1
|
Wang J, Niu S, Hu X, Li T, Liu S, Tu Y, Shang Z, Zhao L, Xu P, Lin J, Chen L, Billadeau DD, Jia D. Trans-Golgi network tethering factors regulate TBK1 trafficking and promote the STING-IFN-I pathway. Cell Discov 2025; 11:23. [PMID: 40097395 PMCID: PMC11914254 DOI: 10.1038/s41421-024-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
The cGAS-STING pathway mediates the innate immune response to cytosolic DNA, contributing to surveillance against microbial invasion or cellular damage. Once activated, STING recruits TBK1 at the trans-Golgi network (TGN), which in turn phosphorylates IRF3 to induce type I interferon (IFN-I) expression. In contrast to STING, little is known about how TBK1 is transported to the TGN for activation. Here, we show that multiple TGN tethering factors, a group of proteins involved in vesicle capturing, are indispensable for STING-IFN-I signaling. Deletion of TBC1D23, a recently reported tethering factor, in mice impairs the STING-IFN-I signaling, but with insignificant effect on STING-NF-κB signaling. Mechanistically, TBC1D23 interacts with TBK1 via the WASH complex subunit FAM21 and promotes its endosome-to-TGN translocation. Furthermore, multiple TGN tethering factors were reduced in aged mice and senescent fibroblasts. In summary, our study uncovers that TGN tethering factors are key regulators of the STING-IFN-I signaling and suggests that their reduction in senescence may produce aberrant STING signaling.
Collapse
Affiliation(s)
- Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Zhang J, Kennedy A, de Melo Jorge DM, Xing L, Reid W, Bui S, Joppich J, Rose M, Ercan S, Tang Q, Tai AW, Wang Y. SARS-CoV-2 remodels the Golgi apparatus to facilitate viral assembly and secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.03.04.483074. [PMID: 35291301 PMCID: PMC8923104 DOI: 10.1101/2022.03.04.483074] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The COVID-19 pandemic is caused by SARS-CoV-2, an enveloped RNA virus. Despite extensive investigation, the molecular mechanisms for its assembly and secretion remain largely elusive. Here, we show that SARS-CoV-2 infection induces global alterations of the host endomembrane system, including dramatic Golgi fragmentation. SARS-CoV-2 virions are enriched in the fragmented Golgi. Disrupting Golgi function with small molecules strongly inhibits viral infection. Significantly, SARS-CoV-2 infection down-regulates GRASP55 but up-regulates TGN46 protein levels. Surprisingly, GRASP55 expression reduces both viral secretion and spike number on each virion, while GRASP55 depletion displays opposite effects. In contrast, TGN46 depletion only inhibits viral secretion without affecting spike incorporation into virions. TGN46 depletion and GRASP55 expression additively inhibit viral secretion, indicating that they act at different stages. Taken together, we show that SARS-CoV-2 alters Golgi structure and function to control viral assembly and secretion, highlighting the Golgi as a potential therapeutic target for blocking SARS-CoV-2 infection.
Collapse
|
3
|
Zobaroğlu-Özer P, Bora-Akoğlu G. Split but merge: Golgi fragmentation in physiological and pathological conditions. Mol Biol Rep 2024; 51:214. [PMID: 38280063 DOI: 10.1007/s11033-023-09153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.
