1
|
Tasaki K, Satoda Y, Chiba S, Shin HW, Katoh Y, Nakayama K. Mutually independent and cilia-independent assembly of IFT-A and IFT-B complexes at mother centriole. Mol Biol Cell 2025; 36:ar48. [PMID: 40020180 PMCID: PMC12005097 DOI: 10.1091/mbc.e24-11-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes and powered by dynein-2 and kinesin-2 motors, is crucial for bidirectional trafficking of ciliary proteins and their import/export across the transition zone (TZ). Stepwise assembly of anterograde IFT trains was proposed previously; that is, the IFT-B complex first forms a TZ-tethered scaffold with sequential incorporation of IFT-A, dynein-2, and finally kinesin-2. However, IFT-A and IFT-B complexes also demonstrate distinct localization to the basal body/mother centriole. We show that IFT-A, IFT-B, and dynein-2 complexes are recruited to the mother centriole independently of ciliogenesis. Furthermore, mother centriole recruitment of IFT-A and IFT-B can occur in the absence of IFT-B and IFT-A, respectively, and dynein-2 recruitment is independent of IFT-A and IFT-B. Expansion microscopy revealed that the IFT-A/IFT-B pool at the basal body is distinct from that at the TZ. We conclude that IFT-A and IFT-B are recruited to the mother centriole in a mutually independent and ciliogenesis-independent manner before IFT train assembly.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Yamaguchi H, Meyer MD, Barrell WB, Faisal M, Berdeaux R, Liu KJ, Komatsu Y. The primary cilia: Orchestrating cranial neural crest cell development. Differentiation 2025; 142:100818. [PMID: 39500655 PMCID: PMC11911094 DOI: 10.1016/j.diff.2024.100818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 03/17/2025]
Abstract
Primary cilia (hereafter "cilia") are microtubule-based antenna-like organelles projecting from the surface of vertebrate cells. Cilia can serve as cellular antennae controlling cell growth and differentiation. Absent or dysfunctional cilia frequently lead to craniofacial anomalies known as craniofacial ciliopathies. However, the detailed pathological mechanisms of craniofacial ciliopathies remain unclear. This perspective discusses our current understanding of the role of cilia in cranial neural crest cells. We also describe potential mechanisms of ciliogenesis in cranial neural crest cells, which may contribute to unraveling the complex pathogenesis of craniofacial ciliopathies.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, SE1 9RT, London, UK
| | - Maryam Faisal
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Bioengineering, Rice University George R. Brown School of Engineering, 77005, Houston, TX, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; CellChorus INC, Houston, TX, USA
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, SE1 9RT, London, UK
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 77030, Houston, TX, USA.
| |
Collapse
|
3
|
Benk Vysloužil D, Bernatík O, Lánská E, Renzová T, Binó L, Lacigová A, Drahošová T, Lánský Z, Čajánek L. Tau-tubulin kinase 2 restrains microtubule-depolymerizer KIF2A to support primary cilia growth. Cell Commun Signal 2025; 23:73. [PMID: 39930500 PMCID: PMC11809056 DOI: 10.1186/s12964-025-02072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Primary cilia facilitate cellular signalling and play critical roles in development, homeostasis, and disease. Their assembly is under the control of Tau-Tubulin Kinase 2 (TTBK2), a key enzyme mutated in patients with spinocerebellar ataxia. Recent work has implicated TTBK2 in the regulation of cilia maintenance and function, but the underlying molecular mechanisms are not understood. METHODS To dissect the role of TTBK2 during cilia growth and maintenance in human cells, we examined disease-related TTBK2 truncations. We used biochemical approaches, proteomics, genetic engineering, and advanced microscopy techniques to unveil molecular events triggered by TTBK2. RESULTS We demonstrate that truncated TTBK2 protein moieties, unable to localize to the mother centriole, create unique semi-permissive conditions for cilia assembly, under which cilia begin to form but fail to elongate. Subsequently, we link the defects in cilia growth to aberrant turnover of a microtubule-depolymerizing kinesin KIF2A, which we find restrained by TTBK2 phosphorylation. CONCLUSIONS Together, our data imply that the regulation of KIF2A by TTBK2 represents an important mechanism governing cilia elongation and maintenance. Further, the requirement for concentrating TTBK2 activity to the mother centriole to initiate ciliogenesis can be under specific conditions bypassed, revealing TTBK2 recruitment-independent functions of its key partner, CEP164.
