1
|
Sigaroodi F, Jalali Monfared M, Foroutan Koudehi M, Zibaseresht R. Electrospun Decellularized Skeletal Muscle Tissue/Polycaprolactone/Polyaniline as a Potential Scaffold for Muscle Tissue Engineering. J Biomed Mater Res A 2025; 113. [PMID: 40292658 DOI: 10.1002/jbm.a.37920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Skeletal muscle tissue is capable of self-healing on a small scale. However, during extensive trauma or surgery, regenerative capacities are lost due to the loss of muscle cells and extracellular matrix. Therefore, the development of tissue engineering strategies for the regeneration of muscle tissue should be considered. In this study, we electrospun decellularized skeletal muscle tissue (DSM)/polycaprolactone (PCL)/polyaniline (PANi) as a bioactive polymer composite and investigated the structural characteristics, physicochemical properties, and effect of PANi on these properties. Next, the biological and myogenic effects of scaffolds on human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) were investigated. The results showed that DSM/PCL/PANi is a conductive fibrous scaffold with favorable physical and chemical properties for muscle tissue engineering; it is biocompatible with hWJ-MSCs and stimulates their morphology. Additionally, hWJ-MSCs cultured on DSM/PCL/PANi showed a significant increase in the expression of MyoD, Myogenin, and MHC. Laboratory experiments showed that the electrospun scaffold of DSM/PCL/PANi is biocompatible with favorable physical properties for the growth of stem cells and the expression of myogenic markers, which can be useful in the development of biological scaffold approaches for muscle tissue engineering.
Collapse
Affiliation(s)
- Faraz Sigaroodi
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Marziyeh Jalali Monfared
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Masoumeh Foroutan Koudehi
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Ramin Zibaseresht
- Biomaterials and Medicinal Chemistry Research Center, Aja University of Medical Sciences, Tehran, Iran
- Department of Chemistry and Physics, Faculty of Sciences, Maritime University of Imam Khomeini, Nowshahr, Iran
| |
Collapse
|
2
|
Saliu TP, Goh J, Kang G, Burke BI, Ismaeel A, McCarthy JJ. Satellite cell dynamics during skeletal muscle hypertrophy. Biochem Soc Trans 2024; 52:1921-1926. [PMID: 39136196 PMCID: PMC11660404 DOI: 10.1042/bst20240201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Skeletal muscle stem cells (MuSCs) display distinct behavior crucial for tissue maintenance and repair. Upon activation, MuSCs exhibit distinct modes of division: symmetric division, facilitating either self-renewal or differentiation, and asymmetric division, which dictates divergent cellular fates. This review explores the nuanced dynamics of MuSC division and the molecular mechanisms governing this behavior. Furthermore, it introduces a novel phenomenon observed in a subset of MuSCs under hypertrophic stimuli termed division-independent differentiation. Insights into the underlying mechanisms driving this process are discussed, alongside its broader implications for muscle physiology.
Collapse
Affiliation(s)
- Tolulope P. Saliu
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Jensen Goh
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Gyumin Kang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
| | - Benjamin I. Burke
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - Ahmed Ismaeel
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| | - John J. McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, U.S.A
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
3
|
Nguyen J, Wang L, Lei W, Hu Y, Gulati N, Chavez-Madero C, Ahn H, Ginsberg HJ, Krawetz R, Brandt M, Betz T, Gilbert PM. Culture substrate stiffness impacts human myoblast contractility-dependent proliferation and nuclear envelope wrinkling. J Cell Sci 2024; 137:jcs261666. [PMID: 38345101 PMCID: PMC11033523 DOI: 10.1242/jcs.261666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/04/2024] [Indexed: 03/28/2024] Open
Abstract
Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates. Interestingly, we found that softer substrates increased the incidence of myoblasts with a wrinkled nucleus, and that the extent of wrinkling could predict Ki67 (also known as MKI67) expression. Nuclear wrinkling and Ki67 expression could be controlled by pharmacological manipulation of cellular contractility, offering a potential cellular mechanism. These results provide new insights into the regulation of human myoblast stiffness-dependent contractility response by ECM ligands and highlight a link between myoblast contractility and proliferation.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Lu Wang
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wen Lei
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Nitya Gulati
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Carolina Chavez-Madero
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Henry Ahn
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
| | - Howard J. Ginsberg
- Department of Surgery, University of Toronto, Toronto, ON, M5G 2C4, Canada
- Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Roman Krawetz
- McCaig Institute, University of Calgary, Calgary, AB, T2N 4Z6, Canada
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthias Brandt
