1
|
Luo Y, Guo N, Wang Y, Li J. Novel homozygous frameshift mutation of ITGB3 in the Glanzmann thrombasthenia patient with abnormal bone metabolism and congenital bone defects. Orphanet J Rare Dis 2025; 20:189. [PMID: 40251671 PMCID: PMC12007121 DOI: 10.1186/s13023-025-03700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/24/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Glanzmann thrombasthenia (GT) is a rare inherited bleeding disorder caused by dysfunction of the integrin αIIbβ3 in platelets. The subunit β3, encoded by ITGB3 also plays a significant role in bone metabolism. Whether GT patients with β3 deficiency also suffer from bone pathology remains unclear. METHOD The 21-year-old female patient presenting with bleeding diathesis and multiple congenital bone defects in her right hand, and her seven family members were included in the study. Whole exome sequencing as well as Sanger sequencing were conducted to identify GT-associated mutations within the family. The platelet function of the family was detected by the platelet aggregation test and thromboelastography (TEG). The expression levels of CD41 (αIIb) and CD61 (β3) on the platelet surface and total in platelet were detected by flow cytometry and Western blot. Bioinformatics analysis was used to evaluate the pathogenicity of mutation sites and their effects on protein structure and function. X-ray imaging, bone densitometry and bone metabolism index were performed to evaluate bone development and metabolism. RESULT A novel homozygous frameshift mutation c.2143_2158delinsCT (p.Lys715Leufs*36) of ITGB3 was found in the proband. Platelet aggregation by ADP, collagen, epinephrine, and arachidonic acid was absent, TEG showed hypocoagulability and decreased platelet function, and the expression levels of αIIb and β3 on the platelet surface and total in platelet were significantly reduced (< 5%) in the proband. The parents, second elder sister and grandmother of proband were heterozygous carriers without bleeding symptoms and had normal platelet aggregation function and αIIb/β3 protein expression. Structural modeling strongly suggested that the mutation creates a truncation in cytoplasmic domains of β3, resulting in the mutant β3/αIIbβ3 inactivated and low expression. The proband was born with partial absence of phalanges in digits 2-4 and the deformity of fingers 1 and 5 in her right hand, bone densitometry indicated significant osteopenia and increased risk of fracture in her right radius, and no other gene mutations related to bone pathology were identified. CONCLUSION A novel mutation of ITGB3 which results in GT was identified. This is the third reported case of GT combined with bone defect. Our work expands ITGB3 mutation spectrum and provide further insights into the potential association between GT and bone development and metabolism.
Collapse
Affiliation(s)
- Yujiao Luo
- Department of Hematology, Section of Hemostasis and Thrombosis, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Nina Guo
- Department of Hematology and Oncology, The Third Hospital of Changsha, Changsha, 410011, Hunan, China
| | - Yewei Wang
- Department of Hematology, Section of Hemostasis and Thrombosis, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Ji Li
- Department of Hematology, Section of Hemostasis and Thrombosis, Institute of Molecular Hematology, The Second XiangYa Hospital, Central South University, No.139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
2
|
Zhao H, Tu X. The potential key genes within focal adhesion that regulate mesenchymal stem cells osteogenesis or adipogenesis in microgravity related disuse osteoporosis: an integrated analysis. Front Endocrinol (Lausanne) 2025; 16:1469400. [PMID: 40130165 PMCID: PMC11930814 DOI: 10.3389/fendo.2025.1469400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025] Open
Abstract
This study aimed to identify key genes related to focal adhesions (FA) and cells involved in osteoblast (OS) and adipocyte (AD) differentiation in osteoporosis. A mouse model of disuse osteoporosis was made by hindlimbs unloading (HLU)/Tail - suspension. Micro - CT and histological analysis were done, and differentially expressed genes (DEGs) from GSE100930 were analyzed. Soft clustering on GSE80614 OS/AD samples found FA - related candidate genes. protein-protein interaction (PPI) network and cytoHubba's Degree algorithm identified key FA - genes, validated by quantitative polymerase chain reaction (qPCR). Key OS/AD - associated cells were identified by single - cell analysis. The mouse model showed decreased bone density, microstructure damage, increased marrow adiposity, and altered gene expression. Key FA - related genes for osteogenesis (ITGB3, LAMC1, COL6A3, ITGA8, PDGFRB) and adipogenesis (ITGB3, ITGA4, LAMB1, ITGA8, LAMA4) were found and validated. Key cells (chondrocyte, adipocyte, and osteoblast progenitors) are involved in specific pathways, with osteoblast progenitors having stronger interactions. Pseudotime analysis implies differentiation from chondrocyte progenitors to adipocyte, then osteoblast progenitors. This study provides new insights for disuse osteoporosis research.
