1
|
Desbois M, Grill B. Molecular regulation of axon termination in mechanosensory neurons. Development 2024; 151:dev202945. [PMID: 39268828 PMCID: PMC11698068 DOI: 10.1242/dev.202945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Spatially and temporally accurate termination of axon outgrowth, a process called axon termination, is required for efficient, precise nervous system construction and wiring. The mechanosensory neurons that sense low-threshold mechanical stimulation or gentle touch have proven exceptionally valuable for studying axon termination over the past 40 years. In this Review, we discuss progress made in deciphering the molecular and genetic mechanisms that govern axon termination in touch receptor neurons. Findings across model organisms, including Caenorhabditis elegans, Drosophila, zebrafish and mice, have revealed that complex signaling is required for termination with conserved principles and players beginning to surface. A key emerging theme is that axon termination is mediated by complex signaling networks that include ubiquitin ligase signaling hubs, kinase cascades, transcription factors, guidance/adhesion receptors and growth factors. Here, we begin a discussion about how these signaling networks could represent termination codes that trigger cessation of axon outgrowth in different species and types of mechanosensory neurons.
Collapse
Affiliation(s)
- Muriel Desbois
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98101, USA
| |
Collapse
|
2
|
Lu YM, Yan S, Ti SC, Zheng C. Editing of endogenous tubulins reveals varying effects of tubulin posttranslational modifications on axonal growth and regeneration. eLife 2024; 13:RP94583. [PMID: 38949652 PMCID: PMC11216746 DOI: 10.7554/elife.94583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of β-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.
Collapse
Affiliation(s)
- Yu-Ming Lu
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| | - Shan Yan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Shih-Chieh Ti
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong KongHong KongChina
| | - Chaogu Zheng
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SARHong KongChina
| |
Collapse
|
3
|
Borbolis F, Kteniadaki M, Palikaras K. MEC-12/alpha tubulin regulates mitochondrial distribution and mitophagy during oxidative stress in C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001232. [PMID: 39011275 PMCID: PMC11247375 DOI: 10.17912/micropub.biology.001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
Mitophagy, the selective removal of dysfunctional mitochondria, is pivotal for the maintenance of neuronal function and survival. MEC-12/α-tubulin contributes to neuronal physiology through the regulation of microtubule assembly, intracellular transport and mitochondrial distribution. However, its role in mitochondrial dynamics and mitophagy remains obscure. Here, we demonstrate that MEC-12 influences mitochondrial morphology under basal conditions and regulates the axonal mitochondrial population. Impairment of MEC-12 results in compromised axonal mitophagy under both basal conditions and oxidative stress. Our results uncover the critical role of MEC-12/α-tubulin for maintaining a healthy mitochondrial population in axons and highlight the complex interplay between microtubules, mitophagy and neuronal health.
Collapse
Affiliation(s)
- Fivos Borbolis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Myrsini Kteniadaki
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Verbeeren J, Teixeira J, Garcia SMDA. The Muscleblind-like protein MBL-1 regulates microRNA expression in Caenorhabditis elegans through an evolutionarily conserved autoregulatory mechanism. PLoS Genet 2023; 19:e1011109. [PMID: 38134228 PMCID: PMC10773944 DOI: 10.1371/journal.pgen.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/08/2024] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The Muscleblind-like (MBNL) family is a highly conserved set of RNA-binding proteins (RBPs) that regulate RNA metabolism during the differentiation of various animal tissues. Functional insufficiency of MBNL affects muscle and central nervous system development, and contributes to the myotonic dystrophies (DM), a set of incurable multisystemic disorders. Studies on the regulation of MBNL genes are essential to provide insight into the gene regulatory networks controlled by MBNL proteins and to understand how dysregulation within these networks causes disease. In this study, we demonstrate the evolutionary conservation of an autoregulatory mechanism that governs the function of MBNL proteins by generating two distinct protein isoform types through alternative splicing. Our aim was to further our understanding of the regulatory principles that underlie this conserved feedback loop in a whole-organismal context, and to address the biological significance of the respective isoforms. Using an alternative splicing reporter, our studies show that, during development of the Caenorhabditis elegans central nervous system, the orthologous mbl-1 gene shifts production from long protein isoforms that localize to the nucleus to short isoforms that also localize to the cytoplasm. Using isoform-specific CRISPR/Cas9-generated strains, we showed that expression of short MBL-1 protein isoforms is required for healthy neuromuscular function and neurodevelopment, while expression of long MBL-1 protein isoforms is dispensable, emphasizing a key role for cytoplasmic functionalities of the MBL-1 protein. Furthermore, RNA-seq and lifespan analyses indicated that short MBL-1 isoforms are crucial regulators of miRNA expression and, in consequence, required for normal lifespan. In conclusion, this study provides support for the disruption of cytoplasmic RNA metabolism as a contributor in myotonic dystrophy and paves the way for further exploration of miRNA regulation through MBNL proteins during development and in disease models.