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University Münster, 48149 Münster, Germany
| | - Timo Betz
- Third Institute of Physics – Biophysics, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Penney M. Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3E2, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| |
Collapse
|
4
|
Nguyen J, Gilbert PM. Decoding the forces that shape muscle stem cell function. Curr Top Dev Biol 2024; 158:279-306. [PMID: 38670710 DOI: 10.1016/bs.ctdb.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
Collapse
Affiliation(s)
- Jo Nguyen
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Alsaadi A, Artibani M, Hu Z, Wietek N, Morotti M, Gonzalez LS, Alazzam M, Jiang J, Abdul B, Soleymani Majd H, Blazer LL, Adams J, Silvestri F, Sidhu SS, Brugge JS, Ahmed AA. Single-cell transcriptomics identifies a WNT7A-FZD5 signaling axis that maintains fallopian tube stem cells in patient-derived organoids. Cell Rep 2023; 42:113354. [PMID: 37917586 DOI: 10.1016/j.celrep.2023.113354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The study of fallopian tube (FT) function in health and disease has been hampered by limited knowledge of FT stem cells and lack of in vitro models of stem cell renewal and differentiation. Using optimized organoid culture conditions to address these limitations, we find that FT stem cell renewal is highly dependent on WNT/β-catenin signaling and engineer endogenous WNT/β-catenin signaling reporter organoids to biomark, isolate, and characterize these cells. Using functional approaches, as well as bulk and single-cell transcriptomics analyses, we show that an endogenous hormonally regulated WNT7A-FZD5 signaling axis is critical for stem cell renewal and that WNT/β-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in extracellular matrix (ECM) remodeling and integrin signaling pathways. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.
Collapse
Affiliation(s)
- Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Laura Santana Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Moiad Alazzam
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Jason Jiang
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Beena Abdul
- Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Hooman Soleymani Majd
- Medical Sciences Division, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Levi L Blazer
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jarret Adams
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | | | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Ahmed Ashour Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK; Department of Gynecological Oncology, Churchill Hospital, Oxford University Hospitals, Oxford OX3 7LE, UK.
| |
Collapse
|
6
|
Atcha H, Choi YS, Chaudhuri O, Engler AJ. Getting physical: Material mechanics is an intrinsic cell cue. Cell Stem Cell 2023; 30:750-765. [PMID: 37267912 PMCID: PMC10247187 DOI: 10.1016/j.stem.2023.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/30/2023] [Accepted: 05/02/2023] [Indexed: 06/04/2023]
Abstract
Advances in biomaterial science have allowed for unprecedented insight into the ability of material cues to influence stem cell function. These material approaches better recapitulate the microenvironment, providing a more realistic ex vivo model of the cell niche. However, recent advances in our ability to measure and manipulate niche properties in vivo have led to novel mechanobiological studies in model organisms. Thus, in this review, we will discuss the importance of material cues within the cell niche, highlight the key mechanotransduction pathways involved, and conclude with recent evidence that material cues regulate tissue function in vivo.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Pang KT, Loo LSW, Chia S, Ong FYT, Yu H, Walsh I. Insight into muscle stem cell regeneration and mechanobiology. Stem Cell Res Ther 2023; 14:129. [PMID: 37173707 PMCID: PMC10176686 DOI: 10.1186/s13287-023-03363-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Stem cells possess the unique ability to differentiate into specialized cell types. These specialized cell types can be used for regenerative medicine purposes such as cell therapy. Myosatellite cells, also known as skeletal muscle stem cells (MuSCs), play important roles in the growth, repair, and regeneration of skeletal muscle tissues. However, despite its therapeutic potential, the successful differentiation, proliferation, and expansion processes of MuSCs remain a significant challenge due to a variety of factors. For example, the growth and differentiation of MuSCs can be greatly influenced by actively replicating the MuSCs microenvironment (known as the niche) using mechanical forces. However, the molecular role of mechanobiology in MuSC growth, proliferation, and differentiation for regenerative medicine is still poorly understood. In this present review, we comprehensively summarize, compare, and critically analyze how different mechanical cues shape stem cell growth, proliferation, differentiation, and their potential role in disease development (Fig. 1). The insights developed from the mechanobiology of stem cells will also contribute to how these applications can be used for regenerative purposes using MuSCs.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, 62 Nanyang Drive, N1.2-B3, Singapore, 637459, Singapore.
