1
|
Abolfazli S, Karav S, Johnston TP, Sahebkar A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol Rep 2025; 77:355-374. [PMID: 39832074 DOI: 10.1007/s43440-025-00694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
3
|
Yin J, Zhu Q, Yu C, Wang L, Ge R, Wang L, Wang J. Identification of key autophagy-related genes in arrhythmogenic right ventricular cardiomyopathy through gene expression profiling. Medicine (Baltimore) 2025; 104:e41430. [PMID: 39960965 PMCID: PMC11835058 DOI: 10.1097/md.0000000000041430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
The purpose of our study is to utilize bioinformatics methods to pinpoint genes linked to autophagy that may influence the progression of arrhythmogenic right ventricular cardiomyopathy (ARVC). By doing so, we hope to enhance the clinical intervention and handling of this cardiac condition by offering more informed guidance. The transcriptomic data corresponding to GSE29819 were accessed via the GEO repository. Utilizing R programming, we analyzed and searched genes associated with autophagy that might be relevant to ARVC. Subsequently, the identified genes underwent protein-protein interaction network and co-expression analysis, while GO and KEGG pathway enrichment analysis was employed to investigate the signaling cascades they may implicate. We intersected the down-regulated genes in GSE29819 with 222 autophagy-related genes, and finally got 12 differentially expressed autophagy-related genes. Examination of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicates that diverse genetic activity plays a role across numerous biological functions and systems. These include cytokine-related genes, lipid metabolism and atherogenesis, nucleotide oligomerization domain-like receptor signaling, chemokine-induced pathway, autophagic genes, apoptosis, natural killer cells-induced cell death, signal transduction involving tumor necrosis factor, and the activation of C-type lectin receptors which may influence the diverse clinical presentations of ARVC. Cytoscape software constructed a protein mutual aid network of common differentially expressed genes, and obtained a Cluster with a high score and 7 key genes, including CCR2, FAS, PRKCD, CASP1, CCL2, NAMPT and TNFSF10. Utilizing bioinformatics methods to identify genes involved in autophagy that exhibit fluctuating expression levels augments our understanding of the intricate aspects of ARVC. At the same time, combined with previous research reports in cardiomyopathy, we can speculate that Fas may affect the occurrence and development of ARVC through tumor necrosis factor signaling pathway mediating apoptosis. These results further illuminate our understanding of the origins and potential treatment focal points for ARVC.
Collapse
Affiliation(s)
- Jianrong Yin
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Qiqiang Zhu
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Chunqiang Yu
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Lianhuan Wang
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Rongling Ge
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Lei Wang
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| | - Jin Wang
- Department of Cardiology, Pizhou People’s Hospital, Xuzhou Medical University Affiliated Pizhou Hospital, Pizhou, Jiangsu, China
| |
Collapse
|
4
|
Alhawarri MB, Al-Thiabat MG, Dubey A, Tufail A, Banisalman K, Al Jabal GA, Alkasasbeh E, Al-Trad EI, Alrimawi BH. Targeting necroptosis in MCF-7 breast cancer cells: In Silico insights into 8,12-dimethoxysanguinarine from Eomecon Chionantha through molecular docking, dynamics, DFT, and MEP studies. PLoS One 2025; 20:e0313094. [PMID: 39775383 PMCID: PMC11706375 DOI: 10.1371/journal.pone.0313094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/05/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer remains a significant challenge in oncology, highlighting the need for alternative therapeutic strategies that target necroptosis to overcome resistance to conventional therapies. Recent investigations into natural compounds have identified 8,12-dimethoxysanguinarine (SG-A) from Eomecon chionantha as a potential necroptosis inducer. This study presents