1
|
Tahmasebinia F, Tang Y, Tang R, Zhang Y, Bonderer W, de Oliveira M, Laboret B, Chen S, Jian R, Jiang L, Snyder M, Chen CH, Shen Y, Liu Q, Liu B, Wu Z. The 40S ribosomal subunit recycling complex modulates mitochondrial dynamics and endoplasmic reticulum - mitochondria tethering at mitochondrial fission/fusion hotspots. Nat Commun 2025; 16:1021. [PMID: 39863576 PMCID: PMC11762756 DOI: 10.1038/s41467-025-56346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function. The complex binds to fission-fusion proteins located at mitochondrial hotspots, regulating the functional assembly of endoplasmic reticulum-mitochondria contact sites (ERMCSs). Furthermore, it alters the activity of mTORC1/2 pathways, suggesting a link between quality control and energy fluctuations. Effective communication is essential for resolving proteostasis-related stresses. Our study illustrates that the USP10-G3BP1 complex acts as a hub that interacts with various pathways to adapt to environmental stimuli promptly. It advances our molecular understanding of RQC regulation and helps explain the pathogenesis of human proteostasis and mitochondrial dysfunction diseases.
Collapse
Affiliation(s)
- Foozhan Tahmasebinia
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Yinglu Tang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Rushi Tang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yi Zhang
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Will Bonderer
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Maisa de Oliveira
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Bretton Laboret
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ruiqi Jian
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lihua Jiang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, Miaoli, 350401, Taiwan
| | - Yawei Shen
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Qing Liu
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, 29646, USA
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore.
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Singapore, 138672, Singapore.
| | - Zhihao Wu
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
2
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
3
|
She J, Lu F, Chi Y, Cao L, Zuo Y, Yang N, Zhang X, Dai X. Ginseng Extract Attenuates the Injury from Ultraviolet Irradiation for Female Drosophila melanogaster through the Autophagy Signaling Pathway. J Med Food 2024; 27:348-358. [PMID: 38387003 DOI: 10.1089/jmf.2023.k.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Ginseng is an ancient medicinal and edible plant with many health benefits, and can serve as a drug and dietary supplement, but there are few relevant studies on its use to ease ultraviolet (UV) irradiation damage. After 0.8 mg/mL ginseng extract (GE) was added to the medium of female Drosophila melanogaster subjected to UV irradiation, the lifespan, climbing ability, sex ratio, developmental cycle, and antioxidant capacity of flies were examined to evaluate the GE function. In addition, the underlying mechanism by which GE enhances the irradiation tolerance of D. melanogaster was explored. With GE supplementation, female flies subjected to UV irradiation exhibited an extension in their lifespan, enhancement in their climbing ability, improvement in their offspring sex ratio, and restoration of the normal development cycle by increasing their antioxidant activity. Finally, further experiments indicated that GE could enhance the irradiation tolerance of female D. melanogaster by upregulating the gene expressions of SOD, GCL, and components of the autophagy signaling pathway. Finally, the performance of r4-Gal4;UAS-AMPKRNAi flies confirmed the regulatory role of the autophagy signaling pathway in mitigating UV irradiation injury.
Collapse
Affiliation(s)
- JiaYi She
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - FangYuan Lu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - YiQing Chi
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - LingYao Cao
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yaqi Zuo
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Na Yang
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xing Zhang
- Zhejiang Shengshi Bio-technology Co., Ltd, Anji, China
| | - XianJun Dai
- College of Life Sciences, China Jiliang University, Hangzhou, China
- Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou, China
| |
Collapse
|
4
|
Leung HH, Mansour C, Rousseau M, Nakhla A, Kiselyov K, Venkatachalam K, Wong CO. Drosophila tweety facilitates autophagy to regulate mitochondrial homeostasis and bioenergetics in Glia. Glia 2024; 72:433-451. [PMID: 37870193 PMCID: PMC10842981 DOI: 10.1002/glia.24484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Mitochondria support the energetic demands of the cells. Autophagic turnover of mitochondria serves as a critical pathway for mitochondrial homeostasis. It is unclear how bioenergetics and autophagy are functionally connected. Here, we identify an endolysosomal membrane protein that facilitates autophagy to regulate ATP production in glia. We determined that Drosophila tweety (tty) is highly expressed in glia and localized to endolysosomes. Diminished fusion between autophagosomes and endolysosomes in tty-deficient glia was rescued by expressing the human Tweety Homolog 1 (TTYH1). Loss of tty in glia attenuated mitochondrial turnover, elevated mitochondrial oxidative stress, and impaired locomotor functions. The cellular and organismal defects were partially reversed by antioxidant treatment. We performed live-cell imaging of genetically encoded metabolite sensors to determine the impact of tty and autophagy deficiencies on glial bioenergetics. We found that tty-deficient glia exhibited reduced mitochondrial pyruvate consumption accompanied by a shift toward glycolysis for ATP production. Likewise, genetic inhibition of autophagy in glia resulted in a similar glycolytic shift in bioenergetics. Furthermore, the survival of mutant flies became more sensitive to starvation, underlining the significance of tty in the crosstalk between autophagy and bioenergetics. Together, our findings uncover the role for tty in mitochondrial homeostasis via facilitating autophagy, which determines bioenergetic balance in glia.
