1
|
Wibbe N, Steinbacher T, Tellkamp F, Beckmann N, Brinkmann F, Stecher M, Gerke V, Niessen CM, Ebnet K. RhoGDI1 regulates cell-cell junctions in polarized epithelial cells. Front Cell Dev Biol 2024; 12:1279723. [PMID: 39086660 PMCID: PMC11288927 DOI: 10.3389/fcell.2024.1279723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Cell-cell contact formation of polarized epithelial cells is a multi-step process that involves the co-ordinated activities of Rho family small GTPases. Consistent with the central role of Rho GTPases, a number of Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) have been identified at cell-cell junctions at various stages of junction maturation. As opposed to RhoGEFs and RhoGAPs, the role of Rho GDP dissociation inhibitors (GDIs) during cell-cell contact formation is poorly understood. Here, we have analyzed the role of RhoGDI1/ARHGDIA, a member of the RhoGDI family, during cell-cell contact formation of polarized epithelial cells. Depletion of RhoGDI1 delays the development of linear cell-cell junctions and the formation of barrier-forming tight junctions. In addition, RhoGDI1 depletion impairs the ability of cells to stop migration in response to cell collision and increases the migration velocity of collectively migrating cells. We also find that the cell adhesion receptor JAM-A promotes the recruitment of RhoGDI1 to cell-cell contacts. Our findings implicate RhoGDI1 in various processes involving the dynamic reorganization of cell-cell junctions.
Collapse
Affiliation(s)
- Nicolina Wibbe
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frederik Tellkamp
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Niklas Beckmann
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Manuel Stecher
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department Cell Biology of the Skin, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group “Cell Adhesion and Cell Polarity”, Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University Münster, Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, Münster, Germany
| |
Collapse
|
2
|
Young KA, Wojdyla K, Lai T, Mulholland KE, Aldaz Casanova S, Antrobus R, Andrews SR, Biggins L, Mahler-Araujo B, Barton PR, Anderson KR, Fearnley GW, Sharpe HJ. The receptor protein tyrosine phosphatase PTPRK promotes intestinal repair and catalysis-independent tumour suppression. J Cell Sci 2024; 137:jcs261914. [PMID: 38904097 PMCID: PMC11298714 DOI: 10.1242/jcs.261914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
PTPRK is a receptor tyrosine phosphatase that is linked to the regulation of growth factor signalling and tumour suppression. It is stabilized at the plasma membrane by trans homophilic interactions upon cell-cell contact. PTPRK regulates cell-cell adhesion but is also reported to regulate numerous cancer-associated signalling pathways. However, the signalling mechanism of PTPRK remains to be determined. Here, we find that PTPRK regulates cell adhesion signalling, suppresses invasion and promotes collective, directed migration in colorectal cancer cells. In vivo, PTPRK supports recovery from inflammation-induced colitis. In addition, we confirm that PTPRK functions as a tumour suppressor in the mouse colon and in colorectal cancer xenografts. PTPRK regulates growth factor and adhesion signalling, and suppresses epithelial to mesenchymal transition (EMT). Contrary to the prevailing notion that PTPRK directly dephosphorylates EGFR, we find that PTPRK regulation of both EGFR and EMT is independent of its catalytic function. This suggests that additional adaptor and scaffold functions are important features of PTPRK signalling.
Collapse
Affiliation(s)
| | | | - Tiffany Lai
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | | | - Laura Biggins
- Bioinformatics, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Philippa R. Barton
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Keith R. Anderson
- Molecular biology department, Genentech, South San Francisco, CA 94080, USA
| | | | - Hayley J. Sharpe
- Signalling programme, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
3
|
Shao M, Yuan F, Liu J, Luo H. Mast Cell Specific Receptor Mrgprb2 Regulating Experimental Colitis is Associated with the Microbiota-Gut-Brain Axis. J Inflamm Res 2022; 15:6137-6151. [PMID: 36386594 PMCID: PMC9656444 DOI: 10.2147/jir.s383812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Purpose Ulcerative colitis (UC) patients have disturbances in the microbiota-gut-brain axis, and mast cells are important components of this axis. The mast cell-specific receptor Mrgprb2 has effects on host defense against bacterial infection and neurogenic inflammation, which may help mast cells act on the axis. This study analyzed how Mrgprb2 participates in the pathogenesis of UC by affecting the microbiota-gut-brain axis. Materials and Methods Mrgprb2 knockout (b2KO) mice and wild-type (WT) mice were fed 2% (w/v) dextran sulfate sodium (DSS) in drinking water for 7 days, which was then replaced with normal water for 14 days. This cycle was repeated three times. Feces were collected on Days 21, 42, and 63 for intestinal microbiota analysis, and mice were euthanized on Day 64. Hypothalamus, amygdala and colon tissues were removed and analyzed. Results Compared with WT mice, B2KO mice exhibited increased weight loss, colon shortening and colonic pathological damage after colitis induction. Analysis of the intestinal microbiota showed that b2KO mice with colitis had a significant decrease in the abundance and diversity, as well as an increase in Allobaculum and a decrease in norank_f__Muribaculaceae and Ileibacterium. In colon tissues, the expression of mucin 2 (MUC2) and junctional adhesion molecule A (JAM-A) in b2KO mice was reduced, and oxidative stress levels were higher. B2KO mice with colitis had higher corticotropin-releasing hormone (CRH), corticotropin-releasing hormone receptor 1 (CRHR1), neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) mRNA levels in hypothalamus tissues and glucocorticoid receptor mRNA levels in the amygdala. Conclusion In the microbiota-gut-brain axis, Mrgprb2 was involved in regulating the intestinal microbiota composition, intestinal barrier and oxidative stress levels, and was related to stress regulation, which might help to explain the pathogenesis of UC.