| | - Larry Sai Weng Loo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Francesca Yi Teng Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Interdisplinary Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
8
|
Hettinger ZR, Hu S, Mamiya H, Sahu A, Iijima H, Wang K, Gilmer G, Miller A, Nasello G, Dâ Amore A, Vorp DA, Rando TA, Xing J, Ambrosio F. Dynamical modeling reveals RNA decay mediates the effect of matrix stiffness on aged muscle stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529950. [PMID: 36865124 PMCID: PMC9980169 DOI: 10.1101/2023.02.24.529950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Loss of muscle stem cell (MuSC) self-renewal with aging reflects a combination of influences from the intracellular (e.g., post-transcriptional modifications) and extracellular (e.g., matrix stiffness) environment. Whereas conventional single cell analyses have revealed valuable insights into factors contributing to impaired self-renewal with age, most are limited by static measurements that fail to capture nonlinear dynamics. Using bioengineered matrices mimicking the stiffness of young and old muscle, we showed that while young MuSCs were unaffected by aged matrices, old MuSCs were phenotypically rejuvenated by young matrices. Dynamical modeling of RNA velocity vector fields in silico revealed that soft matrices promoted a self-renewing state in old MuSCs by attenuating RNA decay. Vector field perturbations demonstrated that the effects of matrix stiffness on MuSC self-renewal could be circumvented by fine-tuning the expression of the RNA decay machinery. These results demonstrate that post-transcriptional dynamics dictate the negative effect of aged matrices on MuSC self-renewal.
Collapse
|
9
|
Kahn RE, Krater T, Larson JE, Encarnacion M, Karakostas T, Patel NM, Swaroop VT, Dayanidhi S. Resident muscle stem cell myogenic characteristics in postnatal muscle growth impairments in children with cerebral palsy. Am J Physiol Cell Physiol 2023; 324:C614-C631. [PMID: 36622072 PMCID: PMC9942895 DOI: 10.1152/ajpcell.00499.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023]
Abstract
Children with cerebral palsy (CP), a perinatal brain alteration, have impaired postnatal muscle growth, with some muscles developing contractures. Functionally, children are either able to walk or primarily use wheelchairs. Satellite cells are muscle stem cells (MuSCs) required for postnatal development and source of myonuclei. Only MuSC abundance has been previously reported in contractured muscles, with myogenic characteristics assessed only in vitro. We investigated whether MuSC myogenic, myonuclear, and myofiber characteristics in situ differ between contractured and noncontractured muscles, across functional levels, and compared with typically developing (TD) children with musculoskeletal injury. Open muscle biopsies were obtained from 36 children (30 CP, 6 TD) during surgery; contracture correction for adductors or gastrocnemius, or from vastus lateralis [bony surgery in CP, anterior cruciate ligament (ACL) repair in TD]. Muscle cross sections were immunohistochemically labeled for MuSC abundance, activation, proliferation, nuclei, myofiber borders, type-1 fibers, and collagen content in serial sections. Although MuSC abundance was greater in contractured muscles, primarily in type-1 fibers, their myogenic characteristics (activation, proliferation) were lower compared with noncontractured muscles. Overall, MuSC abundance, activation, and proliferation appear to be associated with collagen content. Myonuclear number was similar between all muscles, but only in contractured muscles were there associations between myonuclear number, MuSC abundance, and fiber cross-sectional area. Puzzlingly, MuSC characteristics were similar between ambulatory and nonambulatory children. Noncontractured muscles in children with CP had a lower MuSC abundance compared with TD-ACL injured children, but similar myogenic characteristics. Contractured muscles may have an intrinsic deficiency in developmental progression for postnatal MuSC pool establishment, needed for lifelong efficient growth and repair.