Collapse
Affiliation(s)
- Ho Hang Leung
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Present address: South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Christina Mansour
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Morgan Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Anwar Nakhla
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX 77030, USA
| | - Ching-On Wong
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Ayachit MS, Shravage BV. Atg1 modulates mitochondrial dynamics to promote germline stem cell maintenance in Drosophila. Biochem Biophys Res Commun 2023; 643:192-202. [PMID: 36621115 DOI: 10.1016/j.bbrc.2022.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Mitochondrial dynamics (fusion and fission) are necessary for stem cell maintenance and differentiation. However, the relationship between mitophagy, mitochondrial dynamics and stem cell exhaustion needs to be clearly understood. Here we report the multifaceted role of Atg1 in mitophagy, mitochondrial dynamics and stem cell maintenance in female germline stem cells (GSCs) in Drosophila. We found that depletion of Atg1 in GSCs leads to impaired autophagy and mitophagy as measured by reduced formation of autophagosomes, increased accumulation of p62/Ref (2)P and accumulation of damaged mitochondria. Disrupting Atg1 function led to mitochondrial fusion in developing cysts. The fusion resulted from an increase in Marf levels in both GSCs and cysts, and the fusion phenotype could be rescued by overexpression of Drp1 or by depleting Marf via RNAi in Atg1-depleted cyst cells. Interestingly, double knockdown of both Atg1:Drp1 led to the significant loss of germ cells (GCs) as compared to Atg1KD and Drp1KD. Strikingly, Atg1:Marf double knockdown leads to a dramatic loss of GSCs, GCs and a total loss of vitellogenic stages, suggesting a block in oogenesis. Overall, our results demonstrate that Drp1, Marf and Atg1 function together to influence female GSC maintenance, their differentiation into cysts and oogenesis in Drosophila.
Collapse
Affiliation(s)
- Minal S Ayachit
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
6
|
Katti P, Ajayi PT, Aponte A, Bleck CKE, Glancy B. Identification of evolutionarily conserved regulators of muscle mitochondrial network organization. Nat Commun 2022; 13:6622. [PMID: 36333356 PMCID: PMC9636386 DOI: 10.1038/s41467-022-34445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially. Proteomic analyses of indirect flight, jump, and leg muscles, together with muscles misexpressing known fiber-type specification factor salm, identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization through evolutionarily conserved transcription factors cut, salm, and H15.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter T Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angel Aponte
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Hewitt VL, Miller-Fleming L, Twyning MJ, Andreazza S, Mattedi F, Prudent J, Polleux F, Vagnoni A, Whitworth AJ. Decreasing pdzd8-mediated mito-ER contacts improves organismal fitness and mitigates Aβ 42 toxicity. Life Sci Alliance 2022; 5:5/11/e202201531. [PMID: 35831024 PMCID: PMC9279675 DOI: 10.26508/lsa.202201531] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/02/2023] Open
Abstract
Mitochondria-ER contact sites (MERCs) orchestrate many important cellular functions including regulating mitochondrial quality control through mitophagy and mediating mitochondrial calcium uptake. Here, we identify and functionally characterize the Drosophila ortholog of the recently identified mammalian MERC protein, Pdzd8. We find that reducing pdzd8-mediated MERCs in neurons slows age-associated decline in locomotor activity and increases lifespan in Drosophila. The protective effects of pdzd8 knockdown in neurons correlate with an increase in mitophagy, suggesting that increased mitochondrial turnover may support healthy aging of neurons. In contrast, increasing MERCs by expressing a constitutive, synthetic ER-mitochondria tether disrupts mitochondrial transport and synapse formation, accelerates age-related decline in locomotion, and reduces lifespan. Although depletion of pdzd8 prolongs the survival of flies fed with mitochondrial toxins, it is also sufficient to rescue locomotor defects of a fly model of Alzheimer's disease expressing Amyloid β42 (Aβ42). Together, our results provide the first in vivo evidence that MERCs mediated by the tethering protein pdzd8 play a critical role in the regulation of mitochondrial quality control and neuronal homeostasis.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| | - Leonor Miller-Fleming
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Madeleine J Twyning
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Simonetta Andreazza
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Francesca Mattedi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA
| | - Alessio Vagnoni