Collapse
Affiliation(s)
- Ming Shao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, 430060, People’s Republic of China
| | - Fangting Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, 430060, People’s Republic of China
| | - Jingwen Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, 430060, People’s Republic of China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, 430060, People’s Republic of China
- Correspondence: Hesheng Luo, Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email
| |
Collapse
|
4
|
Fan S, Boerner K, Muraleedharan CK, Nusrat A, Quiros M, Parkos CA. Epithelial JAM-A is fundamental for intestinal wound repair in vivo. JCI Insight 2022; 7:e158934. [PMID: 35943805 PMCID: PMC9536273 DOI: 10.1172/jci.insight.158934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is expressed in several cell types, including epithelial and endothelial cells, as well as some leukocytes. In intestinal epithelial cells (IEC), JAM-A localizes to cell junctions and plays a role in regulating barrier function. In vitro studies with model cell lines have shown that JAM-A contributes to IEC migration; however, in vivo studies investigating the role of JAM-A in cell migration-dependent processes such as mucosal wound repair have not been performed. In this study, we developed an inducible intestinal epithelial-specific JAM-A-knockdown mouse model (Jam-aERΔIEC). While acute induction of IEC-specific loss of JAM-A did not result in spontaneous colitis, such mice had significantly impaired mucosal healing after chemically induced colitis and after biopsy colonic wounding. In vitro primary cultures of JAM-A-deficient IEC demonstrated impaired migration in wound healing assays. Mechanistic studies revealed that JAM-A stabilizes formation of protein signaling complexes containing Rap1A/Talin/β1 integrin at focal adhesions of migrating IECs. Loss of JAM-A in primary IEC led to decreased Rap1A activity and protein levels of Talin and β1 integrin, and it led to a reduction in focal adhesion structures. These findings suggest that epithelial JAM-A plays a critical role in controlling mucosal repair in vivo through dynamic regulation of focal adhesions.
Collapse
|
5
|
Klingensmith NJ, Fay KT, Swift DA, Bazzano JM, Lyons JD, Chen CW, Meng M, Ramonell KM, Liang Z, Burd EM, Parkos CA, Ford ML, Coopersmith CM. Junctional adhesion molecule-A deletion increases phagocytosis and improves survival in a murine model of sepsis. JCI Insight 2022; 7:156255. [PMID: 35819838 PMCID: PMC9462501 DOI: 10.1172/jci.insight.156255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/07/2022] [Indexed: 11/28/2022] Open
Abstract
Expression of the tight junction–associated protein junctional adhesion molecule-A (JAM-A) is increased in sepsis, although the significance of this is unknown. Here, we show that septic JAM-A –/– mice have increased gut permeability, yet paradoxically have decreased bacteremia and systemic TNF and IL-1β expression. Survival is improved in JAM-A–/– mice. However, intestine-specific JAM-A–/– deletion does not alter mortality, suggesting that the mortality benefit conferred in mice lacking JAM-A is independent of the intestine. Septic JAM-A–/– mice have increased numbers of splenic CD44hiCD4+ T cells, decreased frequency of TNF+CD4+ cells, and elevated frequency of IL-2+CD4+ cells. Septic JAM-A–/– mice have increased numbers of B cells in mesenteric lymph nodes with elevated serum IgA and intraepithelial lymphocyte IgA production. JAM-A–/– × RAG–/– mice have improved survival compared with RAG–/– mice and identical mortality as WT mice. Gut neutrophil infiltration and neutrophil phagocytosis are increased in JAM-A–/– mice, while septic JAM-A–/– mice depleted of neutrophils lose their survival advantage. Therefore, increased bacterial clearance via neutrophils and an altered systemic inflammatory response with increased opsonizing IgA produced through the adaptive immune system results in improved survival in septic JAM-A–/– mice. JAM-A may be a therapeutic target in sepsis via immune mechanisms not related to its role in permeability.