Collapse
Affiliation(s)
| | | | - Jill E Larson
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | | | - Tasos Karakostas
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Neeraj M Patel
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Vineeta T Swaroop
- Shirley Ryan AbilityLab, Chicago, Illinois
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
10
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
11
|
Togninalli M, Ho ATV, Madl CM, Holbrook CA, Wang YX, Magnusson KEG, Kirillova A, Chang A, Blau HM. Machine learning-based classification of dual fluorescence signals reveals muscle stem cell fate transitions in response to regenerative niche factors. NPJ Regen Med 2023; 8:4. [PMID: 36639373 PMCID: PMC9839750 DOI: 10.1038/s41536-023-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
The proper regulation of muscle stem cell (MuSC) fate by cues from the niche is essential for regeneration of skeletal muscle. How pro-regenerative niche factors control the dynamics of MuSC fate decisions remains unknown due to limitations of population-level endpoint assays. To address this knowledge gap, we developed a dual fluorescence imaging time lapse (Dual-FLIT) microscopy approach that leverages machine learning classification strategies to track single cell fate decisions with high temporal resolution. Using two fluorescent reporters that read out maintenance of stemness and myogenic commitment, we constructed detailed lineage trees for individual MuSCs and their progeny, classifying each division event as symmetric self-renewing, asymmetric, or symmetric committed. Our analysis reveals that treatment with the lipid metabolite, prostaglandin E2 (PGE2), accelerates the rate of MuSC proliferation over time, while biasing division events toward symmetric self-renewal. In contrast, the IL6 family member, Oncostatin M (OSM), decreases the proliferation rate after the first generation, while blocking myogenic commitment. These insights into the dynamics of MuSC regulation by niche cues were uniquely enabled by our Dual-FLIT approach. We anticipate that similar binary live cell readouts derived from Dual-FLIT will markedly expand our understanding of how niche factors control tissue regeneration in real time.
Collapse
Affiliation(s)
- Matteo Togninalli
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew T V Ho
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Functional and Adaptive Biology - UMR 8251 CNRS, Université Paris Cité, 75013, Paris, France
| | - Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Center for Genetic Disorders and Aging, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Klas E G Magnusson
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
- Department of Signal Processing, ACCESS Linnaeus Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Anna Kirillova
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Andrew Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, 94305-5175, USA.
| |
Collapse
|
12
|
Skeletal Muscle Stem Cells in Aging: Asymmetric/Symmetric Division Switching. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In aged muscle, satellite cells’ symmetric and asymmetric divisions are impaired, and intrinsic and extrinsic complex mechanisms govern these processes. This review presents many updated aspects regarding muscle stem cells’ fate in normal and aging conditions. The balance between self-renewal and commitment divisions contributes to muscle regeneration, muscle homeostasis, aging, and disease. Stimulating muscle regeneration in aging could be a therapeutic target, but there is still a need to understand the many mechanisms that influence each other in satellite cells and their niche. We highlight here the general outlines regarding satellite cell divisions, the primary markers present in muscle stem cells, the aging aspects concerning signaling pathways involved in symmetric/asymmetric divisions, the regenerative capacity of satellite cells and their niche alteration in senescent muscle, genetics and epigenetics mechanisms implied in satellite cells aging and exercise effect on muscle regeneration in the elderly.
Collapse
|
13
|
Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PY, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. NATURE REVIEWS. METHODS PRIMERS 2022; 2:98. [PMID: 37461429 PMCID: PMC7614763 DOI: 10.1038/s43586-022-00179-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 07/20/2023]
Abstract
Cells' local mechanical environment can be as important in guiding cellular responses as many well-characterized biochemical cues. Hydrogels that mimic the native extracellular matrix can provide these mechanical cues to encapsulated cells, allowing for the study of their impact on cellular behaviours. Moreover, by harnessing cellular responses to mechanical cues, hydrogels can be used to create tissues in vitro for regenerative medicine applications and for disease modelling. This Primer outlines the importance and challenges of creating hydrogels that mimic the mechanical and biological properties of the native extracellular matrix. The design of hydrogels for mechanobiology studies is discussed, including appropriate choice of cross-linking chemistry and strategies to tailor hydrogel mechanical cues. Techniques for characterizing hydrogels are explained, highlighting methods used to analyze cell behaviour. Example applications for studying fundamental mechanobiological processes and regenerative therapies are provided, along with a discussion of the limitations of hydrogels as mimetics of the native extracellular matrix. The article ends with an outlook for the field, focusing on emerging technologies that will enable new insights into mechanobiology and its role in tissue homeostasis and disease.
