersed in bFGF was inserted into the perforation. Fibrin glue was then dripped over the sponge. Patient outcomes including TMP closure rates, change in hearing level, and complications were obtained from retrospective medical chart reviews. The TMP was examined three or more weeks after surgery. The treatment was repeated up to 4 times until complete TMP closure was achieved. RESULTS After mechanical disruption, the perforation size was Grade I, ≤1/3 of entire TM area in 22 ears (9.4 %), Grade II, 1/3-2/3 of entire TM in 77 ears (32.9 %) and Grade III, ≥2/3 of entire TM area in 135 ears (57.7 %). The overall TMP closure rates were 97.0 % (227/234). Complete TMP closure was achieved in 68.8 % (161/234), 22.6 % (53/234), 4.7 % (11/234) and 0.9 % (2/234) of ears after 1, 2, 3 and 4 treatments, respectively. In 7 of 234 ears (3.0 %), the TMPs were not closed completely after 4 treatments. There was no correlation between TMP size after mechanical disruption and number of treatments required to achieve complete closure (Fisher's exact test p = 0.70). The mean air-conduction hearing threshold at low frequency improved from 57.3 ± 16.7 dB before treatment to 37.3 ± 16.0 dB (p < 0.0001) after closure of TMPs. For middle and high frequencies, the improvement was 49.0 ± 19.3 dB to 36.9 ± 17.9 dB (p < 0.0001) and 57.7 ± 22.9 dB to 49.2 ± 23.3 dB (p < 0.0001), respectively. The mean air-bone gaps also improved significantly, and were within 10 dB at 250 Hz, 500 Hz and 1 kHz, and 11 dB at 2 kHz. One or more complications occurred in 32 patients (32/216; 14.8 %). The most common complication was formation of an epithelial pearl (16 ears; 6.8 %), followed by severe TM retraction (9 ears; 3.8 %) and otitis media with effusion (6 ears; 2.6 %). There were no serious complications that caused deterioration of the patient's general condition. CONCLUSION Our results showed that RT-TMP had high success rates for TMP closure and good hearing improvement and produced no severe complications that could affect general health status. This novel therapy is simple, safe and minimally invasive, and could help improve the quality of life in patients with TMP.
Collapse
Affiliation(s)
- Rie Kanai
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Shin-Ichi Kanemaru
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan.
| | - Tomoya Yamaguchi
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Shin-Ichiro Kita
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Toru Miwa
- Department of Otolaryngology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akiko Kumazawa
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Jun Okamoto
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Hospital, Kyoto, Japan
| | - Misaki Yoshida
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Hiroyuki Harada
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| | - Toshiki Maetani
- Department of Otolaryngology, Head & Neck Surgery, Medical Research Institute, Kitano Hospital, PIIF Tazuke-kofukai, 2-4-20 Ohgimachi, Kita-ku, Osaka, Japan
| |
Collapse
|
4
|
Marni R, Malla M, Chakraborty A, Malla R. Proteomic profiling and ROC analysis identify CD151 and ELAVL1 as potential therapy response markers for the antiviral drug in resistant TNBC. Life Sci 2023; 320:121534. [PMID: 36889667 DOI: 10.1016/j.lfs.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Triple-negative breast cancer is high heterogeneous, aggressive, and metastatic with poor prognosis. Despite of advances in targeted therapies, TNBC has been reported to cause high morbidity and mortality. A rare subpopulation within the tumor microenvironment organized into a hierarchy of cancer stem cells is responsible for therapy resistance and tumor recurrence. Repurposing of antiviral drugs for cancer treatment is gaining momentum due to reduced cost, labour, and research time, but limited due to lack of prognostic, and predictive markers. The present study investigates proteomic profiling and ROC analysis to identify CD151 and ELAVL1 as potential therapy response markers for the antiviral drug 2-thio-6-azauridine (TAU) in resistant TNBC. The stemness of MDA-MB 231 and MDA-MD 468 adherent cells was enriched by culturing them under non-adherent and non-differentiation conditions. Then, CD151+ subpopulation was isolated and characterized for the enrichment of stemness. This study found that CD151 has overexpressed in stemness enriched subpopulations, and also showed CD44 high and CD24 low expression along with stem cell-related transcription factors octamer-binding transcription factor 4 (OCT4) and Sex determining Y-box 2 (SOX2). This study also found that TAU induced significant cytotoxicity and genotoxicity in the CD151+TNBC subpopulation and inhibited their proliferation by inducing DNA damage, cell cycle arrest at the G2M phase, and apoptosis. Further, a proteomic profiling study showed that the expression of CD151 along with ELAVL1, an RNA-binding protein, was significantly reduced with TAU treatment. KM plotter showed correlation of CD151 and ELAVL1 gene expression with a poor prognosis of TNBC. ROC analysis predicted and validated CD151 and ELAVL1 as best therapy response marker for TAU in TNBC. These findings provide new insight into repurposing antiviral drug TAU for treatment of metastatic and drug resistant TNBC.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, A.P., India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to be University), Visakhapatnam 530045, A.P., India
| | | | - RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, A.P., India.