the first computational exploration of SG-A interactions with key necroptotic proteins-RIPK1, RIPK3, and MLKL-through molecular docking, molecular dynamics (MD), density functional theory (DFT), and molecular electrostatic potential (MEP) analyses. Molecular docking revealed that SG-A exhibited a stronger affinity for MLKL (-9.40 kcal/mol) compared to the co-crystallized ligand (-6.29 kcal/mol), while its affinity for RIPK1 (-6.37 kcal/mol) and RIPK3 (-7.01 kcal/mol) was lower. MD simulations further demonstrated the stability of SG-A within the MLKL site, with RMSD values stabilizing between 1.4 and 3.3 Å over 300 ns, indicating a consistent interaction pattern. RMSF analysis indicated the preservation of protein backbone flexibility, with average fluctuations under 1.7 Å. The radius of gyration (Rg) results indicated a consistent value of ~15.3 Å across systems, confirming the role of SG-A in maintaining protein integrity. Notably, SG-A maintains two critical H-bonds within the active site of MLKL, reinforcing the stability of the interaction. Principal component analysis (PCA) indicated a significant reduction in MLKL's conformational space upon SG-A binding, implying enhanced stabilization. Dynamic cross-correlation map (DCCM) analysis further revealed that SG-A induced highly correlated motions, reducing internal fluctuations within MLKL compared to the co-crystallized ligand. MM-PBSA revealed the enhanced binding efficacy of SG-A, with a significant binding free energy of -31.03 ± 0.16 kcal/mol against MLKL, surpassing that of the control (23.96 ± 0.11 kcal/mol). In addition, the individual residue contribution analysis highlighted key interactions, with ARG149 showing a significant contribution (-176.24 kcal/mol) in the MLKL-SG-A complex. DFT and MEP studies corroborated these findings, revealing that the electronic structure of SG-A is conducive to stable binding interactions, characterized by a narrow band gap (~0.16 units) and distinct electrostatic potential favourable for necroptosis induction. In conclusion, SG-A has emerged as a compelling inducer of necroptosis for breast cancer therapy, warranting further experimental validation to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Maram B. Alhawarri
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | | | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Aisha Tufail
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Katreen Banisalman
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Ghazi A. Al Jabal
- Faculty of Pharmacy and Biomedical Sciences, Department of Medicinal Chemistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Eman Alkasasbeh
- Faculty of Pharmacy, Department of Pharmacy, Jadara University, Irbid, Jordan
| | - Esra’a Ibrahim Al-Trad
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Al al-bayt University, Mafraq, Jordan
| | | |
Collapse
|
5
|
Tsurusaki S, Kizana E. Mechanisms and Therapeutic Potential of Multiple Forms of Cell Death in Myocardial Ischemia-Reperfusion Injury. Int J Mol Sci 2024; 25:13492. [PMID: 39769255 PMCID: PMC11728078 DOI: 10.3390/ijms252413492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI). MIRI occurs when blood flow and oxygen return to an ischemic area, causing excessive production of reactive oxygen species. While this reperfusion is critical for treating myocardial infarction, it inevitably causes cellular damage via oxidative stress. Furthermore, this cellular damage triggers multiple forms of cardiomyocyte death, which is the primary cause of inflammation, cardiac tissue remodeling, and ensuing heart failure. Therefore, understanding the molecular mechanisms of various forms of cell death in MIRI is crucial for therapeutic target discovery. Developing therapeutic strategies to inhibit multiple cell death pathways simultaneously could provide effective protection against MIRI. In this paper, we review the fundamental molecular pathways and MIRI-specific mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis. Additionally, we suggest that the simultaneous suppression of multiple cell death pathways could be an effective therapy and identify potential therapeutic targets for implementing this strategy.