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, IoPPN, King's College London, London, UK
| | - Alexander J Whitworth
- Medical Research Council, Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Yin Y, Ma P, Wang S, Zhang Y, Han R, Huo C, Wu M, Deng H. The CRTC-CREB axis functions as a transcriptional sensor to protect against proteotoxic stress in Drosophila. Cell Death Dis 2022; 13:688. [PMID: 35933423 PMCID: PMC9357022 DOI: 10.1038/s41419-022-05122-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/21/2023]
Abstract
cAMP Responsible Element Binding Protein (CREB) is an evolutionarily conserved transcriptional factor that regulates cell growth, synaptic plasticity and so on. In this study, we unexpectedly found proteasome inhibitors, such as MLN2238, robustly increase CREB activity in adult flies through a large-scale compound screening. Mechanistically, reactive oxidative species (ROS) generated by proteasome inhibition are required and sufficient to promote CREB activity through c-Jun N-terminal kinase (JNK). In 293 T cells, JNK activation by MLN2238 is also required for increase of CREB phosphorylation at Ser133. Meanwhile, transcriptome analysis in fly intestine identified a group of genes involved in redox and proteostatic regulation are augmented by overexpressing CRTC (CREB-regulated transcriptional coactivator). Intriguingly, CRTC overexpression in muscles robustly restores protein folding and proteasomal activity in a fly Huntington's disease (HD) model, and ameliorates HD related pathogenesis, such as protein aggregates, motility, and lifespan. Moreover, CREB activity increases during aging, and further enhances its activity can suppress protein aggregates in aged muscles. Together, our results identified CRTC/CREB downstream ROS/JNK signaling as a conserved sensor to tackle oxidative and proteotoxic stresses. Boosting CRTC/CREB activity is a potential therapeutic strategy to treat aging related protein aggregation diseases.
Collapse
Affiliation(s)
- Youjie Yin
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Peng Ma
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Saifei Wang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Yao Zhang
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Ruolei Han
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Chunyu Huo
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Meixian Wu
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| | - Hansong Deng
- grid.24516.340000000123704535 Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, School of Life Sciences and Technology, Tongji University, Shanghai, 20092 China
| |
Collapse
|
9
|
MCU-dependent mitochondrial calcium uptake-induced mitophagy contributes to apelin-13-stimulated VSMCs proliferation. Vascul Pharmacol 2022; 144:106979. [DOI: 10.1016/j.vph.2022.106979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
10
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [PMID: 34973458 DOI: 10.1016/j.arr.2021.101554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
Collapse
Affiliation(s)
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | | | | | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Peterlee Place NSW2700, Australia; AFNP Med, Haidingergasse 29, 1030 Wien, Austria
| |
Collapse
|
11
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022; 74:101554. [DOI: https:/doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, Boiko DI, Tarianyk KA, Alexiou A. Roles of clock genes in the pathogenesis of Parkinson's disease. Ageing Res Rev 2022. [DOI: https://doi.org/10.1016/j.arr.2021.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
14
|
Liu X, Wang C, Liu W, Song S, Fu J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Oral Administration of Silibinin Ameliorates Cognitive Deficits of Parkinson's Disease Mouse Model by Restoring Mitochondrial Disorders in Hippocampus. Neurochem Res 2021; 46:2317-2332. [PMID: 34097239 DOI: 10.1007/s11064-021-03363-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
Besides motor disorder, cognitive dysfunction is also common in Parkinson's disease (PD). Essentially no causal therapy for cognitive dysfunction of PD exists at present. In this study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was used to analyze the neuroprotective potential of orally administered silibinin, a proverbial hepatoprotective flavonoid derived from the herb milk thistle (Silybum marianum). Results demonstrated that silibinin administration significantly attenuated MPTP-induced cognitive impairment in behavioral tests. Nissl staining results showed that MPTP injection significantly increases the loss of neurons in the hippocampus. However, these mice were protected by oral administration of silibinin, accompanying reduction in the cell apoptosis in the hippocampus. The hippocampal aggregates of α-synuclein (α-syn) appeared in MPTP-injected mice, but were significantly decreased by silibinin treatment. MPTP injection induced oxidative stress, as evidenced by increased malondialdehyde (MDA) and decreased superoxide dismutase (SOD). The oxidative stress was alleviated by silibinin treatment. Mitochondrial disorder including the decline of mitochondrial membrane potential (MMP) was another signature in the hippocampus of MPTP-treated mice, accompanying increased mitochondrial fission and decreased fusion. Silibinin administration restored these mitochondrial disorders, as expected for the protection against MPTP injury. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for cognitive dysfunction in PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Siaoyu Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
- Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
15
|
Ma P, Zhang Y, Liang Q, Yin Y, Wang S, Han R, Huo C, Deng H. Mifepristone (RU486) inhibits dietary lipid digestion by antagonizing the role of glucocorticoid receptor on lipase transcription. iScience 2021; 24:102507. [PMID: 34308280 PMCID: PMC8257970 DOI: 10.1016/j.isci.2021.102507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Lipid digestion and absorption are tightly regulated to cope with metabolic demands among tissues. How these processes are coordinated is not well characterized. Here, we found that mifepristone (RU486) prevents lipid digestion both in flies and mice. In flies, RU486 administration suppresses lipid digestion by transcriptional downregulating Magro in guts. Similarly, intestinal lipid uptake in mice was also suppressed by RU486 through the glucocorticoid receptor (GR). Further studies showed that the pancreatic lipase Pnlip is a direct transcriptional target of GR in pancreas tissues. Glucocorticoid levels in mice fed a high fat diet (HFD) are significantly lower than those fed on a conventional diet, and RU486 administration inhibits HFD-induced obesity both in mice and flies. Our findings identified a novel mechanism of RU486 functions as a GR antagonist systematically regulating lipid metabolism, providing new insight on the role of Glucocorticoid/GR in Cushing disease, diabetes, and other related metabolic syndromes. RU486 suppresses lipid digestion both in mice and flies. In flies, lipase Magro is transcriptionally suppressed by RU486 through dERR. In mice, intestinal lipid digestion is inhibited by RU486 through (GR)/PTL pathway in pancreas. RU486 alleviates high fat diet-induced obesity both in flies and mice.
Collapse
Affiliation(s)
- Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Yao Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Qiying Liang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Ruolei Han
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Chunyu Huo
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Bldg, 1239 Siping Road, Yangpu District, Shanghai, 20092, China
| |
Collapse
|
16
|
Dinh E, Rival T, Carrier A, Asfogo N, Corti O, Melon C, Salin P, Lortet S, Kerkerian-Le Goff L. TP53INP1 exerts neuroprotection under ageing and Parkinson's disease-related stress condition. Cell Death Dis 2021; 12:460. [PMID: 33966044 PMCID: PMC8106680 DOI: 10.1038/s41419-021-03742-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
TP53INP1 is a stress-induced protein, which acts as a dual positive regulator of transcription and of autophagy and whose deficiency has been linked with cancer and metabolic syndrome. Here, we addressed the unexplored role of TP53INP1 and of its Drosophila homolog dDOR in the maintenance of neuronal homeostasis under chronic stress, focusing on dopamine (DA) neurons under normal ageing- and Parkinson’s disease (PD)-related context. Trp53inp1−/− mice displayed additional loss of DA neurons in the substantia nigra compared to wild-type (WT) mice, both with ageing and in a PD model based on targeted overexpression of α-synuclein. Nigral Trp53inp1 expression of WT mice was not significantly modified with ageing but was markedly increased in the PD model. Trp53inp2 expression showed similar evolution and did not differ between WT and Trp53inp1−/− mice. In Drosophila, pan-neuronal dDOR overexpression improved survival under paraquat exposure and mitigated the progressive locomotor decline and the loss of DA neurons caused by the human α-synuclein A30P variant. dDOR overexpression in DA neurons also rescued the locomotor deficit in flies with RNAi-induced downregulation of dPINK1 or dParkin. Live imaging, confocal and electron microscopy in fat bodies, neurons, and indirect flight muscles showed that dDOR acts as a positive regulator of basal autophagy and mitophagy independently of the PINK1-mediated pathway. Analyses in a mammalian cell model confirmed that modulating TP53INP1 levels does not impact mitochondrial stress-induced PINK1/Parkin-dependent mitophagy. These data provide the first evidence for a neuroprotective role of TP53INP1/dDOR and highlight its involvement in the regulation of autophagy and mitophagy in neurons.