Collapse
Affiliation(s)
- Ulrich Blache
- Fraunhofer Institute for Cell Therapy and Immunology and Fraunhofer Cluster of Excellence for Immune-Mediated Disease, Leipzig, Germany
| | - Eden M. Ford
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
| | - Byunghang Ha
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Laura Rijns
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Patricia Y.W. Dankers
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - April M. Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, DE, USA
- Department of Material Science and Engineering, University of Delaware, DE, USA
| | - Jess G. Snedeker
- University Hospital Balgrist and ETH Zurich, Zurich, Switzerland
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
14
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Aldahhan RA, Motawei KH, Al-Hariri MT. Lipotoxicity-related sarcopenia: a review. J Med Life 2022; 15:1334-1339. [PMID: 36567835 PMCID: PMC9762358 DOI: 10.25122/jml-2022-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 12/27/2022] Open
Abstract
A body of literature supports the postulation that a persistent lipid metabolic imbalance causes lipotoxicity, "an abnormal fat storage in the peripheral organs". Hence, lipotoxicity could somewhat explain the process of sarcopenia, an aging-related, gradual, and involuntary decline in skeletal muscle strength and mass associated with several health complications. This review focuses on the recent mechanisms underlying lipotoxicity-related sarcopenia. A vicious cycle occurs between sarcopenia and ectopic fat storage via a complex interplay of mitochondrial dysfunction, pro-inflammatory cytokine production, oxidative stress, collagen deposition, extracellular matrix remodeling, and life habits. The repercussions of lipotoxicity exacerbation of sarcopenia can include increased disability, morbidity, and mortality. This suggests that appropriate lipotoxicity management should be considered the primary target for the prevention and/or treatment of chronic musculoskeletal and other aging-related disorders. Further advanced research is needed to understand the molecular details of lipotoxicity and its consequences for sarcopenia and sarcopenia-related comorbidities.
Collapse
Affiliation(s)
| | - Kamaluddin Hasan Motawei
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Taha Al-Hariri
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia,Corresponding Author: Mohammed Taha Al-Hariri, Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. E-mail:
| |
Collapse
|
16
|
Riquelme-Guzmán C, Beck T, Edwards-Jorquera S, Schlüßler R, Müller P, Guck J, Möllmert S, Sandoval-Guzmán T. In vivo assessment of mechanical properties during axolotl development and regeneration using confocal Brillouin microscopy. Open Biol 2022; 12:220078. [PMID: 35728623 PMCID: PMC9213112 DOI: 10.1098/rsob.220078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In processes such as development and regeneration, where large cellular and tissue rearrangements occur, cell fate and behaviour are strongly influenced by tissue mechanics. While most well-established tools probing mechanical properties require an invasive sample preparation, confocal Brillouin microscopy captures mechanical parameters optically with high resolution in a contact-free and label-free fashion. In this work, we took advantage of this tool and the transparency of the highly regenerative axolotl to probe its mechanical properties in vivo for the first time. We mapped the Brillouin frequency shift with high resolution in developing limbs and regenerating digits, the most studied structures in the axolotl. We detected a gradual increase in the cartilage Brillouin frequency shift, suggesting decreasing tissue compressibility during both development and regeneration. Moreover, we were able to correlate such an increase with the regeneration stage, which was undetected with fluorescence microscopy imaging. The present work evidences the potential of Brillouin microscopy to unravel the mechanical changes occurring in vivo in axolotls, setting the basis to apply this technique in the growing field of epimorphic regeneration.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- CRTD/Center for Regenerative Therapies TU Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany,Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timon Beck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany,Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sandra Edwards-Jorquera
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Raimund Schlüßler
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Paul Müller
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany,Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany,Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stephanie Möllmert
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany,Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Paul Langerhans Institute Dresden, Helmholtz Centre Munich, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
18
|
Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen Med 2022; 7:25. [PMID: 35468920 PMCID: PMC9038738 DOI: 10.1038/s41536-022-00222-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.
