1
|
Fregno I, Pérez-Carmona N, Rudinskiy M, Soldà T, Bergmann TJ, Ruano A, Delgado A, Cubero E, Bellotto M, García-Collazo AM, Molinari M. Allosteric Modulation of GCase Enhances Lysosomal Activity and Reduces ER Stress in GCase-Related Disorders. Int J Mol Sci 2025; 26:4392. [PMID: 40362629 PMCID: PMC12072338 DOI: 10.3390/ijms26094392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
Variants in the GBA1 gene, encoding the lysosomal enzyme glucosylceramidase beta 1 (GCase), are linked to Parkinson's disease (PD) and Gaucher disease (GD). Heterozygous variants increase PD risk, while homozygous variants lead to GD, a lysosomal storage disorder. Some GBA1 variants impair GCase maturation in the endoplasmic reticulum, blocking lysosomal transport and causing glucosylceramide accumulation, which disrupts lysosomal function. This study explores therapeutic strategies to address these dysfunctions. Using Site-directed Enzyme Enhancement Therapy (SEE-Tx®), two structurally targeted allosteric regulators (STARs), GT-02287 and GT-02329, were developed and tested in GD patient-derived fibroblasts with relevant GCase variants. Treatment with GT-02287 and GT-02329 improved the folding of mutant GCase, protected the GCaseLeu444Pro variant from degradation, and facilitated the delivery of active GCase to lysosomes. This enhanced lysosomal function and reduced cellular stress. These findings validate the STARs' mechanism of action and highlight their therapeutic potential for GCase-related disorders, including GD, PD, and Dementia with Lewy Bodies.
Collapse
Affiliation(s)
- Ilaria Fregno
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Natalia Pérez-Carmona
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Mikhail Rudinskiy
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- Department of Biology, Swiss Federal Institute of Technology; CH-8093 Zurich, Switzerland
| | - Tatiana Soldà
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Timothy J. Bergmann
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
| | - Ana Ruano
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Aida Delgado
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Elena Cubero
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | | | - Ana María García-Collazo
- Gain Therapeutics, Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain; (N.P.-C.); (A.R.); (A.D.); (E.C.)
| | - Maurizio Molinari
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland; (I.F.); (T.S.); (T.J.B.)
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Mizushima N. Autophagic flux measurement: Cargo degradation versus generation of degradation products. Curr Opin Cell Biol 2025; 93:102463. [PMID: 39864255 DOI: 10.1016/j.ceb.2025.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
Autophagy is the cellular processes that transport cytoplasmic components to lysosomes for degradation. It plays essential physiological roles, including in adaptation to environmental changes such as starvation and maintaining intracellular quality control. Recently, its links to aging and disease have garnered substantial attention. Although various methods to measure autophagic activity (autophagic flux) have been developed, accurate measurement remains challenging and often contentious. This review presents a discussion of techniques to measure the flux of autophagy, particularly macroautophagy, utilizing two contrasting approaches-assaying cargo degradation versus assaying the generation of degradation products-with an emphasis on the advantages of the latter.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Gao X, Xiong Y, Ma H, Zhou H, Liu W, Sun Q. Visualizing bulk autophagy in vivo by tagging endogenous LC3B. Autophagy 2025:1-17. [PMID: 39952286 DOI: 10.1080/15548627.2025.2457910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
Macroautophagy/autophagy plays a crucial role in maintaining cellular and organismal health, making the measurement of autophagy flux in vivo essential for its study. Current tools often depend on the overexpression of autophagy probes. In this study, we developed a knock-in mouse model, termed tfLC3-KI, by inserting a tandem fluorescent tag coding sequence into the native Map1lc3b gene locus. We found that tfLC3-KI mice exhibit optimal expression of mRFP-eGFP-LC3B, allowing for convenient measurement of autophagic structures and flux at single-cell resolution, both in vivo and in primary cell cultures. Additionally, we compared autophagy in neurons and glial cells across various brain regions between tfLC3-KI mice and CAG-tfLC3 mice, the latter overexpressing the probe under the strong CMV promoter. Finally, we used tfLC3-KI mice to map the spatial and temporal dynamics of basal autophagy activity in the reproductive system. Our findings highlight the value of the tfLC3-KI mouse model for investigating autophagy flux in vivo and demonstrate the feasibility of tagging endogenous proteins to visualize autophagic structures and flux in both bulk and selective autophagy research in vivo.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; EBSS: Earle's balanced salt solution; Es: elongating spermatids; HPF: hippocampalformation; HY: hypothalamus; LCs: leydig cells; OLF: olfactory areas; PepA: pepstatin A; Rs: round spermatids; SCs: sertoli cells; Spc: spermatocytes; Spg: spermatogonia; tfLC3: tandem fluorescently tagged mRFP-eGFP-LC3; TH: thalamus.