Collapse
Affiliation(s)
- Emilie Dinh
- Aix Marseille University, CNRS, IBDM, NeuroMarseille, Marseille, France
| | - Thomas Rival
- Aix Marseille University, CNRS, IBDM, NeuroMarseille, Marseille, France
| | - Alice Carrier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Noemi Asfogo
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Olga Corti
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christophe Melon
- Aix Marseille University, CNRS, IBDM, NeuroMarseille, Marseille, France
| | - Pascal Salin
- Aix Marseille University, CNRS, IBDM, NeuroMarseille, Marseille, France
| | - Sylviane Lortet
- Aix Marseille University, CNRS, IBDM, NeuroMarseille, Marseille, France
| | | |
Collapse
|
17
|
Xiao D, Lv J, Zheng Z, Liu Y, Zhang Y, Luo C, Qi L, Qin B, Liu C. Mechanisms of microRNA‑142 in mitochondrial autophagy and hippocampal damage in a rat model of epilepsy. Int J Mol Med 2021; 47:98. [PMID: 33846769 PMCID: PMC8043661 DOI: 10.3892/ijmm.2021.4931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Researchers have confirmed the microRNA (miRNA/miR)‑epilepsy association in rodent models of human epilepsy via a comprehensive database. However, the mechanisms of miR‑142 in epilepsy have not been extensively studied. In the present study, a rat model of epilepsy was first established by an injection of lithium chloride‑pilocarpine and the successful establishment of the model was verified via electroencephalogram monitoring. The levels of miR‑142, phosphatase and tensin homolog deleted on chromosome 10 (PTEN)‑induced putative kinase 1 (PINK1), marker proteins of mitochondrial autophagy, and apoptosis‑related proteins were measured. Additionally, the pathological changes in the hippocampus, the ultrastructure of the mitochondria, and degeneration and the apoptosis of neurons were observed using different staining methods. The malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in the hippocampus, mitochondrial membrane potential (MTP) and reactive oxygen species (ROS) generation were detected. Furthermore, the targeting association between miR‑142 and PINK1 was predicted and verified. Consequently, apoptosis increased, and mitochondrial autophagy decreased, in the hippocampus of epileptic rats. Following miR‑142 inhibition, the epileptic rats exhibited an increased Bax expression, a decreased Bcl‑2 expression, upregulated marker protein levels of mitochondrial autophagy, a reduced MDA content, an enhanced SOD activity, an increased MTP and decreased ROS generation. PINK1 is a target gene of miR‑142, and its overexpression protected against hippocampal damage. Taken together, the results of the present study demonstrated that miR‑142 inhibition promotes mitochondrial autophagy and reduces hippocampal damage in epileptic rats by targeting PINK1. These findings may provide useful information for the treatment of epilepsy.