Collapse
|
19
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
20
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
21
|
Fu C, Huang AH, Galatz LM, Han WM. Cellular and molecular modulation of rotator cuff muscle pathophysiology. J Orthop Res 2021; 39:2310-2322. [PMID: 34553789 DOI: 10.1002/jor.25179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff (RC) tendon tears are common shoulder injuries that result in irreversible and persistent degeneration of the associated muscles, which is characterized by severe inflammation, atrophy, fibrosis, and fatty infiltration. Although RC muscle degeneration strongly dictates the overall clinical outcomes, strategies to stimulate RC muscle regeneration have largely been overlooked to date. In this review, we highlight the current understanding of the cellular processes that coordinate muscle regeneration, and the roles of muscle resident cells, including immune cells, fibroadipogenic progenitors, and muscle satellite cells in the pathophysiologic regulation of RC muscles following injury. This review also provides perspectives for potential therapies to alleviate the hallmarks of RC muscle degeneration to address current limitations in postsurgical recovery.
Collapse
Affiliation(s)
- Chengcheng Fu
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Department of Orthopedic Surgery, Columbia University, New York City, New York, USA
| | - Leesa M Galatz
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Woojin M Han
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
22
|
Günay KA, Silver JS, Chang TL, Bednarski OJ, Bannister KL, Rogowski CJ, Olwin BB, Anseth KS. Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials 2021; 277:121097. [PMID: 34481290 DOI: 10.1016/j.biomaterials.2021.121097] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/26/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Skeletal muscle tissue is mechanically dynamic with changes in stiffness influencing function, maintenance, and regeneration. We modeled skeletal muscle mechanical changes in culture with dynamically stiffening hydrogels demonstrating that the chaperone protein BAG3 transduces matrix stiffness by redistributing YAP and TAZ subcellular localization in muscle progenitor cells. BAG3 depletion increases cytoplasmic retention of YAP and TAZ, desensitizing myoblasts to changes in hydrogel elastic moduli. Upon differentiation, muscle progenitors depleted of BAG3 formed enlarged, round myotubes lacking the typical cylindrical morphology. The aberrant morphology is dependent on YAP/TAZ signaling, which was sequestered in the cytoplasm in BAG3-depleted myotubes but predominately nuclear in cylindrical myotubes of control cells. Control progenitor cells induced to differentiate on soft (E' = 4 and 12 kPa) hydrogels formed circular myotubes similar to those observed in BAG3-depleted cells. Inhibition of the Hippo pathway partially restored myotube morphologies, permitting nuclear translocation of YAP and TAZ in BAG3-depleted myogenic progenitors. Thus, BAG3 is a critical mediator of dynamic stiffness changes in muscle tissue, coupling mechanical alterations to intracellular signals and inducing changes in gene expression that influence muscle progenitor cell morphology and differentiation.
Collapse
Affiliation(s)
- K Arda Günay
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Jason S Silver
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tze-Ling Chang
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Olivia J Bednarski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Kendra L Bannister
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Cameron J Rogowski
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Bradley B Olwin
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA; BioFrontiers Institute, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
23
|
Hu LY, Mileti CJ, Loomis T, Brashear SE, Ahmad S, Chellakudam RR, Wohlgemuth RP, Gionet-Gonzales MA, Leach JK, Smith LR. Skeletal muscle progenitors are sensitive to collagen architectural features of fibril size and cross linking. Am J Physiol Cell Physiol 2021; 321:C330-C342. [PMID: 34191625 DOI: 10.1152/ajpcell.00065.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Muscle stem cells (MuSCs) are essential for the robust regenerative capacity of skeletal muscle. However, in fibrotic environments marked by abundant collagen and altered collagen organization, the regenerative capability of MuSCs is diminished. MuSCs are sensitive to their extracellular matrix environment but their response to collagen architecture is largely unknown. The present study aimed to systematically test the effect of underlying collagen structures on MuSC functions. Collagen hydrogels were engineered with varied architectures: collagen concentration, cross linking, fibril size, and fibril alignment, and the changes were validated with second harmonic generation imaging and rheology. Proliferation and differentiation responses of primary mouse MuSCs and immortal myoblasts (C2C12s) were assessed using EdU assays and immunolabeling skeletal muscle myosin expression, respectively. Changing collagen concentration and the corresponding hydrogel stiffness did not have a significant influence on MuSC proliferation or differentiation. However, MuSC differentiation on atelocollagen gels, which do not form mature pyridinoline cross links, was increased compared with the cross-linked control. In addition, MuSCs and C2C12 myoblasts showed greater differentiation on gels with smaller collagen fibrils. Proliferation rates of C2C12 myoblasts were also higher on gels with smaller collagen fibrils, whereas MuSCs did not show a significant difference. Surprisingly, collagen alignment did not have significant effects on muscle progenitor function. This study demonstrates that MuSCs are capable of sensing their underlying extracellular matrix (ECM) structures and enhancing differentiation on substrates with less collagen cross linking or smaller collagen fibrils. Thus, in fibrotic muscle, targeting cross linking and fibril size rather than collagen expression may more effectively support MuSC-based regeneration.