Collapse
Affiliation(s)
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Cai L, Lv Y, Yan Q, Guo W. Cytokines: The links between bone and the immune system. Injury 2024; 55:111203. [PMID: 38043143 DOI: 10.1016/j.injury.2023.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
Osteoporosis results from an imbalance in a highly balanced physiological process called bone remodeling, in which osteoclast-mediated bone resorption and osteoblast-mediated bone formation play important roles. Osteoimmunology is a newly discovered interdisciplinary research field that focuses on the relationship between bone and the immune system. Specifically, bone and the immune system interact through cytokines, immune cells secrete cytokines, and cytokines finely regulate bone metabolism by mediating the differentiation and activity of osteoclasts and osteoblasts. Therefore, understanding the influence of cytokines on bone metabolism is conducive for the development of novel targeted drugs against immune-related bone diseases. This review summarizes the pathophysiological functions of various common cytokines in bone and discusses the potential clinical value of multiple cytokines in immune-mediated bone diseases.
Collapse
Affiliation(s)
- Liping Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China; Department of Endocrinology, Rheumatology and Immunology, Anyang People's Hospital, Anyang, Henan 455000, China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Qihui Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weiying Guo
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
4
|
Cao M, Chen P, Peng B, Cheng Y, Xie J, Hou Z, Chen H, Ye L, Li H, Wang H, Ren L, Xiong L, Geng L, Gong S. The transcription factor ELF4 alleviates inflammatory bowel disease by activating IL1RN transcription, suppressing inflammatory TH17 cell activity, and inducing macrophage M2 polarization. Front Immunol 2023; 14:1270411. [PMID: 38022496 PMCID: PMC10657822 DOI: 10.3389/fimmu.2023.1270411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic immune-mediated disorder affecting millions worldwide. Due to the complexity of its pathogenesis, the treatment options for IBD are limited. This study focuses on ELF4, a member of the ETS transcription factor family, as a target to elucidate its role in IBD and investigate its mechanism of action in alleviating IBD symptoms by activating IL1RN transcription to suppress the activity of inflammatory TH17 cells. Methods Using the GEO database, this study examined LPS-induced intestinal inflammatory genes and their regulation mechanisms. We examined the colon length of LPS-treated mice and derived the Disease Activity Index (DAI). H&E staining, ELISA, and flow cytometry were used to detect mice colon tissue damage, inflammatory factor levels in mouse serum, mouse macrophage types and inflammatory TH17 cell activity. RT-qPCR and Western blot detected ELF4, IL1RN, M1, and M2 polarization markers. In Vitro, using dual-luciferase and ChIP assays, we tested mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells for IL1RN promoter activity and ELF4 enrichment. Results Bioinformatics showed that LPS-induced colitis animals have reduced ELF4 expression in their colon tissue. In vivo tests confirmed reduced ELF4 expression in mice with LPS-induced colitis. ELF4 overexpression reduced mouse intestinal inflammation. ELF4 activated IL1RN transcription in bioinformatics and in vitro tests. ELF4 promoted IL1RN transcription and macrophage M2 polarization to limit intestinal epithelial cell death and inflammation and reduce mouse intestinal inflammation in vitro. ELF4 also reduced the Th17/Treg ratio by increasing IL1RN transcription. Conclusion ELF4 activates IL1RN transcription, suppresses inflammatory TH17 cells, and induces macrophage M2 polarization to treat IBD.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baoling Peng
- Center for Child Health and Mental Health, Shenzhen Childen’s Hospital, Shenzhen, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziang Hou
- Department of Internal, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Fan JL, Wu D, Zhu TT, Tian XL, Liu SJ, Zhang SL. The exploration of shared genes and molecular mechanisms of systemic lupus erythematosus and atherosclerosis. Lupus 2023; 32:239-251. [PMID: 36480924 DOI: 10.1177/09612033221144596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Despite widespread recognition, the mechanisms underlying the relationship between systemic lupus erythematosus (SLE) and atherosclerosis (AS) are still unclear. Our study aimed to explore the shared genetic signature and molecular mechanisms of SLE and AS using a bioinformatics approach. METHODS Gene expression profiles of GSE50772 (contains peripheral blood mononuclear cells from 61 SLE patients and 20 normal samples) and GSE100927 (contains 69 AS plaque tissue samples and 35 control samples) were downloaded from the Gene Expression Database (GEO) before the differentially expressed genes were obtained using the "limma" package in R. The differential genes were then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using the DAVID online platform to annotate their functions. The intersection targets of PPI and WGCNA were used as key shared genes for SLE and AS with their diagnostic value as shared genes being verified through ROC curves. Finally, Cytoscape 3.7.2 software was used to construct a miRNA-mRNA network map associated with the shared genes. RESULTS A total of 246 DEGs were identified, including 189 upregulated genes and 57 downregulated genes, which were mainly enriched in signaling pathways such as TNF signaling pathway, IL-17 signaling pathway, and NF-kB signaling pathway. The molecular basis for the relationship between SLE and AS may be the aforementioned signaling pathways. Following ROC curve validation, the intersection of PPI and WGCNA, as well as AQP9, CCR1, CD83, CXCL1, and FCGR2A, resulted in the identification of 15 shared genes. CONCLUSION The study provided a new perspective on the common molecular mechanisms between SLE and AS, and the key genes and pathways that were identified as being part of these pathways may offer fresh perspectives and suggestions for further experimental research.
