1
|
Kotlyarov S, Kotlyarova A. Biological Functions and Clinical Significance of the ABCG1 Transporter. BIOLOGY 2024; 14:8. [PMID: 39857239 PMCID: PMC11760449 DOI: 10.3390/biology14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025]
Abstract
ATP-binding cassette (ABC) transporters are a large family of proteins that transport various substances across cell membranes using energy from ATP hydrolysis. ATP-binding cassette sub-family G member 1 (ABCG1) is a member of the ABCG subfamily of transporters and performs many important functions, such as the export of cholesterol and some other lipids across the membranes of various cells. Cholesterol transport is the mechanism that links metabolism and the innate immune system. Due to its lipid transport function, ABCG1 may contribute to the prevention of atherosclerosis and is involved in the functioning of the lung, pancreas, and other organs and systems. However, the full clinical significance of ABCG1 is still unknown and is a promising area for future research.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
2
|
Panagiotou S, Tan KW, Nguyen PM, Müller A, Oqua AI, Tomas A, Wendt A, Eliasson L, Tengholm A, Solimena M, Idevall-Hagren O. OSBP-mediated PI(4)P-cholesterol exchange at endoplasmic reticulum-secretory granule contact sites controls insulin secretion. Cell Rep 2024; 43:113992. [PMID: 38536815 DOI: 10.1016/j.celrep.2024.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.
Collapse
Affiliation(s)
| | - Kia Wee Tan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Affiong Ika Oqua
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Wendt
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Lund University, Lund, Sweden; Lund University Diabetes Center (LUDC), Lund, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Michele Solimena
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | |
Collapse
|
3
|
Amos C, Kiessling V, Kreutzberger AJB, Schenk NA, Mohan R, Nyenhuis S, Doyle CA, Wang HY, Levental K, Levental I, Anantharam A, Tamm LK. Membrane lipids couple synaptotagmin to SNARE-mediated granule fusion in insulin-secreting cells. Mol Biol Cell 2024; 35:ar12. [PMID: 38117594 PMCID: PMC10916878 DOI: 10.1091/mbc.e23-06-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Insulin secretion depends on the Ca2+-regulated fusion of granules with the plasma membrane. A recent model of Ca2+-triggered exocytosis in secretory cells proposes that lipids in the plasma membrane couple the calcium sensor Syt1 to the membrane fusion machinery (Kiessling et al., 2018). Specifically, Ca2+-mediated binding of Syt1's C2 domains to the cell membrane shifts the membrane-anchored SNARE syntaxin-1a to a more fusogenic conformation, straightening its juxtamembrane linker. To test this model in live cells and extend it to insulin secretion, we enriched INS1 cells with a panel of lipids with different acyl chain compositions. Fluorescence lifetime measurements demonstrate that cells with more disordered membranes show an increase in fusion efficiency, and vice versa. Experiments with granules purified from INS1 cells and recombinant SNARE proteins reconstituted in supported membranes confirmed that lipid acyl chain composition determines SNARE conformation and that lipid disordering correlates with increased fusion. Addition of Syt1's C2AB domains significantly decreased lipid order in target membranes and increased SNARE-mediated fusion probability. Strikingly, Syt's action on both fusion and lipid order could be partially bypassed by artificially increasing unsaturated phosphatidylserines in the target membrane. Thus, plasma membrane lipids actively participate in coupling Ca2+/synaptotagmin-sensing to the SNARE fusion machinery in cells.
Collapse
Affiliation(s)
- Chase Amos
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Noah A. Schenk
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Ramkumar Mohan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Sarah Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Kandice Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
4
|
Lin Y, Ran L, Du X, Yang H, Wu Y. Oxysterol-Binding Protein: new insights into lipid transport functions and human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159365. [PMID: 37455011 DOI: 10.1016/j.bbalip.2023.159365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Oxysterol-binding protein (OSBP) mediates lipid exchange between organelles at membrane contact sites, thereby regulating lipid dynamics and homeostasis. How OSBP's lipid transfer function impacts health and disease remain to be elucidated. In this review, we first summarize the structural characteristics and lipid transport functions of OSBP, and then focus on recent progresses linking OSBP with fatty liver disease, diabetes, lysosome-related diseases, cancer and viral infections, with the aim of discovering novel therapeutic strategies for common human diseases.