Collapse
Affiliation(s)
- Lin-Ya Hu
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Cassidy J Mileti
- Biomedical Engineering Graduate Group, University of California, Davis, California
| | - Taryn Loomis
- Biomedical Engineering Graduate Group, University of California, Davis, California
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Sarah Ahmad
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Rosemary R Chellakudam
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | - Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California
| | | | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, California.,Department of Orthopaedic Surgery, University of California, Davis, California
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California.,Department of Physical Medicine and Rehabilitation, University of California, Davis, California
| |
Collapse
|
24
|
Madl CM, Flaig IA, Holbrook CA, Wang YX, Blau HM. Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments. Biomaterials 2021; 275:120973. [PMID: 34224984 DOI: 10.1016/j.biomaterials.2021.120973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Skeletal muscle stem cells (MuSCs) are essential for efficacious muscle repair, making MuSCs promising therapeutic targets for tissue engineering and regenerative medicine. MuSCs are presented with a diverse and temporally defined set of cues from their microenvironment during regeneration that direct stem cell expansion, differentiation, and return to quiescence. Understanding the complex interplay among these biophysical and biochemical cues is necessary to develop therapies targeting or employing MuSCs. To probe the role of mechanical cues presented by the extracellular matrix, we leverage chemically defined hydrogel substrates with controllable stiffness and adhesive ligand composition to characterize the MuSC response to matrix cues presented during early and late phases of regeneration. We demonstrate that relatively soft hydrogels recapitulating healthy muscle stiffness promote MuSC activation and expansion, while relatively stiff hydrogels impair MuSC proliferation and arrest myogenic progression. These effects are seen on soft and stiff hydrogels presenting laminin-111 and exacerbated on hydrogels presenting RGD adhesive peptides. Soluble factors present in the MuSC niche during different phases of regeneration, prostaglandin E2 and oncostatin M, synergize with matrix-presented cues to enhance stem cell expansion on soft substrates and block myogenic progression on stiff substrates. To determine if temporally varied matrix stiffness reminiscent of the regenerating microenvironment alters MuSC fate, we developed a photoresponsive hydrogel system with accelerated reaction kinetics that can be rapidly softened on demand. MuSCs cultured on these materials revealed that the cellular response to a stiff microenvironment is fixed within the first three days of culture, as subsequent softening back to a healthy stiffness did not rescue MuSC proliferation or myogenic progression. These results highlight the importance of temporally controlled biophysical and biochemical cues in regulating MuSC fate that can be harnessed to improve regenerative medicine approaches to restore skeletal muscle tissue.
Collapse
Affiliation(s)
- Christopher M Madl
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Iris A Flaig
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Colin A Holbrook
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
25
|
Blackburn DM, Lazure F, Soleimani VD. SMART approaches for genome-wide analyses of skeletal muscle stem and niche cells. Crit Rev Biochem Mol Biol 2021; 56:284-300. [PMID: 33823731 DOI: 10.1080/10409238.2021.1908950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Muscle stem cells (MuSCs) also called satellite cells are the building blocks of skeletal muscle, the largest tissue in the human body which is formed primarily of myofibers. While MuSCs are the principal cells that directly contribute to the formation of the muscle fibers, their ability to do so depends on critical interactions with a vast array of nonmyogenic cells within their niche environment. Therefore, understanding the nature of communication between MuSCs and their niche is of key importance to understand how the skeletal muscle is maintained and regenerated after injury. MuSCs are rare and therefore difficult to study in vivo within the context of their niche environment. The advent of single-cell technologies, such as switching mechanism at 5' end of the RNA template (SMART) and tagmentation based technologies using hyperactive transposase, afford the unprecedented opportunity to perform whole transcriptome and epigenome studies on rare cells within their niche environment. In this review, we will delve into how single-cell technologies can be applied to the study of MuSCs and muscle-resident niche cells and the impact this can have on our understanding of MuSC biology and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
26
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|