Collapse
Affiliation(s)
- Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Joana Teixeira
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
5
|
Puri D, Barry BJ, Engle EC. TUBB3 and KIF21A in neurodevelopment and disease. Front Neurosci 2023; 17:1226181. [PMID: 37600020 PMCID: PMC10436312 DOI: 10.3389/fnins.2023.1226181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neuronal migration and axon growth and guidance require precise control of microtubule dynamics and microtubule-based cargo transport. TUBB3 encodes the neuronal-specific β-tubulin isotype III, TUBB3, a component of neuronal microtubules expressed throughout the life of central and peripheral neurons. Human pathogenic TUBB3 missense variants result in altered TUBB3 function and cause errors either in the growth and guidance of cranial and, to a lesser extent, central axons, or in cortical neuronal migration and organization, and rarely in both. Moreover, human pathogenic missense variants in KIF21A, which encodes an anterograde kinesin motor protein that interacts directly with microtubules, alter KIF21A function and cause errors in cranial axon growth and guidance that can phenocopy TUBB3 variants. Here, we review reported TUBB3 and KIF21A variants, resulting phenotypes, and corresponding functional studies of both wildtype and mutant proteins. We summarize the evidence that, in vitro and in mouse models, loss-of-function and missense variants can alter microtubule dynamics and microtubule-kinesin interactions. Lastly, we highlight additional studies that might contribute to our understanding of the relationship between specific tubulin isotypes and specific kinesin motor proteins in health and disease.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, United States
- Howard Hughes Medical Institute, Chevy Chase, MD, United States
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Puri D, Sharma S, Samaddar S, Ravivarma S, Banerjee S, Ghosh-Roy A. Muscleblind-1 interacts with tubulin mRNAs to regulate the microtubule cytoskeleton in C. elegans mechanosensory neurons. PLoS Genet 2023; 19:e1010885. [PMID: 37603562 PMCID: PMC10470942 DOI: 10.1371/journal.pgen.1010885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Regulation of the microtubule cytoskeleton is crucial for the development and maintenance of neuronal architecture, and recent studies have highlighted the significance of regulated RNA processing in the establishment and maintenance of neural circuits. In a genetic screen conducted using mechanosensory neurons of C. elegans, we identified a mutation in muscleblind-1/mbl-1 as a suppressor of loss of kinesin-13 family microtubule destabilizing factor klp-7. Muscleblind-1(MBL-1) is an RNA-binding protein that regulates the splicing, localization, and stability of RNA. Our findings demonstrate that mbl-1 is required cell-autonomously for axon growth and proper synapse positioning in the posterior lateral microtubule (PLM) neuron. Loss of mbl-1 leads to increased microtubule dynamics and mixed orientation of microtubules in the anterior neurite of PLM. These defects are also accompanied by abnormal axonal transport of the synaptic protein RAB-3 and reduction of gentle touch sensation in mbl-1 mutant. Our data also revealed that mbl-1 is genetically epistatic to mec-7 (β tubulin) and mec-12 (α tubulin) in regulating axon growth. Furthermore, mbl-1 is epistatic to sad-1, an ortholog of BRSK/Brain specific-serine/threonine kinase and a known regulator of synaptic machinery, for synapse formation at the correct location of the PLM neurite. Notably, the immunoprecipitation of MBL-1 resulted in the co-purification of mec-7, mec-12, and sad-1 mRNAs, suggesting a direct interaction between MBL-1 and these transcripts. Additionally, mbl-1 mutants exhibited reduced levels and stability of mec-7 and mec-12 transcripts. Our study establishes a previously unknown link between RNA-binding proteins and cytoskeletal machinery, highlighting their crucial roles in the development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Dharmendra Puri
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sunanda Sharma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sarbani Samaddar
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sruthy Ravivarma
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Sourav Banerjee
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | | |
Collapse
|
7
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
8
|
Pinho-Correia LM, Prokop A. Maintaining essential microtubule bundles in meter-long axons: a role for local tubulin biogenesis? Brain Res Bull 2023; 193:131-145. [PMID: 36535305 DOI: 10.1016/j.brainresbull.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Axons are the narrow, up-to-meter long cellular processes of neurons that form the biological cables wiring our nervous system. Most axons must survive for an organism's lifetime, i.e. up to a century in humans. Axonal maintenance depends on loose bundles of microtubules that run without interruption all along axons. The continued turn-over and the extension of microtubule bundles during developmental, regenerative or plastic growth requires the availability of α/β-tubulin heterodimers up to a meter away from the cell body. The underlying regulation in axons is poorly understood and hardly features in past and contemporary research. Here we discuss potential mechanisms, particularly focussing on the possibility of local tubulin biogenesis in axons. Current knowledge might suggest that local translation of tubulin takes place in axons, but far less is known about the post-translational machinery of tubulin biogenesis involving three chaperone complexes: prefoldin, CCT and TBC. We discuss functional understanding of these chaperones from a range of model organisms including yeast, plants, flies and mice, and explain what is known from human diseases. Microtubules across species depend on these chaperones, and they are clearly required in the nervous system. However, most chaperones display a high degree of functional pleiotropy, partly through independent functions of individual subunits outside their complexes, thus posing a challenge to experimental studies. Notably, we found hardly any studies that investigate their presence and function particularly in axons, thus highlighting an important gap in our understanding of axon biology and pathology.