Collapse
Affiliation(s)
- Nathan J Klingensmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - Katherine T Fay
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - David A Swift
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, United States of America
| | - Julia Mr Bazzano
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - John D Lyons
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Ching-Wen Chen
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Mei Meng
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Kimberly M Ramonell
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Zhe Liang
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Eileen M Burd
- Department of Pathology and Laboratory Medicine, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Mandy L Ford
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory Univerisity School of Medicine, Atlanta, United States of America
| |
Collapse
|
6
|
Wang J, Chen X. Junctional Adhesion Molecules: Potential Proteins in Atherosclerosis. Front Cardiovasc Med 2022; 9:888818. [PMID: 35872908 PMCID: PMC9302484 DOI: 10.3389/fcvm.2022.888818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-related processes such as endothelial barrier maintenance, leucocytes transendothelial migration, and angiogenesis. To combine and further broaden related results, this review concluded the recent progress in the roles of JAMs and predicted future studies of JAMs in the development of atherosclerosis.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoping Chen,
| |
Collapse
|
7
|
Fan S, Smith MS, Keeney J, O’Leary MN, Nusrat A, Parkos CA. JAM-A signals through the Hippo pathway to regulate intestinal epithelial proliferation. iScience 2022; 25:104316. [PMID: 35602956 PMCID: PMC9114518 DOI: 10.1016/j.isci.2022.104316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023] Open
Abstract
JAM-A is a tight-junction-associated protein that contributes to regulation of intestinal homeostasis. We report that JAM-A interacts with NF2 and LATS1, functioning as an initiator of the Hippo signaling pathway, well-known for regulation of proliferation. Consistent with these findings, we observed increased YAP activity in JAM-A-deficient intestinal epithelial cells (IEC). Furthermore, overexpression of a dimerization-deficient mutant, JAM-A-DL1, failed to initiate Hippo signaling, phenocopying JAM-A-deficient IEC, whereas overexpression of JAM-A-WT activated Hippo signaling and suppressed proliferation. Lastly, we identify EVI1, a transcription factor reported to promote cellular proliferation, as a contributor to the pro-proliferative phenotype in JAM-A-DL1 overexpressing IEC downstream of YAP. Collectively, our findings establish a new role for JAM-A as a cell-cell contact sensor, raising implications for understanding the contribution(s) of JAM-A to IEC proliferation in the mammalian epithelium.
Collapse
Affiliation(s)
- Shuling Fan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle Sydney Smith
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Justin Keeney
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Monique N. O’Leary
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Effect of F11R Gene Knockdown on Malignant Biological Behaviors of Pancreatic Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3379027. [PMID: 35295710 PMCID: PMC8920619 DOI: 10.1155/2022/3379027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
F11R receptor (F11R/junctional adhesion molecule-A/F11R-A) is preferentially concentrated at tight junctions and influences epithelial cell morphology and migration. Numerous studies have shown that the aberrant expression of F11R contributes to tumor progression including pancreatic cancer. However, the significance of F11R in various tumors is controversial, and the role of F11R in regulating the malignant behaviors of human pancreatic cancer is unknown. To investigate the role of F11R in the carcinogenesis of pancreatic cancer and the potential targets of F11R as a therapeutic target for pancreatic cancer, we knocked down F11R in the pancreatic cancer cell line PANC-1 using lentiviral approaches. We found that F11R silencing led to decreased cell proliferation, a loss of cell invasiveness, cell cycle arrest in the G1 phase, and enhanced cell apoptosis. The present results suggest that F11R may be a promising therapeutic target for pancreatic cancer.
Collapse
|
9
|
Perspectives on Vascular Regulation of Mechanisms Controlling Selective Immune Cell Function in the Tumor Immune Response. Int J Mol Sci 2022; 23:ijms23042313. [PMID: 35216427 PMCID: PMC8877013 DOI: 10.3390/ijms23042313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
The vasculature plays a major role in regulating the tumor immune cell response although the underlying mechanisms explaining such effects remain poorly understood. This review discusses current knowledge on known vascular functions with a viewpoint on how they may yield distinct immune responses. The vasculature might directly influence selective immune cell infiltration into tumors by its cell surface expression of cell adhesion molecules, expression of cytokines, cell junction properties, focal adhesions, cytoskeleton and functional capacity. This will alter the tumor microenvironment and unleash a plethora of responses that will influence the tumor’s immune status. Despite our current knowledge of numerous mechanisms operating, the field is underexplored in that few functions providing a high degree of specificity have yet been provided in relation to the enormous divergence of responses apparent in human cancers. Further exploration of this field is much warranted.
Collapse
|
10
|
Amatruda M, Chapouly C, Woo V, Safavi F, Zhang J, Dai D, Therattil A, Moon C, Villavicencio J, Gordon A, Parkos C, Horng S. Astrocytic junctional adhesion molecule-A regulates T cell entry past the glia limitans to promote central nervous system autoimmune attack. Brain Commun 2022; 4:fcac044. [PMID: 35265839 PMCID: PMC8899531 DOI: 10.1093/braincomms/fcac044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/05/2021] [Accepted: 02/16/2022] [Indexed: 11/15/2022] Open
Abstract
Contact-mediated interactions between the astrocytic endfeet and infiltrating immune cells within the perivascular space are underexplored, yet represent potential regulatory check-points against CNS autoimmune disease and disability. Reactive astrocytes upregulate junctional adhesion molecule-A, an immunoglobulin-like cell surface receptor that binds to T cells via its ligand, the integrin, lymphocyte function-associated antigen-1. Here, we tested the role of astrocytic junctional adhesion molecule-A in regulating CNS autoinflammatory disease. In cell co-cultures, we found that junctional adhesion molecule-A-mediated signalling between astrocytes and T cells increases levels of matrix metalloproteinase-2, C–C motif chemokine ligand 2 and granulocyte-macrophage colony-stimulating factor, pro-inflammatory factors driving lymphocyte entry and pathogenicity in multiple sclerosis and experimental autoimmune encephalomyelitis, an animal model of CNS autoimmune disease. In experimental autoimmune encephalomyelitis, mice with astrocyte-specific JAM-A deletion (mGFAP:CreJAM-Afl/fl) exhibit decreased levels of matrix metalloproteinase-2, reduced ability of T cells to infiltrate the CNS parenchyma from the perivascular spaces and a milder histopathological and clinical course of disease compared with wild-type controls (JAM-Afl/fl). Treatment of wild-type mice with intraperitoneal injection of soluble junctional adhesion molecule-A blocking peptide decreases the severity of experimental autoimmune encephalomyelitis, highlighting the potential of contact-mediated astrocyte–immune cell signalling as a novel translational target against neuroinflammatory disease.