| |
Collapse
|
5
|
Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. Periodontol 2000 2022; 90:125-137. [PMID: 35913702 DOI: 10.1111/prd.12453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nolan M Kavanagh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trang V N Nguyen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine and Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William V Giannobile
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Assessment of Normal Tissue Radiosensitivity by Evaluating DNA Damage and Repair Kinetics in Human Brain Organoids. Int J Mol Sci 2021; 22:ijms222413195. [PMID: 34947991 PMCID: PMC8709464 DOI: 10.3390/ijms222413195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
DNA-double strand break (DSB), detected by immunostaining of key proteins orchestrating repair, like γH2AX and 53BP1, is well established as a surrogate for tissue radiosensitivity. We hypothesized that the generation of normal brain 3D organoids (“mini-brains”) from human induced pluripotent stem cells (hiPSC) combined with detection of DNA damage repair (DDR) may hold the promise towards developing personalized models for the determination of normal tissue radiosensitivity. In this study, cerebral organoids, an in vitro model that stands in its complexity between 2D cellular system and an organ, have been used. To quantify radiation-induced response, immunofluorescent staining with γH2AX and 53BP1 were applied at early (30 min, initial damage), and late time points (18 and 72 h, residual damage), following clinical standard 2 Gy irradiation. Based on our findings, assessment of DDR kinetics as a surrogate for radiosensitivity in hiPSC derived cerebral organoids is feasible. Further development of mini-brains recapitulating mature adult neuronal tissue and implementation of additional signaling and toxicity surrogates may pave the way towards development of next-generation personalized assessment of radiosensitivity in healthy neuronal tissue.
Collapse
|
7
|
Konkova M, Abramova M, Kalianov A, Ershova E, Dolgikh O, Umriukhin P, Izhevskaya V, Kutsev S, Veiko N, Kostyuk S. Mesenchymal Stem Cells Early Response to Low-Dose Ionizing Radiation. Front Cell Dev Biol 2021; 8:584497. [PMID: 33381502 PMCID: PMC7767887 DOI: 10.3389/fcell.2020.584497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are applied as the therapeutic agents, e.g., in the tumor radiation therapy. Purpose of the Study To evaluate the human adipose MSC early response to low-dose ionizing radiation (LDIR). Materials and Methods We investigated different LDIR (3, 10, and 50 cGy) effects on reactive oxygen species production, DNA oxidation (marker 8-oxodG), and DNA breaks (marker ɣ H2AX) in the two lines of human adipose MSC. Using reverse transcriptase-polymerase chain reaction, fluorescence-activated cell sorting, and fluorescence microscopy, we determined expression of genes involved in the oxidative stress development (NOX4), antioxidative response (NRF2), antiapoptotic and proapoptotic response (BCL2, BCL2A1, BCL2L1, BIRC2, BIRC3, and BAX1), in the development of the nuclear DNA damage response (DDR) (BRCA1, BRCA2, ATM, and P53). Cell cycle changes were investigated by genes transcription changes (CCND1, CDKN2A, and CDKN1A) and using proliferation markers KI-67 and proliferating cell nuclear antigen (PCNA). Results Fifteen to 120 min after exposure to LDIR in MSCs, transient oxidative stress and apoptosis of the most damaged cells against the background of the cell cycle arrest were induced. Simultaneously, DDR and an antiapoptotic response were found in other cells of the population. The 10-cGy dose causes the strongest and fastest DDR following cell nuclei DNA damage. The 3-cGy dose induces a less noticeable and prolonged response. The maximal low range dose, 50 cGy, causes a damaging effect on the MSCs. Conclusion Transient oxidative stress and the death of a small fraction of the damaged cells are essential components of the MSC population response to LDIR along with the development of DDR and antiapoptotic response. A scheme describing the early MSC response to LDIR is proposed.