Collapse
Affiliation(s)
- Yani Lin
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Liyuan Ran
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA.
| |
Collapse
|
5
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
6
|
Marku A, Da Dalt L, Galli A, Dule N, Corsetto P, Rizzo AM, Moregola A, Uboldi P, Bonacina F, Marciani P, Castagna M, Catapano AL, Norata GD, Perego C. Pancreatic PCSK9 controls the organization of the β-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. [PMID: 35981632 DOI: 10.1016/j.metabol.2022.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts β-cells function. METHODS Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal β-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable β-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated‑calcium dynamics were detected in PCSK9-deficient β-cells. Mechanistically, pancreatic PCSK9 silencing impacts β-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the β-cell secretory pathway, via modulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Algerta Marku
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Lorenzo Da Dalt
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alessandra Galli
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Nevia Dule
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Corsetto
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Angela Maria Rizzo
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Annalisa Moregola
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Patrizia Uboldi
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Fabrizia Bonacina
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alberico Luigi Catapano
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Giuseppe Danilo Norata
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy.
| | - Carla Perego
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy.
| |
Collapse
|
7
|
Chen CW, Guan BJ, Alzahrani MR, Gao Z, Gao L, Bracey S, Wu J, Mbow CA, Jobava R, Haataja L, Zalavadia AH, Schaffer AE, Lee H, LaFramboise T, Bederman I, Arvan P, Mathews CE, Gerling IC, Kaestner KH, Tirosh B, Engin F, Hatzoglou M. Adaptation to chronic ER stress enforces pancreatic β-cell plasticity. Nat Commun 2022; 13:4621. [PMID: 35941159 PMCID: PMC9360004 DOI: 10.1038/s41467-022-32425-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic β-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise β-cell identity is unknown. We show here under reversible, chronic stress conditions β-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of β-cell function and identity. Upon recovery from stress, β-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while β-cells show resilience to episodic ER stress, when episodes exceed a threshold, β-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest β-cell adaptive exhaustion contributes to diabetes pathogenesis.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mohammed R Alzahrani
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zhaofeng Gao
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Long Gao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Syrena Bracey
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Wu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cheikh A Mbow
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Raul Jobava
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Leena Haataja
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Ajay H Zalavadia
- Lerner Research Institute, Cleveland Clinic, 9620 Carnegie Ave N Bldg, Cleveland, OH, 44106, US
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hugo Lee
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Peter Arvan
- The Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI, 48105, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, US
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, TN, US
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Feyza Engin
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53706, USA.
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, 53705, USA.
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
8
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
10
|
Ramazanov BR, Tran ML, von Blume J. Sending out molecules from the TGN. Curr Opin Cell Biol 2021; 71:55-62. [PMID: 33706234 PMCID: PMC8328904 DOI: 10.1016/j.ceb.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/20/2023]
Abstract
The sorting of secreted cargo proteins and their export from the trans-Golgi network (TGN) remains an enigma in the field of membrane trafficking; although the sorting mechanisms of many transmembrane proteins have been well described. The sorting of secreted proteins at the TGN is crucial for the release of signaling factors, as well as extracellular matrix proteins. These proteins are required for cell-cell communication and integrity of an organism. Missecretion of these factors can cause diseases such as neurological disorders, autoimmune disease, or cancer. The major open question is how soluble proteins that are not associated with the membrane are packed into TGN derived transport carriers to facilitate their transport to the plasma membrane. Recent investigations have identified novel types of protein and lipid machinery that facilitate the packing of these molecules into a TGN derived vesicle. In addition, novel research has uncovered an exciting link between cargo sorting and export in which TGN structure and dynamics, as well as TGN/endoplasmic reticulum contact sites, play a significant role. Here, we have reviewed the progress made in our understanding of these processes.