Collapse
Affiliation(s)
| | | | - Viola Woo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farinaz Safavi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Joy Zhang
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David Dai
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chang Moon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Villavicencio
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Gordon
- Miller School of Medicine at University of Miami, Miami, FL, USA
| | - Charles Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sam Horng
- Correspondence to: Sam Horng, MD, PhD Icahn School of Medicine at Mount Sinai Icahn 10-20A, 1468 Madison Avenue New York NY, 10029, USA E-mail:
| |
Collapse
|
11
|
Takeuchi H, Nakamura E, Yamaga S, Amano A. Porphyromonas gingivalis Infection Induces Lipopolysaccharide and Peptidoglycan Penetration Through Gingival Epithelium. FRONTIERS IN ORAL HEALTH 2022; 3:845002. [PMID: 35211692 PMCID: PMC8861192 DOI: 10.3389/froh.2022.845002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Periodontal diseases initiate on epithelial surfaces of the subgingival compartment, while the gingival epithelium functions as an epithelial barrier against microbial infection and orchestrates immune responses. Porphyromonas gingivalis is a major pathogen of periodontal diseases and has an ability to penetrate the epithelial barrier. To assess the molecular basis of gingival epithelial barrier dysfunction associated with P. gingivalis, we newly developed a three-dimensional multilayered tissue model of gingival epithelium with gene manipulation. Using this novel approach, P. gingivalis gingipains including Arg- or Lys-specific cysteine proteases were found to specifically degrade junctional adhesion molecule 1 and coxsackievirus and adenovirus receptor in the tissue model, leading to increased permeability for lipopolysaccharide, peptidoglycan, and gingipains. This review summarizes the strategy used by P. gingivalis to disable the epithelial barrier by disrupting specific junctional adhesion molecules.
Collapse
Affiliation(s)
- Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Dental Hospital, Suita, Japan
- *Correspondence: Hiroki Takeuchi
| | - Eriko Nakamura
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shunsuke Yamaga
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Thölmann S, Seebach J, Otani T, Florin L, Schnittler H, Gerke V, Furuse M, Ebnet K. JAM-A interacts with α3β1 integrin and tetraspanins CD151 and CD9 to regulate collective cell migration of polarized epithelial cells. Cell Mol Life Sci 2022; 79:88. [PMID: 35067832 PMCID: PMC8784505 DOI: 10.1007/s00018-022-04140-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023]
Abstract
AbstractJunctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell–cell contacts with enrichment at the tight junctions. Its role during cell–cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3β1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3β1 integrin and regulate α3β1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3β1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3β1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3β1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.
Collapse
Affiliation(s)
- Sonja Thölmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
13
|
Lampis A, Hahne JC, Gasparini P, Cascione L, Hedayat S, Vlachogiannis G, Murgia C, Fontana E, Edwards J, Horgan PG, Terracciano L, Sansom OJ, Martins CD, Kramer-Marek G, Croce CM, Braconi C, Fassan M, Valeri N. MIR21-induced loss of junctional adhesion molecule A promotes activation of oncogenic pathways, progression and metastasis in colorectal cancer. Cell Death Differ 2021; 28:2970-2982. [PMID: 34226680 PMCID: PMC8481293 DOI: 10.1038/s41418-021-00820-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
Junctional adhesion molecules (JAMs) play a critical role in cell permeability, polarity and migration. JAM-A, a key protein of the JAM family, is altered in a number of conditions including cancer; however, consequences of JAM-A dysregulation on carcinogenesis appear to be tissue dependent and organ dependent with significant implications for the use of JAM-A as a biomarker or therapeutic target. Here, we test the expression and prognostic role of JAM-A downregulation in primary and metastatic colorectal cancer (CRC) (n = 947). We show that JAM-A downregulation is observed in ~60% of CRC and correlates with poor outcome in four cohorts of stages II and III CRC (n = 1098). Using JAM-A knockdown, re-expression and rescue experiments in cell line monolayers, 3D spheroids, patient-derived organoids and xenotransplants, we demonstrate that JAM-A silencing promotes proliferation and migration in 2D and 3D cell models and increases tumour volume and metastases in vivo. Using gene-expression and proteomic analyses, we show that JAM-A downregulation results in the activation of ERK, AKT and ROCK pathways and leads to decreased bone morphogenetic protein 7 expression. We identify MIR21 upregulation as the cause of JAM-A downregulation and show that JAM-A rescue mitigates the effects of MIR21 overexpression on cancer phenotype. Our results identify a novel molecular loop involving MIR21 dysregulation, JAM-A silencing and activation of multiple oncogenic pathways in promoting invasiveness and metastasis in CRC.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jens C Hahne
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Luciano Cascione
- Bioinformatics Core Unit, Institute of Oncology Research (IOR), Faculty of Biomedical Sciences, Università della Svizzera italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Somaieh Hedayat
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Georgios Vlachogiannis
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | | | - Elisa Fontana
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Paul G Horgan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Luigi Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Carlos D Martins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Matteo Fassan
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medicine, Surgical Pathology Unit, University of Padua, Padua, Italy
- Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico, Padua, Italy
| | - Nicola Valeri
- Division of Molecular Pathology, Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
- Department of Medicine, The Royal Marsden Hospital, London, UK.