Collapse
Affiliation(s)
- Marina Konkova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Margarita Abramova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Andrey Kalianov
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Elizaveta Ershova
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia
| | - Olga Dolgikh
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Pavel Umriukhin
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia.,P.K. Anokhin Institute of Normal Physiology, Moscow, Russia
| | - Vera Izhevskaya
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Sergey Kutsev
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Natalia Veiko
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia
| | - Svetlana Kostyuk
- Department of Molecular Biology, Research Centre for Medical Genetics, Moscow, Russia.,I.M. Sechenov First Moscow State Medical University, Department of Normal Physiology, Moscow, Russia
| |
Collapse
|
8
|
Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp Ther Med 2020; 20:2923-2940. [PMID: 32855658 PMCID: PMC7444376 DOI: 10.3892/etm.2020.9073] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells primarily rely on proteins to perform the majority of their physiological functions, and the function of proteins is regulated by post-translational modifications (PTMs). The acetylation of proteins is a dynamic and highly specific PTM, which has an important influence on the functions of proteins, such as gene transcription and signal transduction. The acetylation of proteins is primarily dependent on lysine acetyltransferases and lysine deacetylases. In recent years, due to the widespread use of mass spectrometry and the emergence of new technologies, such as protein chips, studies on protein acetylation have been further developed. Compared with histone acetylation, acetylation of non-histone proteins has gradually become the focus of research due to its important regulatory mechanisms and wide range of applications. The discovery of specific protein acetylation sites using bioinformatic tools can greatly aid the understanding of the underlying mechanisms of protein acetylation involved in related physiological and pathological processes.
Collapse
Affiliation(s)
- Can Xia
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Tao
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Mingshan Li
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jing Qu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
9
|
Yuan YG, Wang JL, Mesalam A, Li L, Choi YJ, Talimur Reza AMM, Zhou D, Chen L, Qian C. Nicotinamide-induced mouse embryo developmental defect rescued by resveratrol and I-CBP112. Mol Reprod Dev 2020; 87:1009-1017. [PMID: 32818292 DOI: 10.1002/mrd.23405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Cell cycle of mouse embryo could be delayed by nicotinamide (NAM). Histone H3 lysine 56 (H3K56ac) acetylation plays an important role in mammalian genomic stability and the function of this modification in mouse embryos is not known. Hence, we designed to study the effects of NAM-induced oxidative stress on the developmental ability of mouse embryos, on the acetylation of H3K56ac and the possible functions of this modification related to mouse embryo development. Treatment with NAM (10, 20, or 40 mmol/L for 24 or 48 hr) during in vitro culture significantly decreased developmental rate of blastocyst (24 hr: 90.2 vs. 81.2, 43.2, and 18.2, with p > .05, p < .01, respectively; 48 hr: 89.3 vs. 53.2%, 12.1%, and 0% with p < .05, respectively). NAM treatment (20 mmol/L) for 6 and 31 hr resulted in increased intracellular reactive oxygen species levels in two-cell embryos, and apoptotic cell numbers in blastocysts. Resveratrol (RSV) and I-CBP112 rescued the 20 mmol/L NAM-induced embryo developmental defects. RSV and I-CBP112 increased the level of Sirt1 and decreased the level of H3K56ac induced by NAM in two-cell embryos (p < .05). These data suggest that NAM treatment decreases the expression of Sirt1, which induces high levels of H3K56 acetylation that may be involved in oxidative stress-induced mouse embryo defects, which can be rescued by RSV and I-CBP112.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses/Jiangsu Key Laboratory of Zoonosis/Jiangsu Key Laboratory of Animal genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jia-Lin Wang
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ayman Mesalam
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ling Li
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yun-Jung Choi
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Abu Musa Md Talimur Reza
- Division of Bioinformatics, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Dongjie Zhou
- Department of Stem cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Li Chen
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Qian