Collapse
Affiliation(s)
- David Benk Vysloužil
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Ondřej Bernatík
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Eva Lánská
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, Prague, 252 50, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12800, Czech Republic
| | - Tereza Renzová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Lucia Binó
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Andrea Lacigová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Tereza Drahošová
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic
| | - Zdeněk Lánský
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, Prague, 252 50, Czech Republic
| | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, Brno, 62500, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic.
| |
Collapse
|
4
|
Kanie T, Ng R, Abbott KL, Tanvir NM, Lorentzen E, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the preciliary vesicle at distal appendages. eLife 2025; 14:e85998. [PMID: 39882855 PMCID: PMC11984960 DOI: 10.7554/elife.85998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of preciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures preciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the preciliary vesicle recruitment, but not for other steps of cilium formation (Kanie et al., 2025). The lack of a membrane-binding motif in CEP89 suggests that it may indirectly recruit preciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and the centriole-associated vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similar to CEP89 knockouts, preciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the preciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the preciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland UniversitySaarbrückenGermany
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| |
Collapse
|
5
|
Kanie T, Liu B, Love JF, Fisher SD, Gustavsson AK, Jackson PK. A hierarchical pathway for assembly of the distal appendages that organize primary cilia. eLife 2025; 14:e85999. [PMID: 39882846 PMCID: PMC11984956 DOI: 10.7554/elife.85999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Distal appendages are ninefold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for the formation of the primary cilium, by regulating at least four critical steps: preciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here, we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in the RAB34+ vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Beibei Liu
- Department of Cell Biology, University of Oklahoma Health Sciences CenterOklahoma CityUnited States
| | - Julia F Love
- Department of Chemistry, Rice UniversityHoustonUnited States
| | - Saxton D Fisher
- Department of Chemistry, Rice UniversityHoustonUnited States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice UniversityHoustonUnited States
- Department of BioSciences, Rice UniversityHoustonUnited States
- Department of Electrical and Computer Engineering, Rice UniversityHoustonUnited States
- Smalley-Curl Institute, Rice UniversityHoustonUnited States
- Center for Nanoscale Imaging Sciences, Rice UniversityHoustonUnited States
- Department of Cancer Biology, University of Texas MD Anderson Cancer CenterHoustonUnited States
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Zuo FW, Liu ZY, Wang MW, Du JY, Ding PZ, Zhang HR, Tang W, Sun Y, Wang XJ, Zhang Y, Xie YS, Wu JC, Liu M, Wang ZY, Yi F. CCDC92 promotes podocyte injury by regulating PA28α/ABCA1/cholesterol efflux axis in type 2 diabetic mice. Acta Pharmacol Sin 2024; 45:1019-1031. [PMID: 38228909 PMCID: PMC11053164 DOI: 10.1038/s41401-023-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/18/2024]
Abstract
Podocyte lipotoxicity mediated by impaired cellular cholesterol efflux plays a crucial role in the development of diabetic kidney disease (DKD), and the identification of potential therapeutic targets that regulate podocyte cholesterol homeostasis has clinical significance. Coiled-coil domain containing 92 (CCDC92) is a novel molecule related to metabolic disorders and insulin resistance. However, whether the expression level of CCDC92 is changed in kidney parenchymal cells and the role of CCDC92 in podocytes remain unclear. In this study, we found that Ccdc92 was significantly induced in glomeruli from type 2 diabetic mice, especially in podocytes. Importantly, upregulation of Ccdc92 in glomeruli was positively correlated with an increased urine albumin-to-creatinine ratio (UACR) and podocyte loss. Functionally, podocyte-specific deletion of Ccdc92 attenuated proteinuria, glomerular expansion and podocyte injury in mice with DKD. We further demonstrated that Ccdc92 contributed to lipid accumulation by inhibiting cholesterol efflux, finally promoting podocyte injury. Mechanistically, Ccdc92 promoted the degradation of ABCA1 by regulating PA28α-mediated proteasome activity and then reduced cholesterol efflux. Thus, our studies indicate that Ccdc92 contributes to podocyte injury by regulating the PA28α/ABCA1/cholesterol efflux axis in DKD.
Collapse
Affiliation(s)
- Fu-Wen Zuo
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhi-Yong Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jun-Yao Du
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng-Zhong Ding
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hao-Ran Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu-Sheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Ji-Chao Wu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Zi-Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Felício D, Santos M. Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms. CEREBELLUM (LONDON, ENGLAND) 2024; 23:678-687. [PMID: 36892783 PMCID: PMC10951003 DOI: 10.1007/s12311-023-01540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Spinocerebellar ataxia type 11 (SCA11) is a rare type of autosomal dominant cerebellar ataxia, mainly characterized by progressive cerebellar ataxia, abnormal eye signs and dysarthria. SCA11 is caused by variants in TTBK2, which encodes tau tubulin kinase 2 (TTBK2) protein. Only a few families with SCA11 were described to date, all harbouring small deletions or insertions that result in frameshifts and truncated TTBK2 proteins. In addition, TTBK2 missense variants were also reported but they were either benign or still needed functional validation to ascertain their pathogenic potential in SCA11. The mechanisms behind cerebellar neurodegeneration mediated by TTBK2 pathogenic alleles are not clearly established. There is only one neuropathological report and a few functional studies in cell or animal models published to date. Moreover, it is still unclear whether the disease is caused by TTBK2 haploinsufficiency of by a dominant negative effect of TTBK2 truncated forms on the normal allele. Some studies point to a lack of kinase activity and mislocalization of mutated TTBK2, while others reported a disruption of normal TTBK2 function caused by SCA11 alleles, particularly during ciliogenesis. Although TTBK2 has a proven function in cilia formation, the phenotype caused by heterozygous TTBK2 truncating variants are not clearly typical of ciliopathies. Thus, other cellular mechanisms may explain the phenotype seen in SCA11. Neurotoxicity caused by impaired TTBK2 kinase activity against known neuronal targets, such as tau, TDP-43, neurotransmitter receptors or transporters, may contribute to neurodegeneration in SCA11.