- Division of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
14
|
Lei H, Crawford MS, McCole DF. JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2021; 14:840. [PMID: 34577540 PMCID: PMC8466350 DOI: 10.3390/ph14090840] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The epithelial barrier forms the interface between luminal microbes and the host immune system and is the first site of exposure to many of the environmental factors that trigger disease activity in chronic inflammatory bowel disease (IBD). Disruption of the epithelial barrier, in the form of increased intestinal permeability, is a feature of IBD and other inflammatory diseases, including celiac disease and type 1 diabetes. Variants in genes that regulate or belong to the JAK-STAT signaling pathway are associated with IBD risk. Inhibitors of the JAK-STAT pathway are now effective therapeutic options in IBD. This review will discuss emerging evidence that JAK inhibitors can be used to improve defects in intestinal permeability and how this plays a key role in resolving intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Declan F. McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.L.); (M.S.C.)
| |
Collapse
|
15
|
Monaco A, Ovryn B, Axis J, Amsler K. The Epithelial Cell Leak Pathway. Int J Mol Sci 2021; 22:ijms22147677. [PMID: 34299297 PMCID: PMC8305272 DOI: 10.3390/ijms22147677] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA;
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
- Correspondence: ; Tel.: +1-516-686-3716
| |
Collapse
|
16
|
Lei Z, Yang L, Lei Y, Yang Y, Zhang X, Song Q, Chen G, Liu W, Wu H, Guo J. High dose lithium chloride causes colitis through activating F4/80 positive macrophages and inhibiting expression of Pigr and Claudin-15 in the colon of mice. Toxicology 2021; 457:152799. [PMID: 33901603 DOI: 10.1016/j.tox.2021.152799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Lithium chloride (LiCl) was a mood stabilizer for bipolar affective disorders and it could activate Wnt/β-catenin signaling pathway both in vivo and in vitro. Colon is one of a very susceptible tissues to Wnt signaling pathway, and so it would be very essential to explore the toxic effect of a high dose of LiCl on colon. METHODS C57BL/6 mice were injected intraperitoneally with 200 mg/kg LiCl one dose a day for 5 days to activate Wnt signal pathway in intestines. H&E staining was used to assess the colonic tissues of mice treated with high dose of LiCl. The expression of inflammation-associated genes and tight junction-associated genes in colons was measured using qPCR, Western blot and immunostaining methods. The gut microbiome was tested through 16S rDNA gene analysis. RESULTS The differentiation of enteroendocrine cells in colon was inhibited by treatment of 200 mg/kg LiCl. The F4/80 positive macrophages in colon were activated by high dose of LiCl, and migrated from the submucosa to the lamina propria. The expression of pro-inflammatory genes TNFα and IL-1β was increased in the colon of high dose of LiCl treated mice. Clostridium_sp_k4410MGS_306 and Prevotellaceae_UCG_001 were specific and predominant for the high dose of LiCl treated mice. The expression of IgA coding genes, Pigr and Claudin-15 was significantly decreased in the colon tissues of the high dose of LiCl treated mice. CONCLUSION 200 mg/kg LiCl might cause the inflammation in colon of mice through activating F4/80 positive macrophages and inhibiting the expression of IgA coding genes in plasma cells and the expression of Pigr and Claudin-15 in colonic epithelial cells, providing evidences for the toxic effects of high dose of LiCl on colon.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| | - Lanxiang Yang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yuting Lei
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine), Guangdong Pharmaceutical University, Nong-Lin-Xia Road 19#, Yue-Xiu District, Guangzhou 510080, PR China
| | - Xueying Zhang
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Qi Song
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Guibin Chen
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Wanwan Liu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Huijuan Wu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Disease, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, 510006, PR China.
| |
Collapse
|
17
|
Patnaude L, Mayo M, Mario R, Wu X, Knight H, Creamer K, Wilson S, Pivorunas V, Karman J, Phillips L, Dunstan R, Kamath RV, McRae B, Terrillon S. Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci 2021; 271:119195. [PMID: 33581125 DOI: 10.1016/j.lfs.2021.119195] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ulcerative colitis and Crohn's disease, collectively known as inflammatory bowel disease (IBD), are chronic inflammatory disorders of the intestine for which key elements in disease initiation and perpetuation are defects in epithelial barrier integrity. Achieving mucosal healing is essential to ameliorate disease outcome and so new therapies leading to epithelial homeostasis and repair are under investigation. This study was designed to determine the mechanisms by which IL-22 regulates intestinal epithelial cell function. MAIN METHODS Human intestinal organoids and resections, as well as mice were used to evaluate the effect of IL-22 on stem cell expansion, proliferation and expression of mucus components. IL-22 effect on barrier function was assessed in polarized T-84 cell monolayers. Butyrate co-treatments and organoid co-cultures with immune cells were performed to monitor the impact of microbial-derived metabolites and inflammatory environments on IL-22 responses. KEY FINDINGS IL-22 led to epithelial stem cell expansion, proliferation, barrier dysfunction and anti-microbial peptide production in human and mouse models evaluated. IL-22 also altered the mucus layer by inducing an increase in membrane mucus but a decrease in secreted mucus and goblet cell content. IL-22 had the same effect on anti-microbial peptides and membrane mucus in both healthy and IBD human samples. In contrast, this IL-22-associated epithelial phenotype was different when treatments were performed in presence of butyrate and organoids co-cultured with immune cells. SIGNIFICANCE Our data indicate that IL-22 promotes epithelial regeneration, innate defense and membrane mucus production, strongly supporting the potential clinical utility of IL-22 as a mucosal healing therapy in IBD.