Collapse
Affiliation(s)
- Pelin Zobaroğlu-Özer
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biology, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Gamze Bora-Akoğlu
- Faculty of Medicine, Department of Medical Biology, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
4
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Klabunde B, Wesener A, Bertrams W, Ringshandl S, Halder LD, Vollmeister E, Schmeck B, Benedikter BJ. Streptococcus pneumoniae disrupts the structure of the golgi apparatus and subsequent epithelial cytokine response in an H 2O 2-dependent manner. Cell Commun Signal 2023; 21:208. [PMID: 37592354 PMCID: PMC10436572 DOI: 10.1186/s12964-023-01233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Lung infections caused by Streptococcus pneumonia are a global leading cause of death. The reactive oxygen species H2O2 is one of the virulence factors of Streptococcus pneumoniae. The Golgi apparatus is essential for the inflammatory response of a eukaryotic cell. Golgi fragmentation was previously shown to be induced by bacterial pathogens and in response to H2O2 treatment. This led us to investigate whether the Golgi apparatus is actively involved and targeted in host-pathogen interactions during pneumococcal infections. METHODS Following in vitro infection of BEAS-2B bronchial epithelial cells with Streptococcus pneumoniae for 16 h, the structure of the Golgi apparatus was assessed by fluorescence staining of the Golgi-associated protein, Golgin-97. To investigate the effect of H2O2 production on Golgi structure, BEAS-2B cells were treated with H2O2 or the H2O2 degrading enzyme Catalase, prior to Golgi staining. Artificial disruption of the Golgi apparatus was induced by treatment of cells with the GBF1 inhibitor, Golgicide A. A proinflammatory cellular response was induced by treatment of cells with the bacterial cell wall component and TLR4 ligand lipoteichoic acid. RESULTS In vitro infection of bronchial epithelial cells with wild type Streptococcus pneumoniae led to a disruption of normal Golgi structure. Golgi fragmentation was not observed after deletion of the pneumococcal H2O2-producing gene, spxB, or neutralization of H2O2 by catalase treatment, but could be induced by H2O2 treatment. Streptococcus pneumoniae infection significantly reduced host cell protein glycosylation and artificial disruption of Golgi structure significantly reduced bacterial adherence, but increased bacterial counts in the supernatant. To understand if this effect depended on cell-contact or soluble factors, pneumococci were treated with cell-supernatant of cells treated with Golgicide A and/or lipoteichoic acid. This approach revealed that lipoteichoic acid conditioned medium inhibits bacterial replication in presence of host cells. In contrast, artificial Golgi fragmentation by Golgicide A treatment prior to lipoteichoic acid treatment rescued bacterial replication. This effect was associated with an increase of IL-6 and IL-8 in the supernatant of lipoteichoic acid treated cells. The increased cytokine release was abolished if cells were treated with Golgicide A prior to lipoteichoic acid treatment. CONCLUSION Streptococcus pneumoniae disrupts the Golgi apparatus in an H2O2-dependent manner, thereby inhibiting paracrine anti-infective mechanisms. Video Abstract.
Collapse
Affiliation(s)
- Björn Klabunde
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - André Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Stephan Ringshandl
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Luke D Halder
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Evelyn Vollmeister
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Institute for Lung Health (ILH), Giessen, Germany.
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, Marburg, Germany.
- Member of the German Center for Lung Research (DZL), German Center for Infectious Disease Research (DZIF), Marburg, Germany.
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany.
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
- School for Mental Health and Neuroscience, University Eye Clinic Maastricht, Maastricht University Medical Center (MUMC+), Maastricht University, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| |
Collapse
|
6
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
7
|
Li J, Zhang J, Wang Y. Analysis of mannosidase I activity in interphase and mitotic cells by lectin staining and endoglycosidase H treatment. STAR Protoc 2023; 4:102283. [PMID: 37148248 PMCID: PMC10193293 DOI: 10.1016/j.xpro.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023] Open
Abstract
N-Glycosylation is a common protein modification catalyzed by a series of glycosylation enzymes in the endoplasmic reticulum and Golgi apparatus. Here, based on a previously established Golgi α-mannosidase-I-deficient cell line, we present a protocol to investigate the enzymatic activity of exogenously expressed Golgi α-mannosidase IA in interphase and mitotic cells. We describe steps for cell surface lectin staining and subsequent live cell imaging. We also detail PNGase F and Endo H cleavage assays to analyze protein glycosylation. For complete details on the use and execution of this protocol, please refer to Huang et al.1.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 1105 North University Avenue, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Li J, Zhang J, Bui S, Ahat E, Kolli D, Reid W, Xing L, Wang Y. Common Assays in Mammalian Golgi Studies. Methods Mol Biol 2022; 2557:303-332. [PMID: 36512224 DOI: 10.1007/978-1-0716-2639-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Golgi is a complex structure characterized by stacks of tightly aligned flat cisternae. In mammalian cells, Golgi stacks often concentrate in the perinuclear region and link together to form a ribbon. This structure is dynamic to accommodate continuous cargo flow in and out of the Golgi in both directions and undergoes morphological changes under physiological and pathological conditions. The fine, stacked Golgi structure makes it difficult to study by conventional light or even super-resolution microscopy. Furthermore, efforts to understand how Golgi structural dynamics impact cellular processes have been slow because of the knowledge gap in the protein machinery that maintains the complex and dynamic Golgi structure. In this method article, we list the common assays used in our research to help new and established researchers select the most appropriate method to properly address their questions.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Divya Kolli