Collapse
Affiliation(s)
- Du Xiao
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Jingdan Lv
- Department of Neurology, Guangzhou Hospital of TCM, Guangzhou Medical University, Guangzhou, Guangdong 510130, P.R. China
| | - Zhigang Zheng
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Yi Liu
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Yonggen Zhang
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Cuizhu Luo
- Department of Intensive Care Unit, Pingxiang People's Hospital of Southern Medical University, Pingxiang, Jiangxi 337055, P.R. China
| | - Liu Qi
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510623, P.R. China
| | - Bing Qin
- Epilepsy Center and Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510623, P.R. China
| | - Chao Liu
- Department of Neurology, The First Hospital of Changsha, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
18
|
Baek M, Choe YJ, Bannwarth S, Kim J, Maitra S, Dorn GW, Taylor JP, Paquis-Flucklinger V, Kim NC. TDP-43 and PINK1 mediate CHCHD10 S59L mutation-induced defects in Drosophila and in vitro. Nat Commun 2021; 12:1924. [PMID: 33772006 PMCID: PMC7997989 DOI: 10.1038/s41467-021-22145-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) can cause amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). However, the underlying mechanisms are unclear. Here, we generate CHCH10S59L-mutant Drosophila melanogaster and HeLa cell lines to model CHCHD10-associated ALS-FTD. The CHCHD10S59L mutation results in cell toxicity in several tissues and mitochondrial defects. CHCHD10S59L independently affects the TDP-43 and PINK1 pathways. CHCHD10S59L expression increases TDP-43 insolubility and mitochondrial translocation. Blocking TDP-43 mitochondrial translocation with a peptide inhibitor reduced CHCHD10S59L-mediated toxicity. While genetic and pharmacological modulation of PINK1 expression and activity of its substrates rescues and mitigates the CHCHD10S59L-induced phenotypes and mitochondrial defects, respectively, in both Drosophila and HeLa cells. Our findings suggest that CHCHD10S59L-induced TDP-43 mitochondrial translocation and chronic activation of PINK1-mediated pathways result in dominant toxicity, providing a mechanistic insight into the CHCHD10 mutations associated with ALS-FTD.
Collapse
Affiliation(s)
- Minwoo Baek
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Yun-Jeong Choe
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Sylvie Bannwarth
- grid.410528.a0000 0001 2322 4179Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d’Azur, CHU de Nice, Nice, France
| | - JiHye Kim
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Swati Maitra
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| | - Gerald W. Dorn
- grid.4367.60000 0001 2355 7002Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO USA
| | - J. Paul Taylor
- grid.240871.80000 0001 0224 711XHoward Hughes Medical Institute and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Veronique Paquis-Flucklinger
- grid.410528.a0000 0001 2322 4179Inserm U1081, CNRS UMR7284, IRCAN, Université Côte d’Azur, CHU de Nice, Nice, France
| | - Nam Chul Kim
- grid.17635.360000000419368657Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN USA
| |
Collapse
|
19
|
Duan X, Tong C. Autophagy in Drosophila and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1208:333-356. [PMID: 34260032 DOI: 10.1007/978-981-16-2830-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autophagy is a highly conserved cellular process that delivers cellular contents to the lysosome for degradation. It not only serves as a bulk degradation system for various cytoplasmic components but also functions selectively to clear damaged organelles, aggregated proteins, and invading pathogens (Feng et al., Cell Res 24:24-41, 2014; Galluzzi et al., EMBO J 36:1811-36, 2017; Klionsky et al., Autophagy 12:1-222, 2016). The malfunction of autophagy leads to multiple developmental defects and diseases (Mizushima et al., Nature 451:1069-75, 2008). Drosophila and zebrafish are higher metazoan model systems with sophisticated genetic tools readily available, which make it possible to dissect the autophagic processes and to understand the physiological functions of autophagy (Lorincz et al., Cells 6:22, 2017a; Mathai et al., Cells 6:21, 2017; Zhang and Baehrecke, Trends Cell Biol 25:376-87, 2015). In this chapter, we will discuss recent progress that has been made in the autophagic field by using these animal models. We will focus on the protein machineries required for autophagosome formation and maturation as well as the physiological roles of autophagy in both Drosophila and zebrafish.