Collapse
Affiliation(s)
- Daniela Felício
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS, Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Mariana Santos
- UnIGENe, IBMC-Institute for Molecular and Cell Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
8
|
Luo R, Zeng X, Li P, Hu S, Qi X. TTBK2 T3290C mutation in spinocerebellar ataxia 11 interferes with ciliogenesis. Transl Neurosci 2024; 15:20220353. [PMID: 39380965 PMCID: PMC11459611 DOI: 10.1515/tnsci-2022-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
This study aimed to elucidate the impact of the TTBK2 T3290C mutation (MUT) associated with Spinocerebellar Ataxia 11 (SCA11) on TTBK2 expression, function, and ciliogenesis. Lymphocytes were isolated from peripheral blood samples of SCA11 family members with the MUT and healthy controls (wild-type, WT). HEK-293 cells transfected with either WT or MUT TTBK2 plasmids were used to assess the MUT's impact on TTBK2 protein expression, enzymatic activity, and its binding to Cep164 protein. Mouse embryonic fibroblast cells transfected with WT or MUT TTBK2 plasmids examined the MUT's effect on cilia formation. Clinically, there was no significant difference in the expression of TTBK2 between the SCA11 patients and healthy individuals. The TTBK2 T3290C MUT did not affect protein expression or enzymatic activity but did reduce ciliary formation in embryonic cells and decreased binding affinity to Cep164. Therefore, our data suggested that the TTBK2 T3290C MUT in SCA11 may impair ciliogenesis by weakening the interaction with Cep164.
Collapse
Affiliation(s)
- Ruiqing Luo
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xiaoxia Zeng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Ping Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Shuai Hu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xueliang Qi
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
9
|
Wang Y, Wang Y, Zhou J, Ying P, Wang Z, Wu Y, Hao M, Qiu S, Jin H, Wang X. A novel coiled-coil domain containing-related gene signature for predicting prognosis and treatment effect of breast cancer. J Cancer Res Clin Oncol 2023; 149:14205-14225. [PMID: 37558766 DOI: 10.1007/s00432-023-05222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Breast cancer (BRCA) is a prevalent tumor worldwide. The association between the coiled-coil domain-containing (CCDC) protein family and different tumors has been established. However, the prognostic significance of this protein family in breast cancer remains uncertain. METHODS Gene expression and clinical data were obtained from the TCGA, METABRIC, and GEO databases. Prognosis genes were identified using univariate Cox and LASSO Cox regression, leading to the establishment of a prognostic signature. Subsequently, the risk model was conducted based on survival and clinical feature analyses, and a nomogram for prognosis prediction was developed. Furthermore, analyses of biological function, immune characteristics, and drug sensitivity were performed. Finally, single-cell sequencing data were utilized to uncover the expression patterns of genes in the risk model. RESULTS Five genes were identified and utilized for risk modeling. The model demonstrated excellent prognostic value as indicated by ROC and Kaplan-Meier analysis. The high-risk group exhibited shorter survival time and higher likelihood of recurrence. Functional annotation indicated a correlation between the risk score and immune pathways. Conversely, the low-risk group displayed a greater enrichment in immune pathways and exhibited more active immune microenvironment characteristics. Additionally, drug sensitivity analysis using both public and our sequencing data revealed that the risk model possessed a broad range of predictive values. CONCLUSIONS We have developed a gene signature and have verified that patients with low-risk are more likely to have better prognosis and respond positively to therapy. This finding offers a valuable point of reference for BRCA individualized treatment.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanmei Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Pingting Ying
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Wu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minyan Hao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuying Qiu
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang Province, Cancer Center of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Binó L, Čajánek L. Tau tubulin kinase 1 and 2 regulate ciliogenesis and human pluripotent stem cells-derived neural rosettes. Sci Rep 2023; 13:12884. [PMID: 37558899 PMCID: PMC10412607 DOI: 10.1038/s41598-023-39887-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Primary cilia are key regulators of embryo development and tissue homeostasis. However, their mechanisms and functions, particularly in the context of human cells, are still unclear. Here, we analyzed the consequences of primary cilia modulation for human pluripotent stem cells (hPSCs) proliferation and differentiation. We report that neither activation of the cilia-associated Hedgehog signaling pathway nor ablation of primary cilia by CRISPR gene editing to knockout Tau Tubulin Kinase 2 (TTBK2), a crucial ciliogenesis regulator, affects the self-renewal of hPSCs. Further, we show that TTBK1, a related kinase without previous links to ciliogenesis, is upregulated during hPSCs-derived neural rosette differentiation. Importantly, we demonstrate that while TTBK1 fails to localize to the mother centriole, it regulates primary cilia formation in the differentiated, but not the undifferentiated hPSCs. Finally, we show that TTBK1/2 and primary cilia are implicated in the regulation of the size of hPSCs-derived neural rosettes.