Collapse
Affiliation(s)
- Liliana Maria Pinho-Correia
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
| | - Andreas Prokop
- The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK.
| |
Collapse
|
9
|
Falconieri A, De Vincentiis S, Cappello V, Convertino D, Das R, Ghignoli S, Figoli S, Luin S, Català-Castro F, Marchetti L, Borello U, Krieg M, Raffa V. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Rep 2022; 42:111912. [PMID: 36640304 PMCID: PMC9902337 DOI: 10.1016/j.celrep.2022.111912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is crucial in guiding axon outgrowth before and after synapse formation. This process is referred to as "stretch growth." However, how neurons transduce mechanical input into signaling pathways remains poorly understood. Another open question is how stretch growth is coupled in time with the intercalated addition of new mass along the entire axon. Here, we demonstrate that active mechanical force generated by magnetic nano-pulling induces remodeling of the axonal cytoskeleton. Specifically, the increase in the axonal density of microtubules induced by nano-pulling leads to an accumulation of organelles and signaling vesicles, which, in turn, promotes local translation by increasing the probability of assembly of the "translation factories." Modulation of axonal transport and local translation sustains enhanced axon outgrowth and synapse maturation.
Collapse
Affiliation(s)
| | - Sara De Vincentiis
- Department of Biology, Università di Pisa, 56127 Pisa, Italy,The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Ravi Das
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | | | - Sofia Figoli
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Stefano Luin
- National Enterprise for NanoScience and NanoTechnology (NEST) Laboratory, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Frederic Català-Castro
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy,Department of Pharmacy, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Michael Krieg
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy.
| |
Collapse
|
10
|
O'Hagan R, Avrutis A, Ramicevic E. Functions of the tubulin code in the C. elegans nervous system. Mol Cell Neurosci 2022; 123:103790. [PMID: 36368428 DOI: 10.1016/j.mcn.2022.103790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Due to their elongated and polarized morphology, neurons rely on the microtubule (MT) cytoskeleton for their shape, as well as for efficient intracellular transport that maintains neuronal function, survival, and connectivity. Although all MTs are constructed from α- and β-tubulins that are highly conserved throughout eukaryotes, different MT networks within neurons exhibit different dynamics and functions. For example, molecular motors must be able to differentially recognize the axonal and dendritic MTs to deliver appropriate cargos to sensory endings and synaptic regions. The Tubulin Code hypothesis proposes that MTs can be specialized in form and function by chemical differences in their composition by inclusion of different α- and β-tubulins into the MT lattice, as well as differences in post-translational enzymatic modifications. The chemical differences encode information that allow MTs to regulate interactions with various microtubule-based molecular motors such as kinesins and dyneins as well as with structural microtubule-associated proteins (MAPs), which can, in turn, modify the function or stability of MTs. Here, we review studies involving C. elegans, a model organism with a relatively simple nervous system that is amenable to genetic analysis, that have contributed to our understanding of how the Tubulin Code can specialize neuronal MT networks to establish differences in neuronal morphology and function. Such studies have revealed molecules and mechanisms that are conserved in vertebrates and have the potential to inform our understanding of neurological diseases involving defects in the cytoskeleton and intracellular transport.