Collapse
Affiliation(s)
- Xiukui Gao
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yue Xiong
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hangbin Ma
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hao Zhou
- Department of Urology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiming Sun
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Sang Y, Li B, Su T, Zhan H, Xiong Y, Huang Z, Wang C, Cong X, Du M, Wu Y, Yu H, Yang X, Ding K, Wang X, Miao X, Gong W, Wang L, Zhao J, Zhou Y, Liu W, Hu X, Sun Q. Visualizing ER-phagy and ER architecture in vivo. J Cell Biol 2024; 223:e202408061. [PMID: 39556340 PMCID: PMC11575016 DOI: 10.1083/jcb.202408061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024] Open
Abstract
ER-phagy is an evolutionarily conserved mechanism crucial for maintaining cellular homeostasis. However, significant gaps persist in our understanding of how ER-phagy and the ER network vary across cell subtypes, tissues, and organs. Furthermore, the pathophysiological relevance of ER-phagy remains poorly elucidated. Addressing these questions requires developing quantifiable methods to visualize ER-phagy and ER architecture in vivo. We generated two transgenic mouse lines expressing an ER lumen-targeting tandem RFP-GFP (ER-TRG) tag, either constitutively or conditionally. This approach enables precise spatiotemporal measurements of ER-phagy and ER structure at single-cell resolution in vivo. Systemic analysis across diverse organs, tissues, and primary cultures derived from these ER-phagy reporter mice unveiled significant variations in basal ER-phagy, both in vivo and ex vivo. Furthermore, our investigation uncovered substantial remodeling of ER-phagy and the ER network in different tissues under stressed conditions such as starvation, oncogenic transformation, and tissue injury. In summary, both reporter models represent valuable resources with broad applications in fundamental research and translational studies.
Collapse
Affiliation(s)
- Yongjuan Sang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Boran Li
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tinglin Su
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hanyu Zhan
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Yue Xiong
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Zhiming Huang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Changjing Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Xiaoxia Cong
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengjie Du
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Wu
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xi Yang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Kezhi Ding
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Wang
- Department of Neurology of Second Affiliated Hospital, Institute of Neuroscience, Mental Health Center, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhou
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Hu
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Tian R, Zhao P, Ding X, Wang X, Jiang X, Chen S, Cai Z, Li L, Chen S, Liu W, Sun Q. TBC1D4 antagonizes RAB2A-mediated autophagic and endocytic pathways. Autophagy 2024; 20:2426-2443. [PMID: 38964379 PMCID: PMC11572321 DOI: 10.1080/15548627.2024.2367907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Macroautophagic/autophagic and endocytic pathways play essential roles in maintaining homeostasis at different levels. It remains poorly understood how both pathways are coordinated and fine-tuned for proper lysosomal degradation of diverse cargoes. We and others recently identified a Golgi-resident RAB GTPase, RAB2A, as a positive regulator that controls both autophagic and endocytic pathways. In the current study, we report that TBC1D4 (TBC1 domain family member 4), a TBC domain-containing protein that plays essential roles in glucose homeostasis, suppresses RAB2A-mediated autophagic and endocytic pathways. TBC1D4 bound to RAB2A through its N-terminal PTB2 domain, which impaired RAB2A-mediated autophagy at the early stage by preventing ULK1 complex activation. During the late stage of autophagy, TBC1D4 impeded the association of RUBCNL/PACER and RAB2A with STX17 on autophagosomes by direct interaction with RUBCNL via its N-terminal PTB1 domain. Disruption of the autophagosomal trimeric complex containing RAB2A, RUBCNL and STX17 resulted in defective HOPS recruitment and eventually abortive