Collapse
Affiliation(s)
- Lucia Binó
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
11
|
Bashore FM, Marquez AB, Chaikuad A, Howell S, Dunn AS, Beltran AA, Smith JL, Drewry DH, Beltran AS, Axtman AD. Modulation of tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis. Sci Rep 2023; 13:6118. [PMID: 37059819 PMCID: PMC10104807 DOI: 10.1038/s41598-023-32854-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.
Collapse
Affiliation(s)
- Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ariana B Marquez
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, 60438, Frankfurt, Germany
| | - Stefanie Howell
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea S Dunn
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alvaro A Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana S Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
12
|
Streubel JMS, Pereira G. Control of centrosome distal appendages assembly and disassembly. Cells Dev 2023; 174:203839. [PMID: 37062431 DOI: 10.1016/j.cdev.2023.203839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 04/18/2023]
Abstract
Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carry appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.
Collapse
Affiliation(s)
- Johanna M S Streubel
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany; German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany; Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
13
|
Muñoz-Estrada J, Nguyen AV, Goetz SC. TTBK2 mutations associated with spinocerebellar ataxia type 11 disrupt peroxisome dynamics and ciliary localization of SHH signaling proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526333. [PMID: 36778451 PMCID: PMC9915595 DOI: 10.1101/2023.01.31.526333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Frameshift mutations in Tau Tubulin Kinase 2 (TTBK2) cause spinocerebellar ataxia type 11 (SCA11), which is characterized by the progressive loss of Purkinje cells and cerebellar atrophy. Previous work showed that these TTBK2 variants generate truncated proteins that interfere with primary ciliary trafficking and with Sonic Hedgehog (SHH) signaling in mice. Nevertheless, the molecular mechanisms underlying the dominant interference of mutations remain unknown. Herein, we discover that SCA11-associated variants contain a bona fide peroxisomal targeting signal type 1. We find that their expression in RPE1 cells reduces peroxisome numbers within the cell and at the base of the cilia, disrupts peroxisome fission pathways, and impairs trafficking of ciliary SMO upon SHH signaling activation. This work uncovers a neomorphic function of SCA11-causing mutations and identifies requirements for both peroxisomes and cholesterol in trafficking of cilia-localized SHH signaling proteins. In addition, we postulate that molecular mechanisms underlying cellular dysfunction in SCA11 converge on the SHH signaling pathway.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Abraham V Nguyen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
- Molecular Cancer Biology Program, Duke University School of Medicine, Durham, NC 27710
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
14
|
Ma D, Wang F, Teng J, Huang N, Chen J. Structure and function of distal and subdistal appendages of the mother centriole. J Cell Sci 2023; 136:286880. [PMID: 36727648 DOI: 10.1242/jcs.260560] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Centrosomes are composed of centrioles surrounded by pericentriolar material. The two centrioles in G1 phase are distinguished by the localization of their appendages in the distal and subdistal regions; the centriole possessing both types of appendage is older and referred to as the mother centriole, whereas the other centriole lacking appendages is the daughter centriole. Both distal and subdistal appendages in vertebrate cells consist of multiple proteins assembled in a hierarchical manner. Distal appendages function mainly in the initial process of ciliogenesis, and subdistal appendages are involved in microtubule anchoring, mitotic spindle regulation and maintenance of ciliary signaling. Mutations in genes encoding components of both appendage types are implicated in ciliopathies and developmental defects. In this Review, we discuss recent advances in knowledge regarding the composition and assembly of centriolar appendages, as well as their roles in development and disease.
Collapse
Affiliation(s)
- Dandan Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fulin Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.,Center for Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol 2023; 133:20-31. [PMID: 35351373 PMCID: PMC9510604 DOI: 10.1016/j.semcdb.2022.03.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022]
Abstract
Ciliogenesis is a complex multistep process used to describe assembly of cilia and flagella. These organelles play essential roles in motility and signaling on the surface of cells. Cilia are built at the distal ends of centrioles through the formation of an axoneme that is surrounded by the ciliary membrane. As is the case in the biogenesis of other cellular organelles, regulators of membrane trafficking play essential roles in ciliogenesis, albeit with a unique feature that membranes are organized around microtubule-based structures. Membrane association with the distal end of the centriole is a critical initiating step for ciliogenesis. Studies of this process in different cell types suggests that a singular mechanism may not be utilized to initiate cilium assembly. In this review, we focus on recent insights into cilium biogenesis and the roles membrane trafficking regulators play in described ciliogenesis mechanisms with relevance to human disease.