Collapse
Affiliation(s)
- Robert O'Hagan
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America.
| | - Alexandra Avrutis
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| | - Ema Ramicevic
- formerly at Biology Dept., Montclair State University, Montclair, NJ 07043, United States of America
| |
Collapse
|
11
|
Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Sci Rep 2022; 12:14003. [PMID: 35977998 PMCID: PMC9385713 DOI: 10.1038/s41598-022-18333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Microtubules are fundamental elements of neuronal structure and function. They are dynamic structures formed from protofilament chains of α- and β-tubulin heterodimers. Acetylation of the lysine 40 (K40) residue of α-tubulin protects microtubules from mechanical stresses by imparting structural elasticity. The enzyme responsible for this acetylation event is MEC-17/αTAT1. Despite its functional importance, however, the consequences of altered MEC-17/αTAT1 levels on neuronal structure and function are incompletely defined. Here we demonstrate that overexpression or loss of MEC-17, or of its functional paralogue ATAT-2, causes a delay in synaptic branch extension, and defective synaptogenesis in the mechanosensory neurons of Caenorhabditis elegans. Strikingly, by adulthood, the synaptic branches in these animals are lost, while the main axon shaft remains mostly intact. We show that MEC-17 and ATAT-2 regulate the stability of the synaptic branches largely independently from their acetyltransferase domains. Genetic analyses reveals novel interactions between both mec-17 and atat-2 with the focal adhesion gene zyx-1/Zyxin, which has previously been implicated in actin remodelling. Together, our results reveal new, acetylation-independent roles for MEC-17 and ATAT-2 in the development and maintenance of neuronal architecture.
Collapse
|
12
|
Abstract
The microtubule cytoskeleton is assembled from the α- and β-tubulin subunits of the canonical tubulin heterodimer, which polymerizes into microtubules, and a small number of other family members, such as γ-tubulin, with specialized functions. Overall, microtubule function involves the collective action of multiple α- and β-tubulin isotypes. However, despite 40 years of awareness that most eukaryotes harbor multiple tubulin isotypes, their role in the microtubule cytoskeleton has remained relatively unclear. Various model organisms offer specific advantages for gaining insight into the role of tubulin isotypes. Whereas simple unicellular organisms such as yeast provide experimental tractability that can facilitate deeper access to mechanistic details, more complex organisms, such as the fruit fly, nematode and mouse, can be used to discern potential specialized functions of tissue- and structure-specific isotypes. Here, we review the role of α- and β-tubulin isotypes in microtubule function and in associated tubulinopathies with an emphasis on the advances gained using model organisms. Overall, we argue that studying tubulin isotypes in a range of organisms can reveal the fundamental mechanisms by which they mediate microtubule function. It will also provide valuable perspectives on how these mechanisms underlie the functional and biological diversity of the cytoskeleton.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
Lu YM, Zheng C. The Expression and Function of Tubulin Isotypes in Caenorhabditis elegans. Front Cell Dev Biol 2022; 10:860065. [PMID: 35399537 PMCID: PMC8987236 DOI: 10.3389/fcell.2022.860065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules, made from the polymerization of the highly conserved α/β-tubulin heterodimers, serve as important components of the cytoskeleton in all eukaryotic cells. The existence of multiple tubulin isotypes in metazoan genomes and a dazzling variety of tubulin posttranslational modifications (PTMs) prompted the “tubulin code” hypothesis, which proposed that microtubule structure and functions are determined by the tubulin composition and PTMs. Evidence for the tubulin code has emerged from studies in several organisms with the characterization of specific tubulins for their expression and functions. The studies of tubulin PTMs are accelerated by the discovery of the enzymes that add or remove the PTMs. In tubulin research, the use of simple organisms, such as Caenorhabditis elegans, has been instrumental for understanding the expression and functional specialization of tubulin isotypes and the effects of their PTMs. In this review, we summarize the current understanding of the expression patterns and cellular functions of the nine α-tubulin and six β-tubulin isotypes. Expression studies are greatly facilitated by the CRISPR/Cas9-mediated endogenous GFP knock-in reporters and the organism-wide single cell transcriptomic studies. Meanwhile, functional studies benefit from the ease of genetic manipulation and precise gene replacement in C. elegans. These studies identified both ubiquitously expressed tubulin isotypes and tissue-specific isotypes. The isotypes showed functional redundancy, as well as functional specificity, which is likely caused by the subtle differences in their amino acid sequences. Many of these differences concentrate at the C-terminal tails that are subjected to several PTMs. Indeed, tubulin PTM, such as polyglutamylation, is shown to modulate microtubule organization and properties in both ciliated and non-ciliated neurons. Overall, studies from C. elegans support the distinct expression and function patterns of tubulin isotypes and the importance of their PTMs and offer the promise of cracking the tubulin code at the whole-genome and the whole-organism level.