autophagosome-lysosome fusion. Furthermore, TBC1D4 inhibited RAB2A-mediated endocytic degradation independent of RUBCNL. Therefore, TBC1D4 and RAB2A form a dual molecular switch to modulate autophagic and endocytic pathways. Importantly, hepatocyte- or adipocyte-specific tbc1d4 knockout in mice led to elevated autophagic flux and endocytic degradation and tissue damage. Together, this work establishes TBC1D4 as a critical molecular brake in autophagic and endocytic pathways, providing further mechanistic insights into how these pathways are intertwined both in vitro and in vivo.Abbreviations: ACTB: actin beta; ATG9: autophagy related 9; ATG14: autophagy related 14; ATG16L1: autophagy related 16 like 1; CLEM: correlative light electron microscopy; Ctrl: control; DMSO: dimethyl sulfoxide; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; FL: full length; GAP: GTPase-activating protein; GFP: green fluorescent protein; HOPS: homotypic fusion and protein sorting; IP: immunoprecipitation; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; OE: overexpression; PG: phagophore; PtdIns3K: class III phosphatidylinositol 3-kinase; SLC2A4/GLUT4: solute carrier family 2 member 4; SQSTM1/p62: sequestosome 1; RUBCNL/PACER: rubicon like autophagy enhancer; STX17: syntaxin 17; TAP: tandem affinity purification; TBA: total bile acid; TBC1D4: TBC1 domain family member 4; TUBA1B: tubulin alpha 1b; ULK1: unc-51 like autophagy activating kinase 1; VPS39: VPS39 subunit of HOPS complex; WB: western blot; WT: wild type.
Collapse
Affiliation(s)
- Rui Tian
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengwei Zhao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianming Ding
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Jiang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Zhijian Cai
- Institute of Immunology, and Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - She Chen
- Proteomics Center, National Institute of Biological Sciences, Beijing, China
| | - Wei Liu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Sun
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Rudinskiy M, Morone D, Molinari M. Fluorescent Reporters, Imaging, and Artificial Intelligence Toolkits to Monitor and Quantify Autophagy, Heterophagy, and Lysosomal Trafficking Fluxes. Traffic 2024; 25:e12957. [PMID: 39450581 DOI: 10.1111/tra.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Diego Morone
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maurizio Molinari
- Università della Svizzera italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Xiao Q, Cruz G, Botham R, Fox SG, Yu A, Allen S, Morimoto RI, Kelly JW. HaloTag as a substrate-based macroautophagy reporter. Proc Natl Acad Sci U S A 2024; 121:e2322500121. [PMID: 39074281 PMCID: PMC11317570 DOI: 10.1073/pnas.2322500121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Macroautophagy is a conserved cellular degradation pathway that, upon upregulation, confers resilience toward various stress conditions, including protection against proteotoxicity associated with neurodegenerative diseases, leading to cell survival. Monitoring autophagy regulation in living cells is important to understand its role in physiology and pathology, which remains challenging. Here, we report that when HaloTag is expressed within a cell of interest and reacts with tetramethylrhodamine (TMR; its ligand attached to a fluorophore), the rate of fluorescent TMR-HaloTag conjugate accumulation in autophagosomes and lysosomes, observed by fluorescence microscopy, reflects the rate of autophagy. Notably, we found that TMR-HaloTag conjugates were mainly degraded by the proteasome (~95%) under basal conditions, while lysosomal degradation (~10% upon pharmacological autophagy activation) was slow and incomplete, forming a degraded product that remained fluorescent within a SDS-PAGE gel, in agreement with previous reports that HaloTag is resistant to lysosomal degradation when fused to proteins of interest. Autophagy activation is distinguished from autophagy inhibition by the increased production of the degraded TMR-HaloTag band relative to the full-length TMR-HaloTag band as assessed by SDS-PAGE and by a faster rate of TMR-HaloTag conjugate lysosomal puncta accumulation as observed by fluorescence microscopy. Pharmacological proteasome inhibition leads to accumulation of TMR-HaloTag in lysosomes, indicating possible cross talk between autophagy and proteasomal degradation.