Collapse
Affiliation(s)
- Bulat R Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mai Ly Tran
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
Chen H, Du J, Zhang S, Tong H, Zhang M. Ghrelin suppresses migration of macrophages via inhibition of ROCK2 under chronic intermittent hypoxia. J Int Med Res 2021; 48:300060520926065. [PMID: 32485129 PMCID: PMC7273871 DOI: 10.1177/0300060520926065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objectives Migration of macrophages and atherosclerosis result in various
diseases, including coronary heart disease. This study aimed to
clarify the roles that ghrelin and Rho-associated
coiled-coil-containing protein kinase 2 (ROCK2) play in
migration of macrophages under chronic intermittent hypoxia
(CIH). Methods A rat model of CIH was constructed and changes in ghrelin and ROCK2
protein expression were measured by western blot assay. The
migratory ability of macrophages was determined by the transwell
assay. Hematoxylin and eosin staining was applied to detect the
changes in intima-media thickness. Results We found that CIH enhanced migration of macrophages, and this
effect was attenuated by exogenous ghrelin. Additionally, the
facilitative effect of CIH on migration of macrophages was
strengthened or decreased by upregulation or downregulation of
ROCK2, respectively. This phenomenon indicated that ROCK2 was
involved in CIH-induced migration in macrophages. Furthermore,
western blot and transwell assays showed that ghrelin inhibited
CIH-induced migration via ROCK2 suppression in macrophages. Conclusions In summary, the present study shows that ghrelin inhibits
CIH-induced migration via ROCK2 suppression in macrophages. Our
research may help lead to identifying a new molecular mechanism
for targeted therapy of atherosclerosis and its associated
coronary artery diseases under intermittent hypoxia.
Collapse
Affiliation(s)
- Hong Chen
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Jianfeng Du
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Siying Zhang
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| | - Hao Tong
- China Medical University, Shenyang, China
| | - Man Zhang
- Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Kreutzberger AJB, Kiessling V, Doyle CA, Schenk N, Upchurch CM, Elmer-Dixon M, Ward AE, Preobraschenski J, Hussein SS, Tomaka W, Seelheim P, Kattan I, Harris M, Liang B, Kenworthy AK, Desai BN, Leitinger N, Anantharam A, Castle JD, Tamm LK. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. eLife 2020; 9:e62506. [PMID: 33164744 PMCID: PMC7738183 DOI: 10.7554/elife.62506] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Insulin secretion from β-cells is reduced at the onset of type-1 and during type-2 diabetes. Although inflammation and metabolic dysfunction of β-cells elicit secretory defects associated with type-1 or type-2 diabetes, accompanying changes to insulin granules have not been established. To address this, we performed detailed functional analyses of insulin granules purified from cells subjected to model treatments that mimic type-1 and type-2 diabetic conditions and discovered striking shifts in calcium affinities and fusion characteristics. We show that this behavior is correlated with two subpopulations of insulin granules whose relative abundance is differentially shifted depending on diabetic model condition. The two types of granules have different release characteristics, distinct lipid and protein compositions, and package different secretory contents alongside insulin. This complexity of β-cell secretory physiology establishes a direct link between granule subpopulation and type of diabetes and leads to a revised model of secretory changes in the diabetogenic process.