Collapse
|
14
|
Krajka V, Vulinovic F, Genova M, Tanzer K, Jijumon AS, Bodakuntla S, Tennstedt S, Mueller-Fielitz H, Meier B, Janke C, Klein C, Rakovic A. H-ABC- and dystonia-causing TUBB4A mutations show distinct pathogenic effects. SCIENCE ADVANCES 2022; 8:eabj9229. [PMID: 35275727 PMCID: PMC8916731 DOI: 10.1126/sciadv.abj9229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mutations in the brain-specific β-tubulin 4A (TUBB4A) gene cause a broad spectrum of diseases, ranging from dystonia (DYT-TUBB4A) to hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Currently, the mechanisms of how TUBB4A variants lead to this pleiotropic manifestation remain elusive. Here, we investigated whether TUBB4A mutations causing either DYT-TUBB4A (p.R2G and p.Q424H) or H-ABC (p.R2W and p.D249N) exhibit differential effects at the molecular and cellular levels. Using live-cell imaging of disease-relevant oligodendrocytes and total internal reflection fluorescence microscopy of whole-cell lysates, we observed divergent impact on microtubule polymerization and microtubule integration, partially reflecting the observed pleiotropy. Moreover, in silico simulations demonstrated that the mutants rarely adopted a straight heterodimer conformation in contrast to wild type. In conclusion, for most of the examined variants, we deciphered potential molecular disease mechanisms that may lead to the diverse clinical manifestations and phenotype severity across and within each TUBB4A-related disease.
Collapse
Affiliation(s)
- Victor Krajka
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Braunschweig 38124, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Kerstin Tanzer
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - A. S. Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
15
|
Nsamba ET, Bera A, Costanzo M, Boone C, Gupta ML. Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis. J Cell Biol 2021; 220:212745. [PMID: 34739032 PMCID: PMC8576917 DOI: 10.1083/jcb.202010155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023] Open
Abstract
Microtubules are dynamic cytoskeleton filaments that are essential for a wide range of cellular processes. They are polymerized from tubulin, a heterodimer of α- and β-subunits. Most eukaryotic organisms express multiple isotypes of α- and β-tubulin, yet their functional relevance in any organism remains largely obscure. The two α-tubulin isotypes in budding yeast, Tub1 and Tub3, are proposed to be functionally interchangeable, yet their individual functions have not been rigorously interrogated. Here, we develop otherwise isogenic yeast strains expressing single tubulin isotypes at levels comparable to total tubulin in WT cells. Using genome-wide screening, we uncover unique interactions between the isotypes and the two major mitotic spindle positioning mechanisms. We further exploit these cells to demonstrate that Tub1 and Tub3 optimize spindle positioning by differentially recruiting key components of the Dyn1- and Kar9-dependent mechanisms, respectively. Our results provide novel mechanistic insights into how tubulin isotypes allow highly conserved microtubules to function in diverse cellular processes.
Collapse
Affiliation(s)
- Emmanuel T Nsamba
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| | - Abesh Bera
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| | - Michael Costanzo
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences, Saitama, Japan
| | - Mohan L Gupta
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA
| |
Collapse
|
16
|
Nishida K, Tsuchiya K, Obinata H, Onodera S, Honda Y, Lai YC, Haruta N, Sugimoto A. Expression Patterns and Levels of All Tubulin Isotypes Analyzed in GFP Knock-In C. elegans Strains. Cell Struct Funct 2021; 46:51-64. [PMID: 33967119 PMCID: PMC10511039 DOI: 10.1247/csf.21022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022] Open
Abstract
Most organisms have multiple α- and β-tubulin isotypes that likely contribute to the diversity of microtubule (MT) functions. To understand the functional differences of tubulin isotypes in Caenorhabditis elegans, which has nine α-tubulin isotypes and six β-tubulin isotypes, we systematically constructed null mutants and GFP-fusion strains for all tubulin isotypes with the CRISPR/Cas9 system and analyzed their expression patterns and levels in adult hermaphrodites. Four isotypes-α-tubulins TBA-1 and TBA-2 and β-tubulins TBB-1 and TBB-2-were expressed in virtually all tissues, with a distinct tissue-specific spectrum. Other isotypes were expressed in specific tissues or cell types at significantly lower levels than the broadly expressed isotypes. Four isotypes (TBA-5, TBA-6, TBA-9, and TBB-4) were expressed in different subsets of ciliated sensory neurons, and TBB-4 was inefficiently incorporated into mitotic spindle MTs. Taken together, we propose that MTs in C. elegans are mainly composed of four broadly expressed tubulin isotypes and that incorporation of a small amount of tissue-specific isotypes may contribute to tissue-specific MT properties. These newly constructed strains will be useful for further elucidating the distinct roles of tubulin isotypes.Key words: tubulin isotypes, microtubules, C. elegans.