Collapse
Affiliation(s)
- Huijie Zhao
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Ziam Khan
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, NCI Frederick, Laboratory of Cellular and Developmental, Signaling, Frederick, MD 21702, USA.
| |
Collapse
|
16
|
Kanie T, Ng R, Abbott KL, Pongs O, Jackson PK. Myristoylated Neuronal Calcium Sensor-1 captures the ciliary vesicle at distal appendages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523037. [PMID: 36712037 PMCID: PMC9881967 DOI: 10.1101/2023.01.06.523037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for thef ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing proper localization to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Roy Ng
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Keene L. Abbott
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| | - Olaf Pongs
- Institute for Physiology, Center for Integrative Physiology and Molecular Medicine (CIPPM), Saarland University, Homburg, Germany
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
17
|
Kanie T, Love JF, Fisher SD, Gustavsson AK, Jackson PK. A hierarchical pathway for assembly of the distal appendages that organize primary cilia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522944. [PMID: 36711481 PMCID: PMC9881904 DOI: 10.1101/2023.01.06.522944] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, C3ORF14) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assay revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.
Collapse
Affiliation(s)
- Tomoharu Kanie
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK, 73112
| | - Julia F. Love
- Department of Chemistry, Rice University, Houston, TX, 77005
| | | | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, 77005
- Department of BioSciences, Rice University, Houston, TX, 77005
- Smalley-Curl Institute, Rice University, Houston, TX, 77005
- Institute of Biosciences and Bioengineering, Rice University, Houston, TX, 77005
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Peter K. Jackson
- Baxter Laboratory, Department of Microbiology & Immunology and Department of Pathology, Stanford University, Stanford, CA, 94305
| |
Collapse
|
18
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
19
|
Nguyen A, Goetz SC. TTBK2 controls cilium stability by regulating distinct modules of centrosomal proteins. Mol Biol Cell 2022; 34:ar8. [PMID: 36322399 PMCID: PMC9816645 DOI: 10.1091/mbc.e22-08-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase tau tubulin kinase 2 (TTBK2) is a key regulator of the assembly of primary cilia, which are vital signaling organelles. TTBK2 is also implicated in the stability of the assembled cilium through mechanisms that remain to be defined. Here we use mouse embryonic fibroblasts derived from Ttbk2fl/fl, UBC-CreERT+ embryos (hereafter Ttbk2cmut) to dissect the role of TTBK2 in cilium stability. This system depletes TTBK2 levels after cilia formation, allowing us to assess the molecular changes to the assembled cilium over time. As a consequence of Ttbk2 deletion, the ciliary axoneme is destabilized and primary cilia are lost within 48-72 h following recombination. Axoneme destabilization involves an increased frequency of cilia breaks and a reduction in axonemal microtubule modifications. Cilia loss was delayed by using inhibitors that affect actin-based trafficking. At the same time, we find that TTBK2 is required to regulate the composition of the centriolar satellites and to maintain the basal body pools of intraflagellar transport proteins. Altogether, our results reveal parallel pathways by which TTBK2 maintains cilium stability.
Collapse
Affiliation(s)
- Abraham Nguyen
- Molecular Cancer Biology Program, Duke University School of Medicine, Durham, NC 27710,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710,*Address correspondence to: Sarah C. Goetz ()
| |
Collapse
|
20
|
Reed M, Takemaru KI, Ying G, Frederick JM, Baehr W. Deletion of CEP164 in mouse photoreceptors post-ciliogenesis interrupts ciliary intraflagellar transport (IFT). PLoS Genet 2022; 18:e1010154. [PMID: 36074756 PMCID: PMC9488791 DOI: 10.1371/journal.pgen.1010154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/20/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Centrosomal protein of 164 kDa (CEP164) is located at distal appendages of primary cilia and is necessary for basal body (BB) docking to the apical membrane. To investigate the function of photoreceptor CEP164 before and after BB docking, we deleted CEP164 during retina embryonic development (Six3Cre), in postnatal rod photoreceptors (iCre75) and in mature retina using tamoxifen induction (Prom1-ETCre). BBs dock to the cell cortex during postnatal day 6 (P6) to extend a connecting cilium (CC) and an axoneme. P6 retina-specific knockouts (retCep164-/-) are unable to dock BBs, thereby preventing formation of CC or outer segments (OSs). In rod-specific knockouts (rodCep164-/-), Cre expression starts after P7 and CC/OS form. P16 rodCep164-/- rods have nearly normal OS lengths, and maintain OS attachment through P21 despite loss of CEP164. Intraflagellar transport components (IFT88, IFT57 and IFT140) were reduced at P16 rodCep164-/- BBs and CC tips and nearly absent at P21, indicating impaired intraflagellar transport. Nascent OS discs, labeled with a fluorescent dye on P14 and P18 and harvested on P19, showed continued rodCep164-/- disc morphogenesis but absence of P14 discs mid-distally, indicating OS instability. Tamoxifen induction with PROM1ETCre;Cep164F/F (tamCep164-/-) adult mice affected maintenance of both rod and cone OSs. The results suggest that CEP164 is key towards recruitment and stabilization of IFT-B particles at the BB/CC. IFT impairment may be the main driver of ciliary malfunction observed with hypomorphic CEP164 mutations.