Collapse
Affiliation(s)
- Shinya Tsurusaki
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Clinical School, The Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
6
|
Xu Q, Gong H, Zhou M, Guo J, Chen S, Xiao K, Liu Y. Necroptosis contributes to deoxynivalenol-induced liver injury and inflammation in weaned piglets. J Anim Sci Biotechnol 2024; 15:160. [PMID: 39623511 PMCID: PMC11613918 DOI: 10.1186/s40104-024-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of necroptosis in deoxynivalenol (DON)-induced liver injury and inflammation in weaned piglets. METHODS In Exp. 1, 12 weaned piglets were divided into 2 groups including pigs fed basal diet and pigs fed diet contaminated with 4 mg/kg DON for 21 d. In Exp. 2, 12 weaned piglets were divided into 2 groups including control piglets and piglets given a gavage of 2 mg/kg body weight (BW) DON. In Exp. 3, 24 weaned piglets were used in a 2 × 2 factorial design and the main factors including necrostatin-1 (Nec-1) (DMSO or 0.5 mg/kg BW Nec-1) and DON challenge (saline or 2 mg/kg BW DON gavage). On 21 d in Exp. 1, or at 6 h post DON gavage in Exp. 2 and 3, pigs were killed for blood samples and liver tissues. Liver histology, blood biochemical indicators, and liver inflammation and necroptosis signals were tested. RESULTS Dietary or oral gavage with DON caused liver morphological damage in piglets. Dietary DON led to hepatocyte damage indicated by increased aspartate transaminase (AST) activity and AST/alanine aminotransferase (ALT) ratio, and DON gavage also caused hepatocyte damage and cholestasis indicated by increased AST and alkaline phosphatase (AKP) activities. Dietary DON caused liver necroptosis indicated by increased protein abundance of total receptor interacting protein kinase 3 (t-RIP3) and total mixed lineage kinase domain-like protein (t-MLKL). Moreover, DON gavage increased mRNA expression of interleukin (IL)-6 and IL-1β in liver. DON gavage also induced liver necroptosis demonstrated by increased protein abundance of t-RIP3, phosphorylated-RIP3 (p-RIP3), t-MLKL and p-MLKL. However, pretreatment with Nec-1, a specific inhibitor of necroptosis, inhibited liver necroptosis indicated by decreased protein expression of t-RIP3, p-RIP3, t-MLKL and p-MLKL. Nec-1 pretreatment reduced liver morphological damage after DON gavage. Pretreatment with Nec-1 also attenuated liver damage induced by DON indicated by decreased activities of AST and AKP. Furthermore, Nec-1 pretreatment inhibited liver mRNA expression of IL-6 and IL-1β after DON challenge. CONCLUSIONS Our data demonstrate for the first time that necroptosis contributes to DON-induced liver injury and inflammation in piglets.
Collapse
Affiliation(s)
- Qilong Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hanqiu Gong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mohan Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
7
|
Feng L, Wu Z, Jia X, Yang L, Wang M, Huang M, Ma Y. Screening, identification and targeted intervention of necroptotic biomarkers of asthma. Biochem Biophys Res Commun 2024; 735:150674. [PMID: 39270557 DOI: 10.1016/j.bbrc.2024.150674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND As a pivotal pathway of programmed cell death, necroptosis significantly contributes to the pathogenesis of respiratory disorders. However, its role in asthma is not yet fully elucidated. Therefore, this study aimed to identify markers associated with necroptosis, evaluate their functions in asthma, and explore potential therapeutic agents targeting necroptosis for the management of asthma. METHODS Firstly, machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), were utilized to identify necroptosis-related differentially expressed genes (NRDEGs) in asthma patients compared to healthy controls. Concurrently, the expression of NRDEGs was validated using external datasets, Western blot, and quantitative real-time polymerase chain reaction (qPCR). Secondly, the clinical relevance of NRDEGs was assessed through Receiver Operating Characteristic (ROC) curve analysis and correlation with clinical indicators. Thirdly, the relationship between NRDEGs and pulmonary immune cell infiltration, as well as the signaling interactions between different cells types, were analyzed through immune infiltration and single-cell analysis. Fourthly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were conducted to elucidate the functional roles of NRDEGs. Finally, compounds targeting NRDEGs were screened, and their binding affinities were evaluated using molecular docking studies. RESULTS In asthma, necroptosis is activated, leading to the identification of four NRDEGs: NLRP3, PYCARD, ALOX15, and VDAC3. Among these, NLRP3, PYCARD, and ALOX15 are upregulated, whereas VDAC3 is downregulated in asthma. Comprehensive clinical evaluations indicated that NRDEGs hold diagnostic value for asthma. Specifically, NLRP3 was inversely correlated with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), while VDAC3 showed an inverse correlation with sputum neutrophils. Conversely, ALOX15 expression was positively correlated with fractional exhaled nitric oxide (FeNO) levels, as well as sputum eosinophils, blood eosinophils, and blood IgE levels. Subsequent immune infiltration analysis revealed associations between NRDEGs and activated dendritic cells, mast cells, and eosinophils. Single-cell RNA sequencing (scRNA-seq) further confirmed the communication signals between myeloid dendritic cells, fibroblasts, neutrophils, and helper T cells, predominantly related to fibrosis and immune-inflammatory responses. Pathway enrichment analysis demonstrated that NRDEGs are involved in ribosomal function, oxidative phosphorylation, and fatty acid metabolism. Finally, resveratrol and triptonide were identified as potential therapeutic agents targeting the proteins encoded by NRDEGs for asthma treatment. CONCLUSIONS The necroptosis pathway is activated in asthma, with NRDEGs-namely PYCARD, NLRP3, ALOX15, and VDAC3-correlated with declines in lung function and airway inflammation. These genes serve as reliable predictors of asthma risk and are involved in the regulation of the immune-inflammatory microenvironment. Resveratrol and triptolide have been identified as promising therapeutic candidates due to their potential to target the proteins encoded by these genes.