Collapse
Affiliation(s)
- Kei Nishida
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Kenta Tsuchiya
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyuki Obinata
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Shizuka Onodera
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yu Honda
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yen-Cheng Lai
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nami Haruta
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
17
|
Puri D, Ponniah K, Biswas K, Basu A, Dey S, Lundquist EA, Ghosh-Roy A. Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. J Cell Biol 2021; 220:212396. [PMID: 34137792 DOI: 10.1083/jcb.202005080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Keerthana Ponniah
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kasturi Biswas
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
18
|
Affiliation(s)
- Yu-Ming Lu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
19
|
Lee HMT, Sayegh NY, Gayek AS, Jao SLJ, Chalfie M, Zheng C. Epistatic, synthetic, and balancing interactions among tubulin missense mutations affecting neurite growth in Caenorhabditis elegans. Mol Biol Cell 2020; 32:331-347. [PMID: 33378215 PMCID: PMC8098816 DOI: 10.1091/mbc.e20-07-0492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in tubulins affect microtubule (MT) dynamics and functions during neuronal differentiation and their genetic interaction provides insights into the regulation of MT functions. We previously used Caenorhabditis elegans touch receptor neurons to analyze the cellular impact of tubulin mutations and reported the phenotypes of 67 tubulin missense mutations, categorized into three classes: loss-of-function (lf), antimorphic (anti), and neomorphic (neo) alleles. In this study, we isolated 54 additional tubulin alleles through suppressor screens in sensitized backgrounds that caused excessive neurite growth. These alleles included 32 missense mutations not analyzed before, bringing the total number of mutations in our collection to 99. Phenotypic characterization of these newly isolated mutations identified three new types of alleles: partial lf and weak neo alleles of mec-7/β-tubulin that had subtle effects and strong anti alleles of mec-12/α-tubulin. We also discovered complex genetic interactions among the tubulin mutations, including the suppression of neo mutations by intragenic lf and anti alleles, additive and synthetic effects between mec-7 neo alleles, and unexpected epistasis, in which weaker neo alleles masked the effects of stronger neo alleles in inducing ectopic neurite growth. We also observed balancing between neo and anti alleles, whose respective MT-hyperstablizing and -destabilizing effects neutralized each other.
Collapse
Affiliation(s)
- Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - A Sophia Gayek
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Zheng C, Atlas E, Lee HMT, Jao SLJ, Nguyen KCQ, Hall DH, Chalfie M. Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in Caenorhabditis elegans. Development 2020; 147:dev189886. [PMID: 32467239 PMCID: PMC7328132 DOI: 10.1242/dev.189886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023]
Abstract
Molecular chaperones often work collaboratively with the ubiquitylation-proteasome system (UPS) to facilitate the degradation of misfolded proteins, which typically safeguards cellular differentiation and protects cells from stress. In this study, however, we report that the Hsp70/Hsp90 chaperone machinery and an F-box protein, MEC-15, have opposing effects on neuronal differentiation, and that the chaperones negatively regulate neuronal morphogenesis and functions. Using the touch receptor neurons (TRNs) of Caenorhabditis elegans, we find that mec-15(-) mutants display defects in microtubule formation, neurite growth, synaptic development and neuronal functions, and that these defects can be rescued by the loss of Hsp70/Hsp90 chaperones and co-chaperones. MEC-15 probably functions in a Skp-, Cullin- and F-box- containing complex to degrade DLK-1, which is an Hsp90 client protein stabilized by the chaperones. The abundance of DLK-1, and likely other Hsp90 substrates, is fine-tuned by the antagonism between MEC-15 and the chaperones; this antagonism regulates TRN development, as well as synaptic functions of GABAergic motor neurons. Therefore, a balance between the UPS and the chaperones tightly controls neuronal differentiation.
Collapse
Affiliation(s)
- Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Emily Atlas
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | | | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Martin Chalfie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
21
|
How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli. Genetics 2019; 212:25-51. [PMID: 31053616 PMCID: PMC6499529 DOI: 10.1534/genetics.118.300241] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022] Open
Abstract
Caenorhabditis elegans lives in a complex habitat in which they routinely experience large fluctuations in temperature, and encounter physical obstacles that vary in size and composition. Their habitat is shared by other nematodes, by beneficial and harmful bacteria, and nematode-trapping fungi. Not surprisingly, these nematodes can detect and discriminate among diverse environmental cues, and exhibit sensory-evoked behaviors that are readily quantifiable in the laboratory at high resolution. Their ability to perform these behaviors depends on <100 sensory neurons, and this compact sensory nervous system together with powerful molecular genetic tools has allowed individual neuron types to be linked to specific sensory responses. Here, we describe the sensory neurons and molecules that enable C. elegans to sense and respond to physical stimuli. We focus primarily on the pathways that allow sensation of mechanical and thermal stimuli, and briefly consider this animal’s ability to sense magnetic and electrical fields, light, and relative humidity. As the study of sensory transduction is critically dependent upon the techniques for stimulus delivery, we also include a section on appropriate laboratory methods for such studies. This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies. We also describe the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues. These studies have shown that the protein partners that form mechanotransduction channels are drawn from multiple superfamilies of ion channel proteins, and that signal transduction pathways responsible for temperature sensing in C. elegans share many features with those responsible for phototransduction in vertebrates.