Collapse
Affiliation(s)
- Xiuying Duan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Zhang T, Hay BA, Guo M. Generation, Analyzing and in-vivo Drug Treatment of Drosophila Models with IBMPFD. Bio Protoc 2020; 10:e3621. [PMID: 33659294 DOI: 10.21769/bioprotoc.3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/16/2020] [Accepted: 03/10/2020] [Indexed: 11/02/2022] Open
Abstract
Missense mutations of p97/cdc48/Valosin-containing protein (VCP) cause inclusion body myopathy, Paget disease with frontotemporal dementia (IBMPFD) and other neurodegenerative diseases. The pathological mechanism of IBMPFD is not clear and there is no treatment. We generated Drosophila models of IBMPFD in adult flight muscle in vivo. Here we describe a variety of assays to characterize disease pathology and dissect disease mechanism, and the consequences of in vivo feeding of VCP inhibitors.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.,California Nanosystems Institute at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Taylor DJ, Hamid SM, Andres AM, Saadaeijahromi H, Piplani H, Germano JF, Song Y, Sawaged S, Feuer R, Pandol SJ, Sin J. Antiviral Effects of Menthol on Coxsackievirus B. Viruses 2020; 12:E373. [PMID: 32231022 PMCID: PMC7232514 DOI: 10.3390/v12040373] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Coxsackievirus B (CVB) is a common human enterovirus that causes systemic infection but specifically replicates to high titers in the pancreas. It was reported that certain viruses induce mitochondrial fission to support infection. We documented that CVB triggers mitochondrial fission and blocking mitochondrial fission limits infection. The transient receptor potential channels have been implicated in regulating mitochondrial dynamics; namely, the heat and capsaicin receptor transient receptor potential cation channel subfamily V member 1 (TRPV1) contributes to mitochondrial depolarization and fission. When we transiently warmed HeLa cells to 39 °C prior to CVB exposure, infection was heightened, whereas cooling cells to 25 °C reduced infection. Inducing "cold" by stimulating transient receptor potential cation channel subfamily M member 8 (TRPM8) with menthol led to reduced infection and also resulted in lower levels of mitochondrial fission during infection. Additionally, menthol stabilized levels of mitochondrial antiviral signaling (MAVS) which is known to be tied to mitochondrial dynamics. Taken together, this highlights a novel pathway wherein CVB relies on TRPV1 to initiate proviral mitochondrial fission, which may contribute to the disruption of antiviral immunity. TRPM8 has been shown to antagonize TRPV1, and thus we hypothesize that stimulating TRPM8 blocks TRPV1-mediated mitochondrial fragmentation following CVB exposure and attenuates infection.
Collapse
Affiliation(s)
- David J.R. Taylor
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Syed M. Hamid
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Allen M. Andres
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Hannaneh Saadaeijahromi
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Honit Piplani
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Juliana F. Germano
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Yang Song
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Savannah Sawaged
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| | - Ralph Feuer
- The Integrated Regenerative Research Institute (IRRI) at San Diego State University, San Diego State University, San Diego, CA 92182, USA;
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Jon Sin
- The Smidt Heart Institute and the Barbra Streisand Women’s Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA (S.M.H.); (A.M.A.); (H.S.); (H.P.); (J.F.G.); (Y.S.); (S.S.)
| |
Collapse
|
22
|
Drosophila as a model to understand autophagy deregulation in human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020. [PMID: 32620249 DOI: 10.1016/bs.pmbts.2020.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Autophagy has important functions in normal physiology to maintain homeostasis and protect against cellular stresses by the removal of harmful cargos such as dysfunctional organelles, protein aggregates and invading pathogens. The deregulation of autophagy is a hallmark of many diseases and therapeutic targeting of autophagy is highly topical. With the complex role of autophagy in disease it is essential to understand the genetic and molecular basis of the contribution of autophagy to pathogenesis. The model organism, Drosophila, provides a genetically amenable system to dissect out the contribution of autophagy to human disease models. Here we review the roles of autophagy in human disease and how autophagy studies in Drosophila have contributed to the understanding of pathophysiology.
Collapse
|
23
|
Yu F, Hao P, Ye C, Feng Y, Pang K, Yu X. NlATG1 Gene Participates in Regulating Autophagy and Fission of Mitochondria in the Brown Planthopper, Nilaparvata lugens. Front Physiol 2020; 10:1622. [PMID: 32082181 PMCID: PMC7004972 DOI: 10.3389/fphys.2019.01622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/24/2019] [Indexed: 01/06/2023] Open
Abstract
Autophagy plays multiple roles in regulating various physiological processes in cells. However, we currently lack a systematic analysis of autophagy and the autophagy-related gene 1 ATG1 in the brown planthopper (BPH, Nilaparvata lugens), one of the most destructive of the insect pests of rice. In this study, the full-length cDNA of an autophagy-related gene, NlATG1, was cloned from BPH. Real-time qPCR (RT-qPCR) revealed that this NlATG1 gene was expressed differently across developmental stages, at higher levels in nymphs but lower levels in adults. RNA interference with dsNlATG1 significantly decreased the mRNA level of the target gene to 14.6% at day 4 compared with that of the dsGFP control group. The survival of the dsNlATG1-treated group decreased significantly from day 4 onward, dropping to 48.3% on day 8. Examination using transmission electron microscopy (TEM) showed that epithelial cells of the BPH’s midgut in the dsNlATG1-treated group had less autophagic vacuoles than did the dsGFP control, and knockdown of NlATG1 clearly inhibited the starvation-induced autophagy response in this insect. RNA interference of NlATG1 upregulated the NlFis1 gene involved in mitochondrial fission, leading to reductions in mitochondrial width and area. Furthermore, knockdown of NlATG1 also decreased the ATP content and accumulation of glycogen. Together, these results demonstrate that the NlATG1 gene participates in regulating autophagy and fission of mitochondria in the brown planthopper, making it a potentially promising target for pest control given its key role in autophagy, including maintaining the normal structure and function of mitochondria.