Collapse
Affiliation(s)
- Qiang Xiao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gabrielle Cruz
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
- Department of Biology, State University of New York College at Fredonia, Fredonia, NY14063
| | - Rachel Botham
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Susan G. Fox
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Anan Yu
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Seth Allen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL60208
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
8
|
Bhat M, Nambiar A, Edakkandiyil L, Abraham IM, Sen R, Negi M, Manjithaya R. A genetically-encoded fluorescence-based reporter to spatiotemporally investigate mannose-6-phosphate pathway. Mol Biol Cell 2024; 35:mr6. [PMID: 38888935 PMCID: PMC11321044 DOI: 10.1091/mbc.e23-09-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Maintenance of a pool of active lysosomes with acidic pH and degradative hydrolases is crucial for cell health. Abnormalities in lysosomal function are closely linked to diseases, such as lysosomal storage disorders, neurodegeneration, intracellular infections, and cancer among others. Emerging body of research suggests the malfunction of lysosomal hydrolase trafficking pathway to be a common denominator of several disease pathologies. However, available conventional tools to assess lysosomal hydrolase trafficking are insufficient and fail to provide a comprehensive picture about the trafficking flux and location of lysosomal hydrolases. To address some of the shortcomings, we designed a genetically-encoded fluorescent reporter containing a lysosomal hydrolase tandemly tagged with pH sensitive and insensitive fluorescent proteins, which can spatiotemporally trace the trafficking of lysosomal hydrolases. As a proof of principle, we demonstrate that the reporter can detect perturbations in hydrolase trafficking, that are induced by pharmacological manipulations and pathophysiological conditions like intracellular protein aggregates. This reporter can effectively serve as a probe for mapping the mechanistic intricacies of hydrolase trafficking pathway in health and disease and is a utilitarian tool to identify genetic and pharmacological modulators of this pathway, with potential therapeutic implications.
Collapse
Affiliation(s)
- Mallika Bhat
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | | | - Irine Maria Abraham
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ritoprova Sen
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Mamta Negi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
- Professor and chair, Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
9
|
Rudinskiy M, Pons-Vizcarra M, Soldà T, Fregno I, Bergmann TJ, Ruano A, Delgado A, Morales S, Barril X, Bellotto M, Cubero E, García-Collazo AM, Pérez-Carmona N, Molinari M. Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors. PLoS One 2023; 18:e0294437. [PMID: 38019733 PMCID: PMC10686464 DOI: 10.1371/journal.pone.0294437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Site-directed Enzyme Enhancement Therapy (SEE-Tx®) technology is a disease-agnostic drug discovery tool that can be applied to any protein target of interest with a known three-dimensional structure. We used this proprietary technology to identify and characterize the therapeutic potential of structurally targeted allosteric regulators (STARs) of the lysosomal hydrolase β-galactosidase (β-Gal), which is deficient due to gene mutations in galactosidase beta 1 (GLB1)-related lysosomal storage disorders (LSDs). The biochemical HaloTag cleavage assay was used to monitor the delivery of wildtype (WT) β-Gal and four disease-related β-Gal variants (p.Ile51Thr, p.Arg59His, p.Arg201Cys and p.Trp273Leu) in the presence and absence of two identified STAR compounds. In addition, the ability of STARs to reduce toxic substrate was assessed in a canine fibroblast cell model. In contrast to the competitive pharmacological chaperone N-nonyl-deoxygalactonojirimycin (NN-DGJ), the two identified STAR compounds stabilized and substantially enhanced the lysosomal transport of wildtype enzyme and disease-causing β-Gal variants. In addition, the two STAR compounds reduced the intracellular accumulation of exogenous GM1 ganglioside, an effect not observed with the competitive chaperone NN-DGJ. This proof-of-concept study demonstrates that the SEE-Tx® platform is a rapid and cost-effective drug discovery tool for identifying STARs for the treatment of LSDs. In addition, the HaloTag assay developed in our lab has proved valuable in investigating the effect of STARs in promoting enzyme transport and lysosomal delivery. Automatization and upscaling of this assay would be beneficial for screening STARs as part of the drug discovery process.