Collapse
Affiliation(s)
- Lori Patnaude
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Martha Mayo
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Regina Mario
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Xiaoming Wu
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Kelly Creamer
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sarah Wilson
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Valerie Pivorunas
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Jozsef Karman
- Abbvie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139, USA
| | - Lucy Phillips
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Robert Dunstan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Rajesh V Kamath
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Bradford McRae
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA
| | - Sonia Terrillon
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA 01605, USA.
| |
Collapse
|
18
|
Boerner K, Luissint AC, Parkos CA. Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice using a Standardized Intestinal Loop Model. J Vis Exp 2021. [PMID: 33645571 PMCID: PMC11404721 DOI: 10.3791/62093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The intestinal mucosa is lined by a single layer of epithelial cells that forms a dynamic barrier allowing paracellular transport of nutrients and water while preventing passage of luminal bacteria and exogenous substances. A breach of this layer results in increased permeability to luminal contents and recruitment of immune cells, both of which are hallmarks of pathologic states in the gut including inflammatory bowel disease (IBD). Mechanisms regulating epithelial barrier function and transepithelial migration (TEpM) of polymorphonuclear neutrophils (PMN) are incompletely understood due to the lack of experimental in vivo methods allowing quantitative analyses. Here, we describe a robust murine experimental model that employs an exteriorized intestinal segment of either ileum or proximal colon. The exteriorized intestinal loop (iLoop) is fully vascularized and offers physiological advantages over ex vivo chamber-based approaches commonly used to study permeability and PMN migration across epithelial cell monolayers. We demonstrate two applications of this model in detail: (1) quantitative measurement of intestinal permeability through detection of fluorescence-labeled dextrans in serum after intraluminal injection, (2) quantitative assessment of migrated PMN across the intestinal epithelium into the gut lumen after intraluminal introduction of chemoattractants. We demonstrate feasibility of this model and provide results utilizing the iLoop in mice lacking the epithelial tight junction-associated protein JAM-A compared to controls. JAM-A has been shown to regulate epithelial barrier function as well as PMN TEpM during inflammatory responses. Our results using the iLoop confirm previous studies and highlight the importance of JAM-A in regulation of intestinal permeability and PMN TEpM in vivo during homeostasis and disease. The iLoop model provides a highly standardized method for reproducible in vivo studies of intestinal homeostasis and inflammation and will significantly enhance understanding of intestinal barrier function and mucosal inflammation in diseases such as IBD.
Collapse
Affiliation(s)
- Kevin Boerner
- Department of Pathology, University of Michigan, Ann Arbor
| | | | | |
Collapse
|
19
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
20
|
Lu F, Li Y, Zhou B, Guo Q, Zhang Y. Early-life supplementation of grape polyphenol extract promotes polyphenol absorption and modulates the intestinal microbiota in association with the increase in mRNA expression of the key intestinal barrier genes. Food Funct 2021; 12:602-613. [PMID: 33346297 DOI: 10.1039/d0fo02231d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early-life nutritional supplementation can dramatically influence health status. Dietary polyphenols are a widespread group of phytochemicals with potential bioactive functions. However, how polyphenol intake during early life affects health status remains largely unknown. Mice aged 3- and 6-weeks were used to investigate how grape polyphenol extract (GPE) administration during early life altered polyphenol absorption, the intestinal microbiota, and the intestinal barrier. After a 2-week GPE supplementation, there were more diverse polyphenol metabolites in the plasma of 3-week-old mice than in the plasma of 6-week-old mice. Correspondingly, GPE supplementation increased the mRNA expression of genes related to polyphenol absorption in 3-week-old mice but not 6-week-old mice. Early-life GPE administration also stimulated the key genes of the small intestinal barrier in mice. Moreover, the key genes of the small intestinal barrier were positively associated with the genes related to polyphenol absorption in the small intestine of 3-week-old mice. In addition, fecal Akkermansia and Lactobacillus were increased, as evidenced by 16S rRNA gene sequencing. As a result, the acetate and butyrate production in the large intestinal content was enhanced, and the mRNA expression of the key genes involved in the large intestinal barrier was also increased. Thus, our study demonstrates that dietary polyphenol intake in early life induces improvements in polyphenol absorption, the intestinal microbiota, and the intestinal barrier, suggesting the importance of polyphenol-rich nutritional programming during early life on health status.