Collapse
Affiliation(s)
- Ling Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
9
|
Xu T, Zhang Y, Liu H, Shi X, Liu Y. BPA exposure and Se deficiency caused spleen damage in chickens by nitrification stress-TNF-α. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121994. [PMID: 39083939 DOI: 10.1016/j.jenvman.2024.121994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
With the increasing production and demand of plastic products in life, inescapable bisphenol A (BPA) exposure results in a threat to the health of organisms. Selenium (Se) is an essential trace element for living organisms. The insufficient Se intake can cause multi-tissue organ damage. In the process of production and life, the exposure of BPA is usually accompanied by Se deficiency. In this study, the models of chicken with BPA exposure and/or Se deficiency was duplicated, the status of nitrification stress, apoptosis, necroptosis, and changes in TNF-α/FADD signaling pathways in chicken spleen were examined. At the same time, nitrification stress inhibitor and TNF-α inhibitor were introduced into MSB-1 cell model tests in vitro, indicating that BPA exposure and Se deficiency up-regulated TNF-α/FADD signaling pathway through nitrification stress, inducing necroptosis and apoptosis, and heat shock protein was also involved in this process. This study provides a new control idea for healthy poultry breeding based on Se, and also provides a new reference for toxicity control of environmental pollutants.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanyan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Kim JS, Kim MH, Kim MJ, Kim HJ. Licochalcone A attenuates NMDA-induced neurotoxicity. Anim Cells Syst (Seoul) 2024; 28:392-400. [PMID: 39139398 PMCID: PMC11321100 DOI: 10.1080/19768354.2024.2389823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigates the effect of Licochalcone A (Lico-A), a flavonoid from licorice roots known for its anti-inflammatory, anti-cancer, and antioxidant properties, on NMDA-induced neurotoxicity in primary cultured rat hippocampal neurons. The study measured cell survival following NMDA and Lico-A exposure, revealing that Lico-A at a 2.5 μg/ml significantly improved cell viability, countering the detrimental effects of NMDA. The study also analyzed synaptic changes by examining both postsynaptic density 95 (PSD95) and synaptophysin-targeted imaging, showing that Lico-A treatment resulted in a significant increase in synaptic puncta, contrasting with the reduction observed under NMDA exposure. Furthermore, levels of phosphorylated mixed lineage kinase domain-like pseudokinase (P-MLKL) and phosphorylated receptor-interacting serine/threonine-protein kinase 3 (P-RIP3), key necroptosis regulators, were measured using Western blotting. The results showed an increase in P-MLKL and P-RIP3 in neurons exposed to NMDA, which was reduced following Lico-A treatment. The response of astrocyte and microglia was also evaluated by immunostaining for glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (IBA-1) and tumor necrosis factor alpha (TNF-α). These markers exhibited heightened expression in the NMDA group, which was substantially reduced by Lico-A treatment. These findings suggest that Lico-A has neuroprotective effects against NMDA-induced neurotoxicity, potentially contributing to synaptic preservation, inhibition of neuronal necroptosis, and modulation of glial activation. Therefore, Lico-A shows promise as a neuroprotective agent for conditions associated with NMDA-related neurotoxicity.