Collapse
Affiliation(s)
- Mikhail Rudinskiy
- Università Della Svizzera Italiana, Lugano, Switzerland
- Department of Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maria Pons-Vizcarra
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Tatiana Soldà
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ilaria Fregno
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Timothy Jan Bergmann
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ana Ruano
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Aida Delgado
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Sara Morales
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | - Xavier Barril
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
- Facultat de Farmacia, IBUB & IQTC, Universitat de Barcelona, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Elena Cubero
- Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, Barcelona, Spain
| | | | | | - Maurizio Molinari
- Università Della Svizzera Italiana, Lugano, Switzerland
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Cremer T, Voortman LM, Bos E, Jongsma MLM, ter Haar LR, Akkermans JJLL, Talavera Ormeño CMP, Wijdeven RHM, de Vries J, Kim RQ, Janssen GMC, van Veelen PA, Koning RI, Neefjes J, Berlin I. RNF26 binds perinuclear vimentin filaments to integrate ER and endolysosomal responses to proteotoxic stress. EMBO J 2023; 42:e111252. [PMID: 37519262 PMCID: PMC10505911 DOI: 10.15252/embj.2022111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Proteotoxic stress causes profound endoplasmic reticulum (ER) membrane remodeling into a perinuclear quality control compartment (ERQC) for the degradation of misfolded proteins. Subsequent return to homeostasis involves clearance of the ERQC by endolysosomes. However, the factors that control perinuclear ER integrity and dynamics remain unclear. Here, we identify vimentin intermediate filaments as perinuclear anchors for the ER and endolysosomes. We show that perinuclear vimentin filaments engage the ER-embedded RING finger protein 26 (RNF26) at the C-terminus of its RING domain. This restricts RNF26 to perinuclear ER subdomains and enables the corresponding spatial retention of endolysosomes through RNF26-mediated membrane contact sites (MCS). We find that both RNF26 and vimentin are required for the perinuclear coalescence of the ERQC and its juxtaposition with proteolytic compartments, which facilitates efficient recovery from ER stress via the Sec62-mediated ER-phagy pathway. Collectively, our findings reveal a scaffolding mechanism that underpins the spatiotemporal integration of organelles during cellular proteostasis.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Lenard M Voortman
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik Bos
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marlieke LM Jongsma
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Laurens R ter Haar
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jimmy JLL Akkermans
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Cami MP Talavera Ormeño
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Ruud HM Wijdeven
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam NeuroscienceAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jelle de Vries
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Robbert Q Kim
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - George MC Janssen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter A van Veelen
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Roman I Koning
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Oncode Institute, Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
11
|
Jimenez-Moreno N, Salomo-Coll C, Murphy LC, Wilkinson S. Signal-Retaining Autophagy Indicator as a Quantitative Imaging Method for ER-Phagy. Cells 2023; 12:1134. [PMID: 37190043 PMCID: PMC10136497 DOI: 10.3390/cells12081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is an intracellular lysosomal degradation pathway by which cytoplasmic cargoes are removed to maintain cellular homeostasis. Monitoring autophagy flux is crucial to understand the autophagy process and its biological significance. However, assays to measure autophagy flux are either complex, low throughput or not sensitive enough for reliable quantitative results. Recently, ER-phagy has emerged as a physiologically relevant pathway to maintain ER homeostasis but the process is poorly understood, highlighting the need for tools to monitor ER-phagy flux. In this study, we validate the use of the signal-retaining autophagy indicator (SRAI), a fixable fluorescent probe recently generated and described to detect mitophagy, as a versatile, sensitive and convenient probe for monitoring ER-phagy. This includes the study of either general selective degradation of the endoplasmic reticulum (ER-phagy) or individual forms of ER-phagy involving specific cargo receptors (e.g., FAM134B, FAM134C, TEX264 and CCPG1). Crucially, we present a detailed protocol for the quantification of autophagic flux using automated microscopy and high throughput analysis. Overall, this probe provides a reliable and convenient tool for the measurement of ER-phagy.