Collapse
Affiliation(s)
- Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Catherine A Doyle
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Noah Schenk
- Department of Pharmacology, University of MichiganAnn ArborUnited States
| | - Clint M Upchurch
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Margaret Elmer-Dixon
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Amanda E Ward
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Julia Preobraschenski
- Department of Neurobiology, Max Planck Institute for Biophysical ChemistryGöttingenGermany
- Cluster of Excellence in Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells and Institute for Auditory Neuroscience, University of GöttingenGöttingenGermany
| | - Syed S Hussein
- Department of Microbiology, University of VirginiaCharlottesvilleUnited States
| | - Weronika Tomaka
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Patrick Seelheim
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Iman Kattan
- Department of Neurobiology, Max Planck Institute for Biophysical ChemistryGöttingenGermany
| | - Megan Harris
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| | - Bimal N Desai
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Norbert Leitinger
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Arun Anantharam
- Department of Pharmacology, University of MichiganAnn ArborUnited States
| | - J David Castle
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesvilleUnited States
- Department for Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
15
|
Insulin granule biogenesis and exocytosis. Cell Mol Life Sci 2020; 78:1957-1970. [PMID: 33146746 PMCID: PMC7966131 DOI: 10.1007/s00018-020-03688-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Insulin is produced by pancreatic β-cells, and once released to the blood, the hormone stimulates glucose uptake and suppresses glucose production. Defects in both the availability and action of insulin lead to elevated plasma glucose levels and are major hallmarks of type-2 diabetes. Insulin is stored in secretory granules that form at the trans-Golgi network. The granules undergo extensive modifications en route to their release sites at the plasma membrane, including changes in both protein and lipid composition of the granule membrane and lumen. In parallel, the insulin molecules also undergo extensive modifications that render the hormone biologically active. In this review, we summarize current understanding of insulin secretory granule biogenesis, maturation, transport, docking, priming and eventual fusion with the plasma membrane. We discuss how different pools of granules form and how these pools contribute to insulin secretion under different conditions. We also highlight the role of the β-cell in the development of type-2 diabetes and discuss how dysregulation of one or several steps in the insulin granule life cycle may contribute to disease development or progression.
Collapse
|
16
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
17
|
Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung AC, Sessions RB, Alpy F, Kong AP, Benke PI, Torta F, Teo AKK, Leclerc I, Solimena M, Wigley DB, Rutter GA. The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis. Mol Metab 2020; 40:101015. [PMID: 32416313 PMCID: PMC7322359 DOI: 10.1016/j.molmet.2020.101015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVE Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of βStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION Our data indicate that STARD10 binds to, and may transport, phosphatidylinositides, influencing membrane lipid composition, insulin granule biosynthesis, and insulin processing.
Collapse
Affiliation(s)
- Gaelle R. Carrat
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Elizabeth Haythorne
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alexandra Piunti
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Lille 1 University-Science and Technology, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Kaiying Cheng
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Mutian Huang
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Timothy J. Pullen
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Department of Diabetes, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Theodoros Stylianides
- Loughborough University, Centre of Innovative and Collaborative Construction Engineering, Leicestershire, LE11 3TU, UK
| | - Nur Shabrina Amirruddin
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Victoria Salem
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Section of Investigative Medicine, Department of Medicine, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Walter Distaso
- Imperial College Business School, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Andrew Cakebread
- London Metallomics Facility, King's College London, Strand, London, WC2R 2LS, UK
| | | | | | - David J. Hodson
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK,Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK,Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, Midlands, UK
| | - Linford J. Briant
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Annie C.H. Fung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Richard B. Sessions
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Centre National de la Recherche Scientifique (CNRS), UMR 7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Alice P.S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Peter I. Benke
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Mdical Drive, Singapore, 117596, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Proteos, Singapore, 138673, Singapore,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Dale B. Wigley
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Imperial College London, du Cane Road, London, W12 0NN, UK,Corresponding author. +44 (0)20 7594 3340.