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Whitney Reid
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lijuan Xing
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
10
|
Ligustrazine as an Extract from Medicinal and Edible Plant Chuanxiong Encapsulated in Liposome–Hydrogel Exerting Antioxidant Effect on Preventing Skin Photoaging. Polymers (Basel) 2022; 14:polym14214778. [PMID: 36365773 PMCID: PMC9655468 DOI: 10.3390/polym14214778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term sunlight exposure will cause the accumulation of free radicals in the skin and lead to oxidative damage and aging, antioxidant drugs have gradually become the focus of research, but there is little research on antioxidant drugs for percutaneous treatment. The purpose of this study was to prepare ligustrazine hydrochloride (TMPZ)-loaded liposome–hydrogel (TMPZ-LG), evaluate its antioxidant properties, and apply it on the skin of mice to observe whether it had preventive and therapeutic effect on the irradiation under the ultraviolet rays, in an attempt to make it into a new kind of delivery through the skin. TMPZ-LG was prepared by the combination of film dispersion and sodium carboxymethylcellulose (2%, CMC-Na) natural swelling method. The release rates in vitro permeation across the dialysis membrane and ex vivo transdermal had both reached 40%; the scavenging effect of TMPZ-LG on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and H2O2 were 65.57 ± 4.13% and 73.06 ± 5.65%; the inhibition rate of TMPZ-LG on malondialdehyde (MDA) production in liver homogenate and anti-low density lipoprotein (LDL) oxidation experiments ex vivo were 15.03 ± 0.9% and 21.57 ± 1.2%. Compared with untreated mice, the skin pathological symptoms of mice coated with TMPZ-LG were significantly reduced after ultraviolet irradiation, and there was statistical significance. The results showed TMPZ-LG could exert good antioxidant activity in vitro and ex vivo; therefore, it is feasible to prevent and treat skin oxidation.
Collapse
|
11
|
Paranjpe MD, Chaffin M, Zahid S, Ritchie S, Rotter JI, Rich SS, Gerszten R, Guo X, Heckbert S, Tracy R, Danesh J, Lander ES, Inouye M, Kathiresan S, Butterworth AS, Khera AV. Neurocognitive trajectory and proteomic signature of inherited risk for Alzheimer's disease. PLoS Genet 2022; 18:e1010294. [PMID: 36048760 PMCID: PMC9436054 DOI: 10.1371/journal.pgen.1010294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
For Alzheimer's disease-a leading cause of dementia and global morbidity-improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer's disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer's disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer's disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer's disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer's disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution.
Collapse
Affiliation(s)
- Manish D. Paranjpe
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mark Chaffin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sohail Zahid
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Scott Ritchie
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Robert Gerszten
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles Medical Center, Torrance, California, United States of America
| | - Susan Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Russ Tracy
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Eric S. Lander
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Cambridge Baker Systems Genomics Initiative, Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
- The Alan Turing Institute, London, United Kingdom
| | - Sekar Kathiresan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Verve Therapeutics, Cambridge, Massachusetts, United States of America
- Division of Cardiology and Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hooshmand K, Halliday GM, Pineda SS, Sutherland GT, Guennewig B. Overlap between Central and Peripheral Transcriptomes in Parkinson’s Disease but Not Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23095200. [PMID: 35563596 PMCID: PMC9104085 DOI: 10.3390/ijms23095200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022] Open
Abstract
Most neurodegenerative disorders take decades to develop, and their early detection is challenged by confounding non-pathological ageing processes. Therefore, the discovery of genes and molecular pathways in both peripheral and brain tissues that are highly predictive of disease evolution is necessary. To find genes that influence Alzheimer’s disease (AD) and Parkinson’s disease (PD) pathogenesis, human RNA-Seq transcriptomic data from Brodmann Area 9 (BA9) of the dorsolateral prefrontal cortex (DLPFC), whole blood (WB), and peripheral blood mononuclear cells (PBMC) were analysed using a combination of differential gene expression and a random forest-based machine learning algorithm. The results suggest that there is little overlap between PD and AD, and the AD brain signature is unique mainly compared to blood-based samples. Moreover, the AD-BA9 was characterised by changes in ‘nervous system development’ with Myocyte-specific enhancer factor 2C (Mef2C), encoding a transcription factor that induces microglia activation, a prominent feature. The peripheral AD transcriptome was associated with alterations in ‘viral process’, and FYN, which has been previously shown to link amyloid-beta and tau, was the prominent feature. However, in the absence of any overlap with the central transcriptome, it is unclear whether peripheral FYN levels reflect AD severity or progression. In PD, central and peripheral signatures are characterised by anomalies in ‘exocytosis’ and specific genes related to the SNARE complex, including Vesicle-associated membrane protein 2 (VAMP2), Syntaxin 1A (STX1A), and p21-activated kinase 1 (PAK1). This is consistent with our current understanding of the physiological role of alpha-synuclein and how alpha-synuclein oligomers compromise vesicle docking and neurotransmission. Overall, the results describe distinct disease-specific pathomechanisms, both within the brain and peripherally, for the two most common neurodegenerative disorders.