Collapse
Affiliation(s)
- Feifei Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
24
|
Molecular mechanisms of selective autophagy in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:63-105. [DOI: 10.1016/bs.ircmb.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Kang J, Dong Z, Wang J, Chen G, Liu D. Autophagy-related Djatg8 is required for remodeling in planarian Dugesia japonica. Biol Open 2019; 8:bio.045013. [PMID: 31640974 PMCID: PMC6918785 DOI: 10.1242/bio.045013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Planarians are the earliest free-living platyhelminthe with triploblastic and bilateral-symmetry. As an integral component of tissue homeostasis and regeneration, remodeling occurs constantly in the general planarian life history. In the present study, we isolate three planarian Dugesia japonica Atg8 genes (Djatg8-1, Djatg8-2, Djatg8-3) that show high sequence similarity with Atg8 from yeast and human. Results from whole-mount in situ hybridization indicate that Djatg8-2 and Djatg8-3 are strongly expressed in blastemas during Dugesia japonica regeneration. Using RNA interference, inhibition of Djatg8-1 gene expression has no obvious effect on planarian morphological changes. Interestingly, downregulation of Djatg8-2 gene expression in planarians results in defects in blastema regeneration and tissue regression. Furthermore, loss of Djatg8-3 expression leads to tissue degradation. Taken together, our results suggest that Djatg8-2 and Djatg8-3 play important roles in planarian remodeling during regeneration. Summary: The autophagy-related Djatg8 homologues Djatg8-2 and Djatg8-3 are required for planarian remodeling; we provide an emergent in vivo model organism to study autophagy and the molecular mechanism for planarian remodeling.
Collapse
Affiliation(s)
- Jing Kang
- College of Life Science, Henan Normal University, Xinxiang 453007, China.,College of Life Science, Xinxiang Medical University, Xinxiang 453003, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jing Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
26
|
Si H, Ma P, Liang Q, Yin Y, Wang P, Zhang Q, Wang S, Deng H. Overexpression of pink1 or parkin in indirect flight muscles promotes mitochondrial proteostasis and extends lifespan in Drosophila melanogaster. PLoS One 2019; 14:e0225214. [PMID: 31714929 PMCID: PMC6850535 DOI: 10.1371/journal.pone.0225214] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023] Open
Abstract
Dysfunctional mitochondria have been implicated in aging and age-related disorders such as Parkinson’s diseases (PD). We previously showed that pink1 and parkin, two familial PD genes, function in a linear pathway to maintain mitochondrial integrity and function. Studies of mammalian cell lines also suggest that these genes regulate mitochondrial autophagy(mitophagy). Overexpressing Parkin promotes proteostasis and function of aged muscles both in fruit flies and mice, and recent studies also indicated that mitochondrial ubiquitination are accumulated in aged muscles. However, the underlying mechanisms for pink1 and parkin mediated mitophagy on longevity is not fully understood. Here, we found that mitochondrial ubiquitination increased in indirect flight muscles (IFMs) in an age-dependent manner. Overexpression of pink1 or parkin in IFMs can abolish mitochondrial ubiquitination, restore ATP level and extend lifespan, while blocking autophagy via ATG1 knock-down suppress these effects in aged IFMs. Taken together, these results show that pink1/parkin promotes mitophagy of mitochondrial ubiquitination in aged muscles and extend lifespan in an Atg1-dependent manner. Our study provides physiological evidence that mitophagy of mitochondrial ubiquitination mediated by PINK1/ Parkin is crucial for muscle function and highlights the role of mitophagy in the pathogenesis of chronic diseases like PD.
Collapse
Affiliation(s)
- Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiying Liang
- College of Animal Sciences and Technology, Guangxi University, Nanning, China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ping Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qi Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- * E-mail:
| |
Collapse
|