| |
Collapse
|
18
|
Du W, Hu Z, Wang L, Li M, Zhao D, Li H, Wei J, Zhang R. ABCA1 Variants rs1800977 (C69T) and rs9282541 (R230C) Are Associated with Susceptibility to Type 2 Diabetes. Public Health Genomics 2020; 23:20-25. [PMID: 31982877 DOI: 10.1159/000505344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Accumulated evidence suggests that ATP-binding cassette A1 transporter (ABCA1) contributes to secreting insulin in pancreatic β-cells and amyloid beta formation. This study aimed to investigate the association between three single nucleotide polymorphisms (SNPs) of ABCA1 and susceptibility to type 2 diabetes mellitus (T2DM) in a Han Chinese population. METHODS A total of 996 T2DM patients and 1,002 controls were included in the study. Three SNPs in the ABCA1 gene, i.e., rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C), were genotyped by SNaPshot. A genotype model, an allele model, a dominant model, and a recessive model were used to assess susceptibility to T2DM. RESULTS There were significant associations between rs1800977 and T2DM in different genetic models (TT vs. CC, OR = 0.591 [0.446-0.793], p < 0.001; T vs. C, OR = 0.835 [0.735-0.949], p = 0.006; recessive model, OR = 0.583 [0.449-0.756], p < 0.001). There were also significant associations between rs9282541 and T2DM in different genetic models (CT vs. CC, OR = 1.690 [0.807-1.005], p = 0.048; T vs. C, OR = 1.756 [0.694-1.060], p = 0.029; dominant model, OR = 1.735 [0.715-1.034], p = 0.037). CONCLUSION Our case-control study showed that the two SNPs rs1800977 and rs9282541 in the ABCA1 gene are significantly associated with susceptibility to T2DM in our Han Chinese population. Study of further mechanisms should be performed before application to clinical therapy.
Collapse
Affiliation(s)
- Weiping Du
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Zhixi Hu
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Li Wang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Miaomiao Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Dong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Hui Li
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Junsheng Wei
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China
| | - Rui Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Yan'an University, Yan'an, China,
| |
Collapse
|
19
|
Nguyen PM, Gandasi NR, Xie B, Sugahara S, Xu Y, Idevall-Hagren O. The PI(4)P phosphatase Sac2 controls insulin granule docking and release. J Cell Biol 2019; 218:3714-3729. [PMID: 31533953 PMCID: PMC6829663 DOI: 10.1083/jcb.201903121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insulin granule biogenesis involves transport to, and stable docking at, the plasma membrane before priming and fusion. Defects in this pathway result in impaired insulin secretion and are a hallmark of type 2 diabetes. We now show that the phosphatidylinositol 4-phosphate phosphatase Sac2 localizes to insulin granules in a substrate-dependent manner and that loss of Sac2 results in impaired insulin secretion. Sac2 operates upstream of granule docking, since loss of Sac2 prevented granule tethering to the plasma membrane and resulted in both reduced granule density and number of exocytic events. Sac2 levels correlated positively with the number of docked granules and exocytic events in clonal β cells and with insulin secretion in human pancreatic islets, and Sac2 expression was reduced in islets from type 2 diabetic subjects. Taken together, we identified a phosphoinositide switch on the surface on insulin granules that is required for stable granule docking at the plasma membrane and impaired in human type 2 diabetes.
Collapse
Affiliation(s)
- Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikhil R Gandasi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sari Sugahara
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
20
|
In vitro fusion of single synaptic and dense core vesicles reproduces key physiological properties. Nat Commun 2019; 10:3904. [PMID: 31467284 PMCID: PMC6715626 DOI: 10.1038/s41467-019-11873-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/29/2022] Open
Abstract
Regulated exocytosis of synaptic vesicles is substantially faster than of endocrine dense core vesicles despite similar molecular machineries. The reasons for this difference are unknown and could be due to different regulatory proteins, different spatial arrangements, different vesicle sizes, or other factors. To address these questions, we take a reconstitution approach and compare regulated SNARE-mediated fusion of purified synaptic and dense core chromaffin and insulin vesicles using a single vesicle-supported membrane fusion assay. In all cases, Munc18 and complexin are required to restrict fusion in the absence of calcium. Calcium triggers fusion of all docked vesicles. Munc13 (C1C2MUN domain) is required for synaptic and enhanced insulin vesicle fusion, but not for chromaffin vesicles, correlating inversely with the presence of CAPS protein on purified vesicles. Striking disparities in calcium-triggered fusion rates are observed, increasing with curvature with time constants 0.23 s (synaptic vesicles), 3.3 s (chromaffin vesicles), and 9.1 s (insulin vesicles) and correlating with rate differences in cells.