Collapse
Affiliation(s)
- Jae Soo Kim
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Mi-Hye Kim
- Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Myeung Ju Kim
- Department of Anatomy, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Wang F, Neumann D, Kapsokalyvas D, Hoes MF, Schianchi F, Glatz JFC, Nabben M, Luiken JJFP. Specific Compounds Derived from Traditional Chinese Medicine Ameliorate Lipid-Induced Contractile Dysfunction in Cardiomyocytes. Int J Mol Sci 2024; 25:8131. [PMID: 39125700 PMCID: PMC11311577 DOI: 10.3390/ijms25158131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
| | - Dietbert Neumann
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Pathology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Dimitris Kapsokalyvas
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Interdisciplinary Centre for Clinical Research IZKF, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martijn F. Hoes
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Francesco Schianchi
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
| | - Jan F. C. Glatz
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
12
|
Bi Y, Wei H, Yu T, Li X, Xu S. New insights into resveratrol attenuates hepatotoxicity in emamectin benzoate-exposed grass carp (Ctenopharyngodon idella) via NO system/NF-κB signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105941. [PMID: 38879332 DOI: 10.1016/j.pestbp.2024.105941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 07/02/2024]
Abstract
Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including β-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanju Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Tingting Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Boosani CS, Burela L. The Exacerbating Effects of the Tumor Necrosis Factor in Cardiovascular Stenosis: Intimal Hyperplasia. Cancers (Basel) 2024; 16:1435. [PMID: 38611112 PMCID: PMC11010976 DOI: 10.3390/cancers16071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
TNF-α functions as a master regulator of inflammation, and it plays a prominent role in several immunological diseases. By promoting important cellular mechanisms, such as cell proliferation, migration, and phenotype switch, TNF-α induces its exacerbating effects, which are the underlying cause of many proliferative diseases such as cancer and cardiovascular disease. TNF-α primarily alters the immune component of the disease, which subsequently affects normal functioning of the cells. Monoclonal antibodies and synthetic drugs that can target TNF-α and impair its effects have been developed and are currently used in the treatment of a few select human diseases. Vascular restenosis is a proliferative disorder that is initiated by immunological mechanisms. In this review, the role of TNF-α in exacerbating restenosis resulting from neointimal hyperplasia, as well as molecular mechanisms and cellular processes affected or induced by TNF-α, are discussed. As TNF-α-targeting drugs are currently not approved for the treatment of restenosis, the summation of the topics discussed here is anticipated to provide information that can emphasize on the use of TNF-α-targeting drug candidates to prevent vascular restenosis.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Somatic Cell and Genome Editing Center, Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- MU HealthCare, University of Missouri, Columbia, MO 65211, USA
- Technology and Platform Development, Soma Life Science Solutions, Winston-Salem, NC 27103, USA
| | | |
Collapse
|
14
|
Xiang Q, Yi X, Zhu XH, Wei X, Jiang DS. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab 2024; 35:219-234. [PMID: 37981501 DOI: 10.1016/j.tem.2023.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023]
Abstract
Myocardial ischemia-reperfusion (I/R) injury most commonly occurs in coronary artery disease when prompt reperfusion is used to salvage the ischemic myocardium. Cardiomyocyte death is a significant component of myocardial I/R injury and its mechanism was previously thought to be limited to apoptosis and necrosis. With the discovery of novel types of cell death, ferroptosis, necroptosis, and pyroptosis have been shown to be involved in myocardial I/R. These new forms of regulated cell death cause cardiomyocyte loss and exacerbate I/R injury by affecting reactive oxygen species (ROS) generation, calcium stress, and inflammatory cascades, subsequently mediating adverse remodeling, cardiac dysfunction, and heart failure. Herein, we review the roles of ferroptosis, necroptosis, and pyroptosis in myocardial I/R and discuss their contribution to pathology.
Collapse
Affiliation(s)
- Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Fawzy RM, Abdel-Aziz AA, Bassiouny K, Fayed AM. Phytocompounds-based therapeutic approach: Investigating curcumin and green tea extracts on MCF-7 breast cancer cell line. J Genet Eng Biotechnol 2024; 22:100339. [PMID: 38494270 PMCID: PMC10980874 DOI: 10.1016/j.jgeb.2023.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.
Collapse
Affiliation(s)
- Radwa M Fawzy
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt.