Collapse
Affiliation(s)
- Feng Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | | | | | | | | |
Collapse
|
21
|
Schlegel N, Boerner K, Waschke J. Targeting desmosomal adhesion and signalling for intestinal barrier stabilization in inflammatory bowel diseases-Lessons from experimental models and patients. Acta Physiol (Oxf) 2021; 231:e13492. [PMID: 32419327 DOI: 10.1111/apha.13492] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel diseases (IBD) such as Crohn's disease (CD) and Ulcerative colitis (UC) have a complex and multifactorial pathogenesis which is incompletely understood. A typical feature closely associated with clinical symptoms is impaired intestinal epithelial barrier function. Mounting evidence suggests that desmosomes, which together with tight junctions (TJ) and adherens junctions (AJ) form the intestinal epithelial barrier, play a distinct role in IBD pathogenesis. This is based on the finding that desmoglein (Dsg) 2, a cadherin-type adhesion molecule of desmosomes, is required for maintenance of intestinal barrier properties both in vitro and in vivo, presumably via Dsg2-mediated regulation of TJ. Mice deficient for intestinal Dsg2 show increased basal permeability and are highly susceptible to experimental colitis. In several cohorts of IBD patients, intestinal protein levels of Dsg2 are reduced and desmosome ultrastructure is altered suggesting that Dsg2 is involved in IBD pathogenesis. In addition to its adhesive function, Dsg2 contributes to enterocyte cohesion and intestinal barrier function. Dsg2 is also involved in enterocyte proliferation, barrier differentiation and induction of apoptosis, in part by regulation of p38MAPK and EGFR signalling. In IBD, the function of Dsg2 appears to be compromised via p38MAPK activation, which is a critical pathway for regulation of desmosomes and is associated with keratin phosphorylation in IBD patients. In this review, the current findings on the role of Dsg2 as a novel promising target to prevent loss of intestinal barrier function in IBD patients are discussed.
Collapse
Affiliation(s)
- Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Kevin Boerner
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery Julius‐Maximilians‐Universität Würzburg Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Faculty of Medicine Ludwig Maximilians University Munich Munich Germany
| |
Collapse
|
22
|
Dual Role of the PTPN13 Tyrosine Phosphatase in Cancer. Biomolecules 2020; 10:biom10121659. [PMID: 33322542 PMCID: PMC7763032 DOI: 10.3390/biom10121659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023] Open
Abstract
In this review article, we present the current knowledge on PTPN13, a class I non-receptor protein tyrosine phosphatase identified in 1994. We focus particularly on its role in cancer, where PTPN13 acts as an oncogenic protein and also a tumor suppressor. To try to understand these apparent contradictory functions, we discuss PTPN13 implication in the FAS and oncogenic tyrosine kinase signaling pathways and in the associated biological activities, as well as its post-transcriptional and epigenetic regulation. Then, we describe PTPN13 clinical significance as a prognostic marker in different cancer types and its impact on anti-cancer treatment sensitivity. Finally, we present future research axes following recent findings on its role in cell junction regulation that implicate PTPN13 in cell death and cell migration, two major hallmarks of tumor formation and progression.
Collapse
|
23
|
Bonilha CS, Benson RA, Brewer JM, Garside P. Targeting Opposing Immunological Roles of the Junctional Adhesion Molecule-A in Autoimmunity and Cancer. Front Immunol 2020; 11:602094. [PMID: 33324419 PMCID: PMC7723963 DOI: 10.3389/fimmu.2020.602094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
The junctional adhesion molecule-A (JAM-A) is a cell surface adhesion molecule expressed on platelets, epithelial cells, endothelial cells and leukocytes (e. g. monocytes and dendritic cells). JAM-A plays a relevant role in leukocyte trafficking and its therapeutic potential has been studied in several pathological conditions due to its capacity to induce leukocyte migration out of inflamed sites or infiltration into tumor sites. However, disruption of JAM-A pathways may worsen clinical pathology in some cases. As such, the effects of JAM-A manipulation on modulating immune responses in the context of different diseases must be better understood. In this mini-review, we discuss the potential of JAM-A as a therapeutic target, summarizing findings from studies manipulating JAM-A in the context of inflammatory diseases (e.g. autoimmune diseases) and cancer and highlighting described mechanisms.