- Department of Theriogenology, College of Veterinary Medicine/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
10
|
Radiation Response of Murine Embryonic Stem Cells. Cells 2020; 9:cells9071650. [PMID: 32660081 PMCID: PMC7408589 DOI: 10.3390/cells9071650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for viability determination after X-irradiation. Cell cycle progression was determined by flow cytometry of propidium iodide-stained cells, and DNA double strand break (DSB) induction and repair by γH2AX immunofluorescence. The radiosensitivity of mESCs was slightly higher compared to the murine osteoblast cell line OCT-1. The viability 72 h after X-irradiation decreased dose-dependently and was higher in the presence of leukemia inhibitory factor (LIF). Cells exposed to 2 or 7 Gy underwent a transient G2 arrest. X-irradiation induced γH2AX foci and they disappeared within 72 h. After 72 h of X-ray exposure, RNA was isolated and analyzed using genome-wide microarrays. The gene expression analysis revealed amongst others a regulation of developmental genes (Ada, Baz1a, Calcoco2, Htra1, Nefh, S100a6 and Rassf6), downregulation of genes involved in glycolysis and pyruvate metabolism whereas upregulation of genes related to the p53 signaling pathway. X-irradiated mESCs formed EBs and differentiated toward cardiomyocytes but their beating frequencies were lower compared to EBs from unirradiated cells. These results suggest that X-irradiation of mESCs deregulate genes related to the developmental process. The most significant biological processes found to be altered by X-irradiation in mESCs were the development of cardiovascular, nervous, circulatory and renal system. These results may explain the X-irradiation induced-embryonic lethality and malformations observed in animal studies.
Collapse
|
11
|
Kudo KI, Takabatake M, Nagata K, Nishimura Y, Daino K, Iizuka D, Nishimura M, Suzuki K, Kakinuma S, Imaoka T. Flow Cytometry Definition of Rat Mammary Epithelial Cell Populations and Their Distinct Radiation Responses. Radiat Res 2020; 194:22-37. [PMID: 32352870 DOI: 10.1667/rr15566.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/08/2020] [Indexed: 11/03/2022]
Abstract
Breast tissue is very susceptible to radiation-induced carcinogenesis, and mammary stem/progenitor cells are potentially important targets of this. The mammary epithelium is maintained as two mostly independent lineages of luminal and basal cells. To elucidate their immediate radiation responses, we analyzed the mammary glands of female Sprague-Dawley rats, a radiation carcinogenesis model, using colony formation, flow cytometry and immunofluorescence. The results revealed that flow cytometry successfully fractionates rat mammary cells into CD49fhi CD24lo basal, CD49fmed CD24hi luminal progenitor, and CD49flo CD24hi mature luminal populations, resembling human breast, rather than mouse tissues. The colony-forming ability of the basal cells was more radiosensitive than the luminal progenitor cells. Flow cytometry and immunofluorescence showed more efficient cell cycle arrest, γ-H2AX responses, and apoptosis in the irradiated luminal progenitor cells, than in the basal cells. These results provide important insights into the early phase of radiation-induced breast cancer.
Collapse
Affiliation(s)
- Ken-Ichi Kudo
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kento Nagata
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Ichioka Y, Asa'ad F, Malekzadeh BÖ, Westerlund A, Larsson L. Epigenetic changes of osteoblasts in response to titanium surface characteristics. J Biomed Mater Res A 2020; 109:170-180. [PMID: 32441439 DOI: 10.1002/jbm.a.37014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/06/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
We aimed to investigate the influence of titanium surface characteristics on epigenetic mechanisms and DNA damage/repair pathways. Osteoblast-like cells (MG63) were incubated on glass, smooth titanium, and minimally rough titanium discs, respectively, for 0, 1, 6, and 24 hr. The presence of double-stranded DNA damage (γH2AX), DNA repair (Chk2), and epigenetic markers (AcH3 & DNMT1) were investigated using immunofluorescence. There were no Chk2-positive cells on the minimally rough titanium surfaces at all-time points, in comparison to glass and smooth titanium. Total γH2AX-positive cells on minimally rough titanium gradually decreased as incubation time increased, on the contrary to smooth titanium. Minimally rough titanium surfaces induced cytoplasmic staining of DNMT1 up to 99% at 24 hr. For epigenetic markers related to the DNA damage/repair pathway, minimally rough titanium surfaces showed the lower percentage of AcH3-positive cells compared to glass and smooth titanium surface. The findings in the current study show that titanium surface characteristics indeed influence DNA damage and the DNA repair pathway, including epigenetic factors.