Collapse
|
21
|
Breaking Bad and Breaking Good: β-Cell Autophagy Pathways in Diabetes. J Mol Biol 2019; 432:1494-1513. [PMID: 31381897 DOI: 10.1016/j.jmb.2019.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
For many decades the lysosome has been recognized as the terminal center of cellular waste disposal. Products of lysosomal degradation are either recycled in biosynthetic pathways or are further metabolized to produce energy. As such the lysosome was attributed a rather passive role in cellular metabolism merely transforming bulk material into small metabolites. More recently, however, the emerging evidence has brought the lysosome to the center of nutrient sensing as the organelle that harbors a complex signaling machinery which dynamically and actively regulates cell metabolism. The pancreatic β cell is unique in as much as nutrient sensing is directly coupled to insulin secretion. Importantly, defects in insulin secretion constitute a hallmark in the progression of patients from a state of impaired glucose tolerance to full blown type 2 diabetes (T2D). However, mechanisms linking nutrient-dependent lysosomal function to insulin secretion and more generally to β cell health have evolved only very recently. This review discusses emerging concepts in macroautophagy and macroautophagy-independent processes of cargo delivery to lysosomes as well as nutrient-dependent lysosomal signaling specifically in the context of β cell function in health and disease. Such mechanisms may provide a novel source of therapeutic targets to be exploited in the context of β cell failure in diabetes in the near future.
Collapse
|
22
|
Lipid exchange and signaling at ER–Golgi contact sites. Curr Opin Cell Biol 2019; 57:8-15. [DOI: 10.1016/j.ceb.2018.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 01/24/2023]
|
23
|
Harris MT, Hussain SS, Inouye CM, Castle AM, Castle JD. Reinterpretation of the localization of the ATP binding cassette transporter ABCG1 in insulin-secreting cells and insights regarding its trafficking and function. PLoS One 2018; 13:e0198383. [PMID: 30235209 PMCID: PMC6147399 DOI: 10.1371/journal.pone.0198383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
The ABC transporter ABCG1 contributes to the regulation of cholesterol efflux from cells and to the distribution of cholesterol within cells. We showed previously that ABCG1 deficiency inhibits insulin secretion by pancreatic beta cells and, based on its immunolocalization to insulin granules, proposed its essential role in forming granule membranes that are enriched in cholesterol. While we confirm elsewhere that ABCG1, alongside ABCA1 and oxysterol binding protein OSBP, supports insulin granule formation, the aim here is to clarify the localization of ABCG1 within insulin-secreting cells and to provide added insight regarding ABCG1's trafficking and sites of function. We show that stably expressed GFP-tagged ABCG1 closely mimics the distribution of endogenous ABCG1 in pancreatic INS1 cells and accumulates in the trans-Golgi network (TGN), endosomal recycling compartment (ERC) and on the cell surface but not on insulin granules, early or late endosomes. Notably, ABCG1 is short-lived, and proteasomal and lysosomal inhibitors both decrease its degradation. Following blockade of protein synthesis, GFP-tagged ABCG1 first disappears from the ER and TGN and later from the ERC and plasma membrane. In addition to aiding granule formation, our findings raise the prospect that ABCG1 may act beyond the TGN to regulate activities involving the endocytic pathway, especially as the amount of transferrin receptor is increased in ABCG1-deficient cells. Thus, ABCG1 may function at multiple intracellular sites and the plasma membrane as a roving sensor and modulator of cholesterol distribution, membrane trafficking and cholesterol efflux.
Collapse
Affiliation(s)
- Megan T. Harris
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Syed Saad Hussain
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Candice M. Inouye
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Anna M. Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - J. David Castle
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| |
Collapse
|