Collapse
Affiliation(s)
- Natalia Jimenez-Moreno
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Carla Salomo-Coll
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| | - Laura C. Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK;
| | - Simon Wilkinson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, UK; (C.S.-C.); (S.W.)
| |
Collapse
|
12
|
Ohshima T, Yamamoto H, Sakamaki Y, Saito C, Mizushima N. NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J Cell Biol 2022; 221:213442. [PMID: 36066504 PMCID: PMC9452830 DOI: 10.1083/jcb.202203102] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 12/11/2022] Open
Abstract
A ferritin particle consists of 24 ferritin proteins (FTH1 and FTL) and stores iron ions within it. During iron deficiency, ferritin particles are transported to lysosomes to release iron ions. Two transport pathways have been reported: macroautophagy and ESCRT-dependent endosomal microautophagy. Although the membrane dynamics of these pathways differ, both require NCOA4, which is thought to be an autophagy receptor for ferritin. However, it is unclear whether NCOA4 only acts as an autophagy receptor in ferritin degradation. Here, we found that ferritin particles form liquid-like condensates in a NCOA4-dependent manner. Homodimerization of NCOA4 and interaction between FTH1 and NCOA4 (i.e., multivalent interactions between ferritin particles and NCOA4) were required for the formation of ferritin condensates. Disruption of these interactions impaired ferritin degradation. Time-lapse imaging and three-dimensional correlative light and electron microscopy revealed that these ferritin-NCOA4 condensates were directly engulfed by autophagosomes and endosomes. In contrast, TAX1BP1 was not required for the formation of ferritin-NCOA4 condensates but was required for their incorporation into autophagosomes and endosomes. These results suggest that NCOA4 acts not only as a canonical autophagy receptor but also as a driver to form ferritin condensates to facilitate the degradation of these condensates by macroautophagy (i.e., macroferritinophagy) and endosomal microautophagy (i.e., microferritinophagy).
Collapse
Affiliation(s)
- Tomoko Ohshima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yuriko Sakamaki
- Microscopy Research Support Unit, Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chieko Saito
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Yim WWY, Yamamoto H, Mizushima N. A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag. eLife 2022; 11:78923. [PMID: 35938926 PMCID: PMC9385206 DOI: 10.7554/elife.78923] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Monitoring autophagic flux is necessary for most autophagy studies. The autophagic flux assays currently available for mammalian cells are generally complicated and do not yield highly quantitative results. Yeast autophagic flux is routinely monitored with the GFP-based processing assay, whereby the amount of GFP proteolytically released from GFP-containing reporters (e.g., GFP-Atg8), detected by immunoblotting, reflects autophagic flux. However, this simple and effective assay is typically inapplicable to mammalian cells because GFP is efficiently degraded in lysosomes while the more proteolytically resistant RFP accumulates in lysosomes under basal conditions. Here, we report a HaloTag (Halo)-based reporter processing assay to monitor mammalian autophagic flux. We found that Halo is sensitive to lysosomal proteolysis but becomes resistant upon ligand binding. When delivered into lysosomes by autophagy, pulse-labeled Halo-based reporters (e.g., Halo-LC3 and Halo-GFP) are proteolytically processed to generate Haloligand when delivered into lysosomes by autophagy. Hence, the amount of free Haloligand detected by immunoblotting or in-gel fluorescence imaging reflects autophagic flux. We demonstrate the applications of this assay by monitoring the autophagy pathways, macroautophagy, selective autophagy, and even bulk nonselective autophagy. With the Halo-based processing assay, mammalian autophagic flux and lysosome-mediated degradation can be monitored easily and precisely.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- 1Department of Biochemistry and Molecular Biology, University of Tokyo, Tokyo, Japan
| | | | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, University of Tokyo, Tokyo, Japan
| |
Collapse
|