Collapse
Affiliation(s)
- Yuki Ichioka
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Farah Asa'ad
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | | | - Anna Westerlund
- Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lena Larsson
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
13
|
Lin Q, Wu L, Ma Z, Chowdhury FA, Mazumder HH, Du W. Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. JCI Insight 2020; 5:133365. [PMID: 32434992 DOI: 10.1172/jci.insight.133365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
NOD-like receptor 12 (NLRP12) is a member of the nucleotide-binding domain and leucine-rich repeat containing receptor inflammasome family that plays a central role in innate immunity. We previously showed that DNA damage upregulated NLRP12 in hematopoietic stem cells (HSCs) of mice deficient in the DNA repair gene Fanca. However, the role of NLRP12 in HSC maintenance is not known. Here, we show that persistent DNA damage-induced NLRP12 improves HSC function in both mouse and human models of DNA repair deficiency and aging. Specifically, treatment of Fanca-/- mice with the DNA cross-linker mitomycin C or ionizing radiation induces NLRP12 upregulation in phenotypic HSCs. NLRP12 expression is specifically induced by persistent DNA damage. Functionally, knockdown of NLRP12 exacerbates the repopulation defect of Fanca-/- HSCs. Persistent DNA damage-induced NLRP12 was also observed in the HSCs from aged mice, and depletion of NLRP12 in these aged HSCs compromised their self-renewal and hematopoietic recovery. Consistently, overexpression of NLRP12 substantially improved the long-term repopulating function of Fanca-/- and aged HSCs. Finally, persistent DNA damage-induced NLRP12 maintains the function of HSCs from patients with FA or aged donors. These results reveal a potentially novel role of NLRP12 in HSC maintenance and suggest that NLRP12 targeting has therapeutic potential in DNA repair disorders and aging.
Collapse
Affiliation(s)
- Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Habibul Hasan Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
14
|
X-ray irradiated cultures of mouse cortical neural stem/progenitor cells recover cell viability and proliferation with dose-dependent kinetics. Sci Rep 2020; 10:6562. [PMID: 32300147 PMCID: PMC7162981 DOI: 10.1038/s41598-020-63348-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Exposure of the developing or adult brain to ionizing radiation (IR) can cause cognitive impairment and/or brain cancer, by targeting neural stem/progenitor cells (NSPCs). IR effects on NSPCs include transient cell cycle arrest, permanent cell cycle exit/differentiation, or cell death, depending on the experimental conditions. In vivo studies suggest that brain age influences NSPC response to IR, but whether this is due to intrinsic NSPC changes or to niche environment modifications remains unclear. Here, we describe the dose-dependent, time-dependent effects of X-ray IR in NSPC cultures derived from the mouse foetal cerebral cortex. We show that, although cortical NSPCs are resistant to low/moderate IR doses, high level IR exposure causes cell death, accumulation of DNA double-strand breaks, activation of p53-related molecular pathways and cell cycle alterations. Irradiated NSPC cultures transiently upregulate differentiation markers, but recover control levels of proliferation, viability and gene expression in the second week post-irradiation. These results are consistent with previously described in vivo effects of IR in the developing mouse cortex, and distinct from those observed in adult NSPC niches or in vitro adult NSPC cultures, suggesting that intrinsic differences in NSPCs of different origins might determine, at least in part, their response to IR.