Collapse
|
22
|
Hebebrand M, Hüffmeier U, Trollmann R, Hehr U, Uebe S, Ekici AB, Kraus C, Krumbiegel M, Reis A, Thiel CT, Popp B. The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet J Rare Dis 2019; 14:38. [PMID: 30744660 PMCID: PMC6371496 DOI: 10.1186/s13023-019-1020-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TUBA1A-associated tubulinopathy is clinically heterogeneous with brain malformations, microcephaly, developmental delay and epilepsy being the main clinical features. It is an autosomal dominant disorder mostly caused by de novo variants in TUBA1A. RESULTS In three individuals with developmental delay we identified heterozygous de novo missense variants in TUBA1A using exome sequencing. While the c.1307G > A, p.(Gly436Asp) variant was novel, the two variants c.518C > T, p.(Pro173Leu) and c.641G > A, p.(Arg214His) were previously described. We compared the variable phenotype observed in these individuals with a carefully conducted review of the current literature and identified 166 individuals, 146 born and 20 fetuses with a TUBA1A variant. In 107 cases with available clinical information we standardized the reported phenotypes according to the Human Phenotype Ontology. The most commonly reported features were developmental delay (98%), anomalies of the corpus callosum (96%), microcephaly (76%) and lissencephaly (agyria-pachygyria) (70%), although reporting was incomplete in the different studies. We identified a total of 121 specific variants, including 15 recurrent ones. Missense variants cluster in the C-terminal region around the most commonly affected amino acid position Arg402 (13.3%). In a three-dimensional protein model, 38.6% of all disease-causing variants including those in the C-terminal region are predicted to affect the binding of microtubule-associated proteins or motor proteins. Genotype-phenotype analysis for recurrent variants showed an overrepresentation of certain clinical features. However, individuals with these variants are often reported in the same publication. CONCLUSIONS With 166 individuals, we present the most comprehensive phenotypic and genotypic standardized synopsis for clinical interpretation of TUBA1A variants. Despite this considerable number, a detailed genotype-phenotype characterization is limited by large inter-study variability in reporting.
Collapse
Affiliation(s)
- Moritz Hebebrand
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Ulrike Hüffmeier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division of Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ute Hehr
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany.
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schwabachanlage 10, 91054, Erlangen, Germany
| |
Collapse
|
23
|
Kim KW, Tang NH, Piggott CA, Andrusiak MG, Park S, Zhu M, Kurup N, Cherra SJ, Wu Z, Chisholm AD, Jin Y. Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD + in axon regeneration. eLife 2018; 7:39756. [PMID: 30461420 PMCID: PMC6281318 DOI: 10.7554/elife.39756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.
Collapse
Affiliation(s)
- Kyung Won Kim
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Christopher A Piggott
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Matthew G Andrusiak
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Seungmee Park
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Ming Zhu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Naina Kurup
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Zilu Wu
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Andrew D Chisholm
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla, United States
| |
Collapse
|
24
|
Gujar MR, Sundararajan L, Stricker A, Lundquist EA. Control of Growth Cone Polarity, Microtubule Accumulation, and Protrusion by UNC-6/Netrin and Its Receptors in Caenorhabditis elegans. Genetics 2018; 210:235-255. [PMID: 30045855 PMCID: PMC6116952 DOI: 10.1534/genetics.118.301234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
UNC-6/Netrin has a conserved role in dorsal-ventral axon guidance, but the cellular events in the growth cone regulated by UNC-6/Netrin signaling during outgrowth are incompletely understood. Previous studies showed that, in growth cones migrating away from UNC-6/Netrin, the receptor UNC-5 regulates growth cone polarity, as observed by polarized F-actin, and limits the extent of growth cone protrusion. It is unclear how UNC-5 inhibits protrusion, and how UNC-40 acts in concert with UNC-5 to regulate polarity and protrusion. New results reported here indicate that UNC-5 normally restricts microtubule (MT) + end accumulation in the growth cone. Tubulin mutant analysis and colchicine treatment suggest that stable MTs are necessary for robust growth cone protrusion. Thus, UNC-5 might inhibit protrusion in part by restricting growth cone MT accumulation. Previous studies showed that the UNC-73/Trio Rac GEF and UNC-33/CRMP act downstream of UNC-5 in protrusion. Here, we show that UNC-33/CRMP regulates both growth cone dorsal asymmetric F-actin accumulation and MT accumulation, whereas UNC-73/Trio Rac GEF activity only affects F-actin accumulation. This suggests an MT-independent mechanism used by UNC-5 to inhibit protrusion, possibly by