Collapse
Affiliation(s)
- Kosar Hooshmand
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
| | - Glenda M. Halliday
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
| | - Sandy S. Pineda
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Greg T. Sutherland
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia;
| | - Boris Guennewig
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia; (K.H.); (G.M.H.); (S.S.P.)
- Correspondence:
| |
Collapse
|
13
|
Deng S, Hu Q, Chen X, Lei Q, Lu W. GM130 protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by regulating autophagy formation. Exp Gerontol 2022; 163:111772. [PMID: 35331826 DOI: 10.1016/j.exger.2022.111772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
Blood-brain barrier (BBB) disruption following intracerebral hemorrhage (ICH) significantly contributes to neurological deficits. Tight junction (TJ) protein loss in brain endothelial cells leads to BBB disruption. We previously revealed the importance of the Golgi apparatus (GA) in maintaining TJ integrity in mouse brain endothelial (bEnd.3) cells, but the specific mechanisms remain unknown. Herein, we investigated the potential role of the GA in BBB damage and neurological dysfunction after ICH using bEnd.3 cells and hemin to mimic hemorrhage in vitro. We used a rat hemorrhage stroke model to evaluate the role of the GA in BBB disruption during ICH. GM130 levels decreased with ICH length in vivo and in vitro. TJ protein destruction further increased following GM130 silencing. GM130 overexpression alleviated TJ protein impairment and improved BBB integrity. bEnd.3 cells treated with an autophagy inhibitor showed reduced TJ protein damage following GM130 silencing. The intracerebroventricular injection of an autophagy inhibitor rescued GM130 silencing-induced BBB leakage. Thus, TJ proteins were destroyed by excessive autophagic pathway activation following ICH, whereas GM130 protected against TJ damage by maintaining proper autophagy. We suggest that GM130-regulated selective autophagy modulates BBB integrity and GM130 upregulation suppresses the autophagy-lysosome pathway, which might maintain BBB function. Therefore, GA protection is beneficial for ICH, and GM130 is a potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Shuwen Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qing Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiang Lei
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
14
|
Bui S, Mejia I, Díaz B, Wang Y. Adaptation of the Golgi Apparatus in Cancer Cell Invasion and Metastasis. Front Cell Dev Biol 2021; 9:806482. [PMID: 34957124 PMCID: PMC8703019 DOI: 10.3389/fcell.2021.806482] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus plays a central role in normal cell physiology by promoting cell survival, facilitating proliferation, and enabling cell-cell communication and migration. These roles are partially mediated by well-known Golgi functions, including post-translational modifications, lipid biosynthesis, intracellular trafficking, and protein secretion. In addition, accumulating evidence indicates that the Golgi plays a critical role in sensing and integrating external and internal cues to promote cellular homeostasis. Indeed, the unique structure of the mammalian Golgi can be fine-tuned to adapt different Golgi functions to specific cellular needs. This is particularly relevant in the context of cancer, where unrestrained proliferation and aberrant survival and migration increase the demands in Golgi functions, as well as the need for Golgi-dependent sensing and adaptation to intrinsic and extrinsic stressors. Here, we review and discuss current understanding of how the structure and function of the Golgi apparatus is influenced by oncogenic transformation, and how this adaptation may facilitate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Sarah Bui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Isabel Mejia
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Begoña Díaz
- Department of Internal Medicine, Division of Medical Hematology and Oncology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, United States
| |
Collapse
|