Collapse
|
15
|
Deng K, Feng W, Liu X, Su X, Zuo E, Du S, Huang Y, Shi D, Lu F. Anti-silencing factor 1A is associated with genome stability maintenance of mouse preimplantation embryos†. Biol Reprod 2020; 102:817-827. [PMID: 31916576 DOI: 10.1093/biolre/ioaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/07/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Genome stability is critical for the normal development of preimplantation embryos, as DNA damages may result in mutation and even embryo lethality. Anti-silencing factor 1A (ASF1A) is a histone chaperone and enriched in the MII oocytes as a maternal factor, which may be associated with the maintenance of genome stability. Thus, this study was undertaken to explore the role of ASF1A in maintaining the genome stability of early mouse embryos. The ASF1A expressed in the preimplantation embryos and displayed a dynamic pattern throughout the early embryonic development. Inhibition of ASF1A expression decreased embryonic development and increased DNA damages. Overexpression of ASF1A improved the developmental potential and decreased DNA damages. When 293T cells that had been integrated with RGS-NHEJ were co-transfected with plasmids of pcDNA3.1-ASF1A, gRNA-NHEJ, and hCas9, less cells expressed eGFP, indicating that non-homologous end joining was reduced by ASF1A. When 293T cells were co-transfected with plasmids of HR-donor, gRNA-HR, hCas9, and pcDNA3.1-ASF1A, more cells expressed eGFP, indicating that homologous recombination (HR) was enhanced by ASF1A. These results indicate that ASF1A may be associated with the genome stability maintenance of early mouse embryos and this action may be mediated by promoting DNA damage repair through HR pathway.
Collapse
Affiliation(s)
- Kai Deng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Wanyou Feng
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaohua Liu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Xiaoping Su
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shanshan Du
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Yongjun Huang
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Deshun Shi
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| | - Fenghua Lu
- Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China and
| |
Collapse
|
16
|
Polydatin and I-CBP112 protects early bovine embryo against nicotinamide-induced mitochondrial dysfunction. Theriogenology 2019; 134:1-10. [PMID: 31108431 DOI: 10.1016/j.theriogenology.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/27/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
The mammalian Sirtuin family of seven enzymes, members of the NAD+-dependent histone deacetylase family that modify histones via direct deacetylation, is involved in the regulation of many antioxidant and oxidative stresses. In the present study, we explored the effects of nicotinamide (NAM)-induced oxidative stress on the in vitro development of bovine embryos, on the acetylation of histone H3 lysine 56 (H3K56ac) and on expression of apoptosis-related genes. Treatment with NAM (10, 20 or 40 mM for 24, 48 or 196 h) during IVC resulted in significantly decreased blastocyst formation (24 h: 38.8 vs. 33.1, 27.3 and 10.2%, with P > 0.05, P < 0.05 and P < 0.01, respectively; 48 h: 37.5 vs. 28.2, 13.4 and 0%, with P < 0.05 and P < 0.01, respectively; 196 h: 35.8 vs. 23.4, 0 and 0%, with P < 0.05, respectively). Treatment with NAM (20 and 40 mM for 24 h) resulted in increased intracellular reactive oxygen species (ROS) levels in 2-cell and blastocysts, and apoptotic cell numbers in blastocysts and decreased mitochondrial membrane potential (ΔΨ) in 2-cell embryos (P < 0.05). Polydatin (PD) and I-CBP112 rescued the 20 mM NAM-induced embryo developmental defects and reduced ROS levels and apoptotic cell numbers in blastocysts (P < 0.05). The gene expression of NF-κB, COX2 and p53 was significantly increased in the NAM-treated group. Immunofluorescence analysis confirmed that the protein levels of nuclear factor-kappa B (NF-κB) decreased significantly after PD and I-CBP112 treatment compared with the control (P < 0.05). High level of H3K56ac induced by NAM was decreased after PD and I-CBP112 treatment (P < 0.05). These findings suggest that NAM treatment induces high levels of H3K56 acetylation that may be involved in oxidative stress-induced bovine developmental defects, which can be tolerated by PD and I-CBP112 treatment.