Collapse
Affiliation(s)
- Ji-Lin Fan
- First Clinical School of Medicine, 74738Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Wu
- Department of Neurosurgery, 605788Binzhou Medical University Hospital, Binzhou, China
| | - Ting-Ting Zhu
- Department of Cardiology, 612366The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Ling Tian
- Department of Cardiology, 612366The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Si-Jia Liu
- Department of Neurosurgery, 605788Binzhou Medical University Hospital, Binzhou, China
| | - Shi-Liang Zhang
- Department of Neurosurgery, 605788Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
6
|
Yu D, Li Z, Cao J, Shen F, Wei G. microRNA-25-3p suppresses osteogenic differentiation of BMSCs in patients with osteoporosis by targeting ITGB3. Acta Histochem 2022; 124:151926. [PMID: 35777302 DOI: 10.1016/j.acthis.2022.151926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022]
Abstract
This study was conducted to investigate the impact of the microRNA (miR)-25-3p/ITGB3 axis on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) from patients with osteoporosis (OP). BMSCs isolated from the bone marrow of healthy controls and OP patients were identified by flow cytometry, in which ITGB3 mRNA and miR-25-3p expression was detected by RT-qPCR and ITGB3, Runx2, OPN, ALP, and OSX protein expression by western blot. The binding between ITGB3 and miR-25-3p was assessed by dual-luciferase reporter gene and Ago2-RIP assays. BMSC osteogenic differentiation was observed by alizarin red staining and ALP activity. The differentiation of BMSCs to adipocytes and chondrocytes was measured by oil red O staining and alcian blue staining, respectively. BMSCs were successfully isolated from the bone marrow of healthy controls (normal-BMSCs) and OP patients (OP-BMSCs). ITGB3, Runx2, OPN, ALP, and OSX expression was poorer and miR-25-3p expression was higher in OP-BMSCs than in normal-BMSCs. Mechanistically, ITGB3 was negatively targeted by miR-25-3p. After osteogenic, adipogenic, and chondrogenic differentiation of BMSCs were successfully induced, adipogenic differentiation increased and osteogenic and chondrogenic differentiation decreased in OP-BMSCs compared with normal-BMSCs. Overexpression of ITGB3 facilitated mineralized nodule formation and elevated ALP activity and Runx2, OPN, and ALP expression in OP-BMSCs. miR-25-3p upregulation diminished mineralized nodule formation, ALP activity, and Runx2, OPN, and ALP expression in OP-BMSCs and normal-BMSCs, which was annulled by additional ITGB3 overexpression. miR-25-3p targets ITGB3, thereby suppressing osteogenic differentiation of BMSCs from OP patients.
Collapse
Affiliation(s)
- Dongping Yu
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Zhen Li
- Department of Pathology, the First Hospital of Changsha, Changsha, Hunan 410005, PR China.