regulating lamellipodial and filopodial actin. Furthermore, we show that UNC-6/Netrin and the receptor UNC-40/DCC are required for excess protrusion in unc-5 mutants, but not for loss of F-actin asymmetry or MT + end accumulation, indicating that UNC-6/Netrin and UNC-40/DCC are required for protrusion downstream of, or in parallel to, F-actin asymmetry and MT + end entry. F-actin accumulation might represent a polarity mark in the growth cone where protrusion will occur, and not protrusive lamellipodial and filopodial actin per se Our data suggest a model in which UNC-6/Netrin first polarizes the growth cone via UNC-5, and then regulates protrusion based upon this polarity (the polarity/protrusion model). UNC-6/Netrin inhibits protrusion ventrally via UNC-5, and stimulates protrusion dorsally via UNC-40, resulting in dorsally-directed migration. The polarity/protrusion model represents a novel conceptual paradigm in which to understand axon guidance and growth cone migration away from UNC-6/Netrin.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Lakshmi Sundararajan
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Aubrie Stricker
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| | - Erik A Lundquist
- Program in Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66046
| |
Collapse
|
25
|
Tang NH, Jin Y. Shaping neurodevelopment: distinct contributions of cytoskeletal proteins. Curr Opin Neurobiol 2018; 51:111-118. [PMID: 29574219 PMCID: PMC6066413 DOI: 10.1016/j.conb.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/28/2022]
Abstract
Development of a neuron critically depends on the organization of its cytoskeleton. Cytoskeletal components, such as tubulins and actins, have the remarkable ability to organize themselves into filaments and networks to support specialized and compartmentalized functions. Alterations in cytoskeletal proteins have long been associated with a variety of neurodevelopmental disorders. This review focuses on recent findings, primarily from forward genetic screens in Caenorhabditis elegans that illustrate how different tubulin protein isotypes can play distinct roles in neuronal development and function. Additionally, we discuss studies revealing new regulators of the actin cytoskeleton, and highlight recent technological advances in in vivo imaging and functional dissection of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
O'Hagan R, Silva M, Nguyen KCQ, Zhang W, Bellotti S, Ramadan YH, Hall DH, Barr MM. Glutamylation Regulates Transport, Specializes Function, and Sculpts the Structure of Cilia. Curr Biol 2017; 27:3430-3441.e6. [PMID: 29129530 PMCID: PMC5698134 DOI: 10.1016/j.cub.2017.09.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/09/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Ciliary microtubules (MTs) are extensively decorated with post-translational modifications (PTMs), such as glutamylation of tubulin tails. PTMs and tubulin isotype diversity act as a "tubulin code" that regulates cytoskeletal stability and the activity of MT-associated proteins such as kinesins. We previously showed that, in C. elegans cilia, the deglutamylase CCPP-1 affects ciliary ultrastructure, localization of the TRP channel PKD-2 and the kinesin-3 KLP-6, and velocity of the kinesin-2 OSM-3/KIF17, whereas a cell-specific α-tubulin isotype regulates ciliary ultrastructure, intraflagellar transport, and ciliary functions of extracellular vesicle (EV)-releasing neurons. Here we examine the role of PTMs and the tubulin code in the ciliary specialization of EV-releasing neurons using genetics, fluorescence microscopy, kymography, electron microscopy, and sensory behavioral assays. Although the C. elegans genome encodes five tubulin tyrosine ligase-like (TTLL) glutamylases, only ttll-11 specifically regulates PKD-2 localization in EV-releasing neurons. In EV-releasing cephalic male (CEM) cilia, TTLL-11 and the deglutamylase CCPP-1 regulate remodeling of 9+0 MT doublets into 18 singlet MTs. Balanced TTLL-11 and CCPP-1 activity fine-tunes glutamylation to control the velocity of the kinesin-2 OSM-3/KIF17 and kinesin-3 KLP-6 without affecting the intraflagellar transport (IFT) kinesin-II. TTLL-11 is transported by ciliary motors. TTLL-11 and CCPP-1 are also required for the ciliary function of releasing bioactive EVs, and TTLL-11 is itself a novel EV cargo. Therefore, MT glutamylation, as part of the tubulin code, controls ciliary specialization, ciliary motor-based transport, and ciliary EV release in a living animal. We suggest that cell-specific control of MT glutamylation may be a conserved mechanism to specialize the form and function of cilia.
Collapse
Affiliation(s)
- Robert O'Hagan
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Malan Silva
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ken C Q Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, 1410 Pelham Parkway, Bronx, NY 10461, USA
| | - Winnie Zhang
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sebastian Bellotti
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yasmin H Ramadan
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, 1410 Pelham Parkway, Bronx, NY 10461, USA
| | - Maureen M Barr
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|