Collapse
|
17
|
Zhang Q, Bing Z, Tian J, Wang X, Liu R, Li Y, Kong Y, Yang Y. Integrating radiosensitive genes improves prediction of radiosensitivity or radioresistance in patients with oesophageal cancer. Oncol Lett 2019; 17:5377-5388. [PMID: 31186755 PMCID: PMC6507505 DOI: 10.3892/ol.2019.10240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/08/2019] [Indexed: 01/17/2023] Open
Abstract
Oesophageal cancer is a serious disease worldwide. In China, the incidence of esophageal cancer was reported to be ~478,000 in 2015. In the same year, the incidence of esophageal cancer in the United States was ~16,910. Radiotherapy serves as an important tool in the treatment of oesophageal cancer, and although radiation therapy has progressed over time, the prognosis of the majority of patients with oesophageal cancer remains poor. Additionally, the sensitivity of patients with oesophageal cancer to radiotherapy and chemotherapy is not yet clear. Although there are a number of studies on the radiosensitivity of oesophageal cancer cell lines, the vastly different results from different cell lines make them unreliable to use as a guide in clinical practice. Therefore, a common radiosensitive gene signature may provide more reliable results, and using different combinations of common gene signatures to predict the outcome of patients with oesophageal cancer may generate a unique gene signature in oesophageal cancer. In the present study, the radiosensitive index and prognostic index were calculated to predict clinical outcomes. The prognostic index of a 41-gene signature combination is the largest combination of gene signatures used for classifying oesophageal cancer patients into radiosensitive (RS) and radioresistance (RR) groups, to the best of our knowledge, and this gene signature was more effective in patients classified as having Stage III oesophageal cancer. Furthermore, four genes (carbonyl reductase 1, serine/threonine kinase PAK2, ras-related protein Rab 13 and twinfilin-1) may be sufficient to classify patients into either RS or RR. Subsequent to gene enrichment analysis, the cell communication pathway was significantly different between RS and RR groups in oesophageal cancer. These results may provide useful insights in improving radiotherapy strategies in clinical decisions.
Collapse
Affiliation(s)
- Qiuning Zhang
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, Gansu 730050, P.R. China.,Department of Computational Physics, Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University, Lanzhou, Gansu 730050, P.R. China.,Department of Computational Physics, Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, Gansu 730000, P.R. China
| | - Xiaohu Wang
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Ruifeng Liu
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| | - Yi Li
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yarong Kong
- Department of Radiation Oncology, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Yang
- The First Clinical Medical College of Lanzhou University, Gansu Provincial Cancer Hospital, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
18
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
19
|
Fabbrizi MR, Meyer B, Misri S, Raj S, Zobel CL, Hallahan DE, Sharma GG. Transient PP2A inhibition alleviates normal tissue stem cell susceptibility to cell death during radiotherapy. Cell Death Dis 2018; 9:492. [PMID: 29706648 PMCID: PMC5924762 DOI: 10.1038/s41419-018-0559-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022]
Abstract
Unintended outcomes of cancer therapy include ionizing radiation (IR)-induced stem cell depletion, diminished regenerative capacity, and accelerated aging. Stem cells exhibit attenuated DNA damage response (DDR) and are hypersensitive to IR, as compared to differentiated non-stem cells. We performed genomic discovery research to compare stem cells to differentiated cells, which revealed Phosphoprotein phosphatase 2A (PP2A) as a potential contributor to susceptibility in stem cells. PP2A dephosphorylates pATM, γH2AX, pAkt etc. and is believed to play dual role in regulating DDR and apoptosis. Although studied widely in cancer cells, the role of PP2A in normal stem cell radiosensitivity is unknown. Here we demonstrate that constitutively high expression and radiation induction of PP2A in stem cells plays a role in promoting susceptibility to irradiation. Transient inhibition of PP2A markedly restores DNA repair, inhibits apoptosis, and enhances survival of stem cells, without affecting differentiated non-stem and cancer cells. PP2Ai-mediated stem cell radioprotection was demonstrated in murine embryonic, adult neural, intestinal, and hematopoietic stem cells.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Barbara Meyer
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Sandeep Misri
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Suyash Raj
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Cheri L Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA
| | - Dennis E Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA.,Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Girdhar G Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO, 63108, USA. .,Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
| |
Collapse
|
20
|
Helena JM, Joubert AM, Grobbelaar S, Nolte EM, Nel M, Pepper MS, Coetzee M, Mercier AE. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes. Int J Mol Sci 2018; 19:E1148. [PMID: 29641431 PMCID: PMC5979424 DOI: 10.3390/ijms19041148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA) break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.