Collapse
Affiliation(s)
- Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Ken-Ichi Takemaru
- Stony Brook University, Department of Pharmacological Sciences, Stony Brook, New York, United States of America
| | - Guoxin Ying
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Jeanne M. Frederick
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States of America
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
21
|
van Breugel M, Rosa E Silva I, Andreeva A. Structural validation and assessment of AlphaFold2 predictions for centrosomal and centriolar proteins and their complexes. Commun Biol 2022; 5:312. [PMID: 35383272 PMCID: PMC8983713 DOI: 10.1038/s42003-022-03269-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Obtaining the high-resolution structures of proteins and their complexes is a crucial aspect of understanding the mechanisms of life. Experimental structure determination methods are time-consuming, expensive and cannot keep pace with the growing number of protein sequences available through genomic DNA sequencing. Thus, the ability to accurately predict the structure of proteins from their sequence is a holy grail of structural and computational biology that would remove a bottleneck in our efforts to understand as well as rationally engineer living systems. Recent advances in protein structure prediction, in particular the breakthrough with the AI-based tool AlphaFold2 (AF2), hold promise for achieving this goal, but the practical utility of AF2 remains to be explored. Focusing on proteins with essential roles in centrosome and centriole biogenesis, we demonstrate the quality and usability of the AF2 prediction models and we show that they can provide important insights into the modular organization of two key players in this process, CEP192 and CEP44. Furthermore, we used the AF2 algorithm to elucidate and then experimentally validate previously unknown prime features in the structure of TTBK2 bound to CEP164, as well as the Chibby1-FAM92A complex for which no structural information was available to date. These findings have important implications in understanding the regulation and function of these complexes. Finally, we also discuss some practical limitations of AF2 and anticipate the implications for future research approaches in the centriole/centrosome field.
Collapse
Affiliation(s)
- Mark van Breugel
- Queen Mary University of London, School of Biological and Behavioural Sciences, 4 Newark Street, London, E1 2AT, UK.
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ivan Rosa E Silva
- Queen Mary University of London, School of Biological and Behavioural Sciences, 4 Newark Street, London, E1 2AT, UK
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- University of Campinas, Faculty of Pharmaceutical Sciences, Cândido Portinari Street, Campinas, 13083-871, Brazil
| | - Antonina Andreeva
- Medical Research Council-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
22
|
Binó L, Mikulenková E, Štepánek L, Bernatík O, Vysloužil D, Pejšková P, Gorilák P, Huranová M, Varga V, Čajánek L. A protocol for generation and live-cell imaging analysis of primary cilia reporter cell lines. STAR Protoc 2022; 3:101199. [PMID: 35257113 PMCID: PMC8897589 DOI: 10.1016/j.xpro.2022.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary cilia are hair-like sensory organelles protruding from the surface of most human cells. As cilia are dynamic, several aspects of their biology can only be revealed by real-time analysis in living cells. Here we describe the generation of primary cilia reporter cell lines. Furthermore, we provide a detailed protocol of how to use the reporter cell lines for live-cell imaging microscopy analysis of primary cilia to study their growth as well as intraciliary transport. For complete details on the use and execution of this protocol, please refer to Bernatik et al. (2020) and Pejskova et al. (2020).
Collapse
Affiliation(s)
- Lucia Binó
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
| | - Erika Mikulenková
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
| | - Luděk Štepánek
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czechia
| | - Ondřej Bernatík
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
| | - David Vysloužil
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czechia
| | - Petra Pejšková
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
| | - Peter Gorilák
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czechia
- Charles University, Faculty of Science, Albertov 6, 128 00 Prague, Czechia
| | - Martina Huranová
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czechia
| | - Vladimír Varga
- Laboratory of Cell Motility, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czechia
| | - Lukáš Čajánek
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czechia
| |
Collapse
|
23
|
Kozeleková A, Náplavová A, Brom T, Gašparik N, Šimek J, Houser J, Hritz J. Phosphorylated and Phosphomimicking Variants May Differ—A Case Study of 14-3-3 Protein. Front Chem 2022; 10:835733. [PMID: 35321476 PMCID: PMC8935074 DOI: 10.3389/fchem.2022.835733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
Collapse
Affiliation(s)
- Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Tomáš Brom
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Šimek
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
- *Correspondence: Jozef Hritz,
| |
Collapse
|
24
|
Rosa E Silva I, Binó L, Johnson CM, Rutherford TJ, Neuhaus D, Andreeva A, Čajánek L, van Breugel M. Molecular mechanisms underlying the role of the centriolar CEP164-TTBK2 complex in ciliopathies. Structure 2022; 30:114-128.e9. [PMID: 34499853 PMCID: PMC8752127 DOI: 10.1016/j.str.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Cilia formation is essential for human life. One of the earliest events in the ciliogenesis program is the recruitment of tau-tubulin kinase 2 (TTBK2) by the centriole distal appendage component CEP164. Due to the lack of high-resolution structural information on this complex, it is unclear how it is affected in human ciliopathies such as nephronophthisis. Furthermore, it is poorly understood if binding to CEP164 influences TTBK2 activities. Here, we present a detailed biochemical, structural, and functional analysis of the CEP164-TTBK2 complex and demonstrate how it is compromised by two ciliopathic mutations in CEP164. Moreover, we also provide insights into how binding to CEP164 is coordinated with TTBK2 activities. Together, our data deepen our understanding of a crucial step in cilia formation and will inform future studies aimed at restoring CEP164 functionality in a debilitating human ciliopathy.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Lucia Binó