Collapse
Affiliation(s)
- Caio S. Bonilha
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Robert A. Benson
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Research and Development Department, Antibody Analytics Ltd., Newhouse, Lanarkshire, United Kingdom
| | - James M. Brewer
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
24
|
Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183299. [DOI: 10.1016/j.bbamem.2020.183299] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
|
25
|
Lauko A, Mu Z, Gutmann DH, Naik UP, Lathia JD. Junctional Adhesion Molecules in Cancer: A Paradigm for the Diverse Functions of Cell-Cell Interactions in Tumor Progression. Cancer Res 2020; 80:4878-4885. [PMID: 32816855 DOI: 10.1158/0008-5472.can-20-1829] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 01/22/2023]
Abstract
Tight junction (TJ) proteins are essential for mediating interactions between adjacent cells and coordinating cellular and organ responses. Initial investigations into TJ proteins and junctional adhesion molecules (JAM) in cancer suggested a tumor-suppressive role where decreased expression led to increased metastasis. However, recent studies of the JAM family members JAM-A and JAM-C have expanded the roles of these proteins to include protumorigenic functions, including inhibition of apoptosis and promotion of proliferation, cancer stem cell biology, and epithelial-to-mesenchymal transition. JAM function by interacting with other proteins through three distinct molecular mechanisms: direct cell-cell interaction on adjacent cells, stabilization of adjacent cell surface receptors on the same cell, and interactions between JAM and cell surface receptors expressed on adjacent cells. Collectively, these diverse interactions contribute to both the pro- and antitumorigenic functions of JAM. In this review, we discuss these context-dependent functions of JAM in a variety of cancers and highlight key areas that remain poorly understood, including their potentially diverse intracellular signaling networks, their roles in the tumor microenvironment, and the consequences of posttranslational modifications on their function. These studies have implications in furthering our understanding of JAM in cancer and provide a paradigm for exploring additional roles of TJ proteins.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Zhaomei Mu
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David H Gutmann
- Washington University School of Medicine, St. Louis, Missouri
| | - Ulhas P Naik
- Cardeza Center for Vascular Biology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. .,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
26
|
Post-translational modifications of tight junction transmembrane proteins and their direct effect on barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183330. [PMID: 32376223 DOI: 10.1016/j.bbamem.2020.183330] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTMs) such as phosphorylation, ubiquitination or glycosylation are processes affecting the conformation, stability, localization and function of proteins. There is clear evidence that PTMs can act upon tight junction (TJ) proteins, thus modulating epithelial barrier function. Compared to transcriptional or translational regulation, PTMs are rapid and more dynamic processes so in the context of barrier maintenance they might be essential for coping with changing environmental or external impacts. The aim of this review is to extract literature deciphering PTMs in TJ proteins directly contributing to epithelial barrier changes in permeability to ions and macromolecules. It is not intended to cover the entire scope of PTMs in TJ proteins and should rather be understood as a digest of TJ protein modifications directly resulting in the tightening or opening of the epithelial barrier.
Collapse
|
27
|
Flemming S, Luissint AC, Kusters DHM, Raya-Sandino A, Fan S, Zhou DW, Hasegawa M, Garcia-Hernandez V, García AJ, Parkos CA, Nusrat A. Desmocollin-2 promotes intestinal mucosal repair by controlling integrin-dependent cell adhesion and migration. Mol Biol Cell 2020; 31:407-418. [PMID: 31967937 PMCID: PMC7185897 DOI: 10.1091/mbc.e19-12-0692] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis. Intestinal epithelial cells (IEC) exclusively express the desmosomal cadherins, Desmoglein-2 and Desmocollin-2 (Dsc2) that contribute to mucosal homeostasis by strengthening intercellular adhesion between cells. Despite this important property, specific contributions of desmosomal cadherins to intestinal mucosal repair after injury remain poorly investigated in vivo. Here we show that mice with inducible conditional knockdown (KD) of Dsc2 in IEC (Villin-CreERT2; Dsc2 fl/fl) exhibited impaired mucosal repair after biopsy-induced colonic wounding and recovery from dextran sulfate sodium-induced colitis. In vitro analyses using human intestinal cell lines after KD of Dsc2 revealed delayed epithelial cell migration and repair after scratch-wound healing assay that was associated with reduced cell–matrix traction forces, decreased levels of integrin β1 and β4, and altered activity of the small GTPase Rap1. Taken together, these results demonstrate that epithelial Dsc2 is a key contributor to intestinal mucosal wound healing in vivo.
Collapse
Affiliation(s)
- Sven Flemming
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | - Shuling Fan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Dennis W Zhou
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Mizuho Hasegawa
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Enteropathogenic Escherichia coli (EPEC) Recruitment of PAR Polarity Protein Atypical PKCζ to Pedestals and Cell-Cell Contacts Precedes Disruption of Tight Junctions in Intestinal Epithelial Cells. Int J Mol Sci 2020; 21:ijms21020527. [PMID: 31947656 PMCID: PMC7014222 DOI: 10.3390/ijms21020527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type three secretion system to inject effector proteins into host intestinal epithelial cells, causing diarrhea. EPEC induces the formation of pedestals underlying attached bacteria, disrupts tight junction (TJ) structure and function, and alters apico-basal polarity by redistributing the polarity proteins Crb3 and Pals1, although the mechanisms are unknown. Here we investigate the temporal relationship of PAR polarity complex and TJ disruption following EPEC infection. EPEC recruits active aPKCζ, a PAR polarity protein, to actin within pedestals and at the plasma membrane prior to disrupting TJ. The EPEC effector EspF binds the endocytic protein sorting nexin 9 (SNX9). This interaction impacts actin pedestal organization, recruitment of active aPKCζ to actin at cell–cell borders, endocytosis of JAM-A S285 and occludin, and TJ barrier function. Collectively, data presented herein support the hypothesis that EPEC-induced perturbation of TJ is a downstream effect of disruption of the PAR complex and that EspF binding to SNX9 contributes to this phenotype. aPKCζ phosphorylates polarity and TJ proteins and participates in actin dynamics. Therefore, the early recruitment of aPKCζ to EPEC pedestals and increased interaction with actin at the membrane may destabilize polarity complexes ultimately resulting in perturbation of TJ.
Collapse
|