Collapse
Affiliation(s)
- Jolene Michelle Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Elsie Magdalena Nolte
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Marcel Nel
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Magdalena Coetzee
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
21
|
Hur W, Yoon SK. Molecular Pathogenesis of Radiation-Induced Cell Toxicity in Stem Cells. Int J Mol Sci 2017; 18:ijms18122749. [PMID: 29258244 PMCID: PMC5751348 DOI: 10.3390/ijms18122749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/16/2017] [Accepted: 12/17/2017] [Indexed: 12/26/2022] Open
Abstract
Radiation therapy is an effective cancer therapy, but damage to normal tissues surrounding the tumor due to radiotherapy causes severe complications. The importance of the therapeutic area between tumor suppression and normal tissue injury has long been highlighted in radiation therapy. Recent advances in stem cell biology have shown that stem cell (SC) responses to genotoxic stresses of ionizing radiation can improve the therapeutic effect of radiation by repairing damaged cells. In contrast, cancer stem cells (CSCs), a small subpopulation of cells within tumors, are generally resistant to chemotherapy and radiotherapy and cause tumor recurrence. Although the underlying mechanisms are not clearly understood in detail, efforts are still underway to identify SC treatment or CSC resistant pathogenesis of DNA damage agents such as radiation therapy. In response to radiation, CSCs differ from normal SCs in their biological properties due to severe deregulation of the self-renewal ability in CSCs. Differences of cleavage mode, cell cycle characteristics, replication potential, and activation/inactivation of DNA damage treatment and cancer-specific molecular pathways between normal SCs and CSCs confer a malignant phenotype upon CSCs. However, further studies are needed to identify normal SC and CSC-specific targets. In this review, we summarize the current advances in research regarding how normal SCs and CSCs respond to ionizing radiation, with a special emphasis on cell toxicity, radiosensitivity, signaling networks, DNA damage response (DDR) and DNA repair. In addition, we discuss strategies to develop new diagnostic and therapeutic techniques for predicting responses to cancer treatment and overcoming radiation-related toxicity.
Collapse
Affiliation(s)
- Wonhee Hur
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Seung Kew Yoon
- The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| |
Collapse
|
22
|
Larsson L, Pilipchuk SP, Giannobile WV, Castilho RM. When epigenetics meets bioengineering-A material characteristics and surface topography perspective. J Biomed Mater Res B Appl Biomater 2017; 106:2065-2071. [PMID: 28741893 DOI: 10.1002/jbm.b.33953] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/05/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022]
Abstract
The field of tissue engineering and regenerative medicine (TE/RM) involves regeneration of tissues and organs using implantable biomaterials. The term epigenetics refers to changes in gene expression that are not encoded in the DNA sequence, leading to remodeling of the chromatin and activation or inactivation of gene expression. Recently, studies have demonstrated that these modifications are influenced not only by biological cues but also by mechanical and topographical signals. This review highlights the current knowledge on emerging approaches in TE/RM with a focus on the effect of materials and topography on the epigenetic expression pattern in cells with potential impacts on modulating regenerative biology. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2065-2071, 2018.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Periodontology, Institute of Odontology, University of Gothenburg, Sweden
| | - Sophia P Pilipchuk
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.,Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| |
Collapse
|
23
|
Meyer B, Fabbrizi MR, Raj S, Zobel CL, Hallahan DE, Sharma GG. Histone H3 Lysine 9 Acetylation Obstructs ATM Activation and Promotes Ionizing Radiation Sensitivity in Normal Stem Cells. Stem Cell Reports 2016; 7:1013-1022. [PMID: 27974220 PMCID: PMC5161741 DOI: 10.1016/j.stemcr.2016.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/09/2023] Open
Abstract
Dynamic spatiotemporal modification of chromatin around DNA damage is vital for efficient DNA repair. Normal stem cells exhibit an attenuated DNA damage response (DDR), inefficient DNA repair, and high radiosensitivity. The impact of unique chromatin characteristics of stem cells in DDR regulation is not yet recognized. We demonstrate that murine embryonic stem cells (ES) display constitutively elevated acetylation of histone H3 lysine 9 (H3K9ac) and low H3K9 tri-methylation (H3K9me3). DNA damage-induced local deacetylation of H3K9 was abrogated in ES along with the subsequent H3K9me3. Depletion of H3K9ac in ES by suppression of monocytic leukemia zinc finger protein (MOZ) acetyltransferase improved ATM activation, DNA repair, diminished irradiation-induced apoptosis, and enhanced clonogenic survival. Simultaneous suppression of the H3K9 methyltransferase Suv39h1 abrogated the radioprotective effect of MOZ inhibition, suggesting that high H3K9ac promoted by MOZ in ES cells obstructs local upregulation of H3K9me3 and contributes to muted DDR and increased radiosensitivity.
Collapse
Affiliation(s)
- Barbara Meyer
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Suyash Raj
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Cheri L Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA
| | - Dennis E Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Girdhar G Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108, USA; Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|