| | - Jie Cao
- Department of Digestive, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Feng Shen
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| | - Guowen Wei
- Department of Orthopedics, the First Hospital of Nanchang, Nanchang, Jiangxi 330008, PR China
| |
Collapse
|
7
|
Tan H, Wang Y, Zou Z, Xing Y, Shi Z, Wang K, Dong D. Facilitative role of circPVT1 in osteogenic differentiation potentials of bone marrow mesenchymal stem cells from patients with osteoporosis through the miR-30d-5p/ITGB3 axis. Tissue Cell 2022; 76:101793. [DOI: 10.1016/j.tice.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
|
8
|
Liu Y, Liu Q, Yin C, Li Y, Wu J, Chen Q, Yu H, Lu A, Guan D. Uncovering Hidden Mechanisms of Different Prescriptions Treatment for Osteoporosis via Novel Bioinformatics Model and Experiment Validation. Front Cell Dev Biol 2022; 10:831894. [PMID: 35211473 PMCID: PMC8861325 DOI: 10.3389/fcell.2022.831894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is a systemic disease susceptible to fracture due to the decline of bone mineral density and bone mass, the destruction of bone tissue microstructure, and increased bone fragility. At present, the treatments of OP mainly include bisphosphonates, hormone therapy, and RANKL antibody therapy. However, these treatments have observable side effects and cannot fundamentally improve bone metabolism. Currently, the prescription of herbal medicine and their derived proprietary Chinese medicines are playing increasingly important roles in the treatment of OP due to their significant curative effects and few side effects. Among these prescriptions, Gushukang Granules (GSK), Xianling Gubao Capsules (XLGB), and Er-xian Decoction (EXD) are widely employed at the clinic on therapy of OP, which also is in line with the compatibility principle of “different treatments for the same disease” in herbal medicine. However, at present, the functional interpretation of “different treatments for the same disease” in herbal medicine still lacks systematic quantitative research, especially on the detection of key component groups and mechanisms. To solve this problem, we designed a new bioinformatics model based on random walk, optimized programming, and information gain to analyze the components and targets to figure out the Functional Response Motifs (FRMs) of different prescriptions for the therapy of OP. The distribution of high relevance score, the number of reported evidence, and coverage of enriched pathways were performed to verify the precision and reliability of FRMs. At the same time, the information gain and target influence of each component was calculated, and the key component groups in all FRMs of each prescription were screened to speculate the potential action mode of different prescriptions on the same disease. Results show that the relevance score and the number of reported evidence of high reliable genes in FRMs were higher than those of the pathogenic genes of OP. Furthermore, the gene enrichment pathways in FRMs could cover 79.6, 81, and 79.5% of the gene enrichment pathways in the component-target (C-T) network. Functional pathway enrichment analysis showed that GSK, XLGB, and EXD all treat OP through osteoclast differentiation (hsa04380), calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and PI3K-Akt signaling pathway (hsa04151). Combined with experiments, the key component groups and the mechanism of “different treatments for the same disease” in the three prescriptions and proprietary Chinese medicines were verified. This study provides methodological references for the optimization and mechanism speculation of Chinese medicine prescriptions and proprietary Chinese medicines.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Chuanhui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Hailang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Ren L, Guo L, Kou N, Lv J, Wang Z, Yang K. LncRNA LINC00963 promotes osteogenic differentiation of hBMSCs and alleviates osteoporosis progression by targeting miRNA-760/ETS1 axis. Autoimmunity 2021; 54:313-325. [PMID: 34184952 DOI: 10.1080/08916934.2021.1922890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Although long non-coding RNA LINC00963 has been reported to play a crucial regulatory role in osteoporosis (OP), its specific mechanism has not been well studied. Cell viability of human bone marrow mesenchymal stem cells (hBMSCs) transfected with short hairpin RNA targeting LINC00963 (sh-LINC00963) and negative control (sh-NC) was analysed by cell counting kit-8 (CCK-8) assay. Alkaline phosphatase (ALP) activity in hBMSCs transfected with sh-LINC00963 and sh-NC after induction by osteogenic medium (OM) on day 7 was detected. The protein expression levels of osteocalcin (OCN) and osteopontin (OPN) in hBMSCs transfected with sh-LINC00963 and sh-NC during OM induction on day 3 were detected by western blot. The relationship among LINC00963, miR-760, and E26 transformation specific-1 (ETS1) was determined by bioinformatics analysis, luciferase reporter assay, and RNA-binding protein immunoprecipitation (RIP) assay. A rat model with OP was established to confirm the role of LINC00963 in vivo. The expression level of LINC00963 was much lower in hBMSCs isolated from the discarded femoral head tissues of OP patients compared with that in health patients. Meanwhile, the expression level of LINC00963 was significantly increased and the expression level of miR-760 was decreased in hBMSCs during osteogenic induction. LINC00963 could bind to the 3'-untranslated region (3'-UTR) of miR-760 and negatively regulate the expression of miR-760, then promote the osteogenic differentiation in hBMSCs. ETS1 was identified as a target of miR-760. Moreover, overexpression of LINC00963 obviously reduced bone mineral density (BMD) of the left femur in OP rats and alleviated OP progression in vivo. Our results demonstrated that LINC00963 positively regulated the expression of ETS1 by directly targeting miR-760, and then promoted osteogenic differentiation of hBMSCs in vitro, and also attenuated OP progression in vivo, suggesting that LINC00963 might be a potential therapeutic target for OP.
Collapse
Affiliation(s)
- Lirong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| | - Limin Guo
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Nannan Kou
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Jia Lv
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Zhihua Wang
- Department of Traumatology, The Second Affiliated Hospital of Kunming Medical University, Kunming City, PR China
| | - Kaishun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, Dali City, PR China
| |
Collapse
|