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Christopher M Johnson
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Trevor J Rutherford
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Neuhaus
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 62500, Czech Republic
| | - Mark van Breugel
- Queen Mary University of London, School of Biological and Chemical Sciences, 2 Newark Street, London E1 2AT, UK; Medical Research Council - Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
25
|
Liu M, Zhang W, Li M, Feng J, Kuang W, Chen X, Yang F, Sun Q, Xu Z, Hua J, Yang C, Liu W, Shu Q, Yang Y, Zhou T, Xie S. NudCL2 is an autophagy receptor that mediates selective autophagic degradation of CP110 at mother centrioles to promote ciliogenesis. Cell Res 2021; 31:1199-1211. [PMID: 34480124 PMCID: PMC8563757 DOI: 10.1038/s41422-021-00560-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 08/06/2021] [Indexed: 12/16/2022] Open
Abstract
Primary cilia extending from mother centrioles are essential for vertebrate development and homeostasis maintenance. Centriolar coiled-coil protein 110 (CP110) has been reported to suppress ciliogenesis initiation by capping the distal ends of mother centrioles. However, the mechanism underlying the specific degradation of mother centriole-capping CP110 to promote cilia initiation remains unknown. Here, we find that autophagy is crucial for CP110 degradation at mother centrioles after serum starvation in MEF cells. We further identify NudC-like protein 2 (NudCL2) as a novel selective autophagy receptor at mother centrioles, which contains an LC3-interacting region (LIR) motif mediating the association of CP110 and the autophagosome marker LC3. Knockout of NudCL2 induces defects in the removal of CP110 from mother centrioles and ciliogenesis, which are rescued by wild-type NudCL2 but not its LIR motif mutant. Knockdown of CP110 significantly attenuates ciliogenesis defects in NudCL2-deficient cells. In addition, NudCL2 morphants exhibit ciliation-related phenotypes in zebrafish, which are reversed by wild-type NudCL2, but not its LIR motif mutant. Importantly, CP110 depletion significantly reverses these ciliary phenotypes in NudCL2 morphants. Taken together, our data suggest that NudCL2 functions as an autophagy receptor mediating the selective degradation of mother centriole-capping CP110 to promote ciliogenesis, which is indispensable for embryo development in vertebrates.
Collapse
Affiliation(s)
- Min Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wen Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min Li
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaxing Feng
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Kuang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianfeng Hua
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chunxia Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yuehong Yang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
26
|
Shinmura K, Kusafuka K, Kawasaki H, Kato H, Hariyama T, Tsuchiya K, Kawanishi Y, Funai K, Misawa K, Mineta H, Sugimura H. Identification and characterization of primary cilia-positive salivary gland tumours exhibiting basaloid/myoepithelial differentiation. J Pathol 2021; 254:519-530. [PMID: 33931860 DOI: 10.1002/path.5688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Primary cilia (PC) are non-motile, antenna-like structures on the cell surface. Many types of neoplasms exhibit PC loss, whereas in some neoplasms PC are retained and involved in tumourigenesis. To elucidate the PC status and characteristics of major salivary gland tumours (SGTs), we examined 100 major SGTs encompassing eight histopathological types by immunohistochemical analysis. PC were present in all (100%) of the pleomorphic adenomas (PAs), basal cell adenomas (BCAs), adenoid cystic carcinomas (AdCCs), and basal cell adenocarcinomas (BCAcs) examined, but absent in all (0%) of the Warthin tumours, salivary duct carcinomas, mucoepidermoid carcinomas, and acinic cell carcinomas examined. PC were also detected by electron-microscopic analysis using the NanoSuit method. It is worthy of note that the former category and latter category of tumours contained and did not contain a basaloid/myoepithelial differentiation component, respectively. The four types of PC-positive SGTs showed longer PC than normal and exhibited a characteristic distribution pattern of the PC in the ductal and basaloid/neoplastic myoepithelial components. Two PC-positive carcinomas (AdCC and BCAc) still possessed PC in their recurrent/metastatic sites. Interestingly, activation of the Hedgehog signalling pathway, shown by predominantly nuclear GLI1 expression, was significantly more frequently observed in PC-positive SGTs. Finally, we identified tau tubulin kinase 2 (TTBK2) as being possibly involved in the production of PC in SGTs. Taken together, our findings indicate that SGTs that exhibit basaloid/myoepithelial differentiation (PA, BCA, AdCC, and BCAc) are ciliated, and their PC exhibit tumour-specific characteristics, are involved in activation of the Hedgehog pathway, and are associated with TTBK2 upregulation, providing a significant and important link between SGT tumourigenesis and PC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
27
|
Douanne T, Stinchcombe JC, Griffiths GM. Teasing out function from morphology: Similarities between primary cilia and immune synapses. J Cell Biol 2021; 220:212075. [PMID: 33956049 PMCID: PMC8105739 DOI: 10.1083/jcb.202102089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immune synapses are formed between immune cells to facilitate communication and coordinate the immune response. The reorganization of receptors involved in recognition and signaling creates a transient area of plasma membrane specialized in signaling and polarized secretion. Studies on the formation of the immune synapse between cytotoxic T lymphocytes (CTLs) and their targets uncovered a critical role for centrosome polarization in CTL function and suggested a striking parallel between the synapse and primary cilium. Since these initial observations, a plethora of further morphological, functional, and molecular similarities have been identified between these two fascinating structures. In this review, we describe how advances in imaging and molecular techniques have revealed additional parallels as well as functionally significant differences and discuss how comparative studies continue to shed light on the molecular mechanisms underlying the functions of both the immune synapse and primary cilium.
Collapse
Affiliation(s)
- Tiphaine Douanne
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
28
|
May EA, Sroka TJ, Mick DU. Phosphorylation and Ubiquitylation Regulate Protein Trafficking, Signaling, and the Biogenesis of Primary Cilia. Front Cell Dev Biol 2021; 9:664279. [PMID: 33912570 PMCID: PMC8075051 DOI: 10.3389/fcell.2021.664279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
The primary cilium is a solitary, microtubule-based membrane protrusion extending from the surface of quiescent cells that senses the cellular environment and triggers specific cellular responses. The functions of primary cilia require not only numerous different components but also their regulated interplay. The cilium performs highly dynamic processes, such as cell cycle-dependent assembly and disassembly as well as delivery, modification, and removal of signaling components to perceive and process external signals. On a molecular level, these processes often rely on a stringent control of key modulatory proteins, of which the activity, localization, and stability are regulated by post-translational modifications (PTMs). While an increasing number of PTMs on ciliary components are being revealed, our knowledge on the identity of the modifying enzymes and their modulation is still limited. Here, we highlight recent findings on cilia-specific phosphorylation and ubiquitylation events. Shedding new light onto the molecular mechanisms that regulate the sensitive equilibrium required to maintain and remodel primary cilia functions, we discuss their implications for cilia biogenesis, protein trafficking, and cilia signaling processes.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Tommy J Sroka
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - David U Mick
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
29
|
Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L. Primary Cilia Formation Does Not Rely on WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:623753. [PMID: 33718363 PMCID: PMC7952446 DOI: 10.3389/fcell.2021.623753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Primary cilia act as crucial regulators of embryo development and tissue homeostasis. They are instrumental for modulation of several signaling pathways, including Hedgehog, WNT, and TGF-β. However, gaps exist in our understanding of how cilia formation and function is regulated. Recent work has implicated WNT/β-catenin signaling pathway in the regulation of ciliogenesis, yet the results are conflicting. One model suggests that WNT/β-catenin signaling negatively regulates cilia formation, possibly via effects on cell cycle. In contrast, second model proposes a positive role of WNT/β-catenin signaling on cilia formation, mediated by the re-arrangement of centriolar satellites in response to phosphorylation of the key component of WNT/β-catenin pathway, β-catenin. To clarify these discrepancies, we investigated possible regulation of primary cilia by the WNT/β-catenin pathway in cell lines (RPE-1, NIH3T3, and HEK293) commonly used to study ciliogenesis. We used WNT3a to activate or LGK974 to block the pathway, and examined initiation of ciliogenesis, cilium length, and percentage of ciliated cells. We show that the treatment by WNT3a has no- or lesser inhibitory effect on cilia formation. Importantly, the inhibition of secretion of endogenous WNT ligands using LGK974 blocks WNT signaling but does not affect ciliogenesis. Finally, using knock-out cells for key WNT pathway components, namely DVL1/2/3, LRP5/6, or AXIN1/2 we show that neither activation nor deactivation of the WNT/β-catenin pathway affects the process of ciliogenesis. These results suggest that WNT/β-catenin-mediated signaling is not generally required for efficient cilia formation. In fact, activation of the WNT/β-catenin pathway in some systems seems to moderately suppress ciliogenesis.
Collapse
Affiliation(s)
- Ondrej Bernatik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Paclikova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Anna Kotrbova
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vitezslav Bryja
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Lukas Cajanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
30
|
Abstract
Ciliogenesis describes the assembly of cilia in interphase cells. Several hundred proteins have been linked to ciliogenesis, which proceeds through a highly coordinated multistage process at the distal end of centrioles requiring membranes. In this short review, we focus on recently reported insights into the biogenesis of the primary cilium membrane and its association with other ciliogenic processes in the intracellular ciliogenesis pathway.
Collapse
Affiliation(s)
- Saurabh Shakya
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| | - Christopher J Westlake
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Laboratory of Cellular and Developmental Signaling, Frederick, MD 21702, USA
| |
Collapse
|
31
|
Halder P, Khatun S, Majumder S. Freeing the brake: Proliferation needs primary cilium to disassemble. J Biosci 2020. [DOI: 10.1007/s12038-020-00090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|