| | - Amal A Abdel-Aziz
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Khalid Bassiouny
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Aysam M Fayed
- Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
16
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Qian J, Zhang J, Cao J, Wang X, Zhang W, Chen X. The Regulatory Effect of Receptor-Interacting Protein Kinase 3 on CaMKIIδ in TAC-Induced Myocardial Hypertrophy. Int J Mol Sci 2023; 24:14529. [PMID: 37833985 PMCID: PMC10572717 DOI: 10.3390/ijms241914529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Necroptosis is a newly discovered mechanism of cell death, and its key regulatory role is attributed to the interaction of receptor-interacting protein kinases (RIPKs) RIPK1 and RIPK3. Ca2+/calmodulin-dependent protein kinase (CaMKII) is a newly discovered RIPK3 substrate, and its alternative splicing plays a fundamental role in cardiovascular diseases. In the present study, we aimed to explore the role and mechanism of necroptosis and alternative splicing of CaMKIIδ in myocardial hypertrophy. Transverse aortic constriction (TAC) was performed on wild-type and knockout mice to establish the model of myocardial hypertrophy. After 3 weeks, echocardiography, cardiac index, cross-sectional area of myocardial cells, hypertrophic gene expression, myocardial damage, and fibers were assessed. Moreover, we detected the levels of inflammatory factors (IL-6 and TNF-α) and examined the expressions of necroptosis-related proteins RIPK3, RIPK1, and phosphorylated MLKL. Meanwhile, we tested the expression levels of splicing factors ASF/SF2 and SC-35 in an attempt to explore CaMKII δ. The relationship between variable splicing disorder and the expression levels of splicing factors ASF/SF2 and SC-35. Further, we also investigated CaMKII activation, oxidative stress, and mitochondrial ultrastructure. In addition, wild-type mice were administered with a recombinant adeno-associated virus (AAV) carrying RIPK3, followed by TAC surgery to construct a model of myocardial hypertrophy, and the above-mentioned indicators were tested after 3 weeks. The results showed that RIPK3 deficiency could alleviate cardiac dysfunction, myocardial injury, aggravation of necrosis, and CaMKII activation induced by TAC surgery in mice with myocardial hypertrophy. Tail vein injection of AAV could reverse cardiac dysfunction, myocardial damage, aggravation of necrosis, and CaMKII activation in mice with myocardial hypertrophy. These results proved that RIPK3 could be used as a molecular intervention target for the prevention and treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Jianan Qian
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
| | - Jingjing Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
- School of Medicine, Nantong University, Nantong 226001, China
| | - Ji Cao
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
| | - Xue Wang
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
- School of Medicine, Nantong University, Nantong 226001, China
| | - Xiangfan Chen
- School of Pharmacy, Nantong University, Nantong 226001, China; (J.Q.); (J.Z.); (J.C.); (X.W.)
- School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
18
|
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:303. [PMID: 37504559 PMCID: PMC10380972 DOI: 10.3390/jcdd10070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease morbidity/mortality are increasing due to an aging population and the rising prevalence of diabetes and obesity. Therefore, innovative cardioprotective measures are required to reduce cardiovascular disease morbidity/mortality. The role of necroptosis in myocardial ischemia-reperfusion injury (MI-RI) is beyond doubt, but the molecular mechanisms of necroptosis remain incompletely elucidated. Growing evidence suggests that MI-RI frequently results from the superposition of multiple pathways, with autophagy, ferroptosis, and CypD-mediated mitochondrial damage, and necroptosis all contributing to MI-RI. Receptor-interacting protein kinases (RIPK1 and RIPK3) as well as mixed lineage kinase domain-like pseudokinase (MLKL) activation is accompanied by the activation of other signaling pathways, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII), NF-κB, and JNK-Bnip3. These pathways participate in the pathological process of MI-RI. Recent studies have shown that inhibitors of necroptosis can reduce myocardial inflammation, infarct size, and restore cardiac function. In this review, we will summarize the molecular mechanisms of necroptosis, the links between necroptosis and other pathways, and current breakthroughs in pharmaceutical therapies for necroptosis.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yantao Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Jinlong Zang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
19
|
Didamoony MA, Atwa AM, Ahmed LA. Modulatory effect of rupatadine on mesenchymal stem cell-derived exosomes in hepatic fibrosis in rats: A potential role for miR-200a. Life Sci 2023; 324:121710. [PMID: 37084952 DOI: 10.1016/j.lfs.2023.121710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
AIMS Mesenchymal stem cell-derived exosomes (MSC-EXOs) have emerged as a promising approach in regenerative medicine for management of different diseases. However, the maintenance of their efficacy after in vivo transplantation is still a major concern. The present investigation aimed to assess the modulatory effect of rupatadine (RUP) on MSC-EXOs in diethylnitrosamine (DEN)-induced liver fibrosis (LF), and to explore the possible underlying mechanism. MAIN METHODS LF was induced in rats by i.p. injection of DEN (100 mg/kg) once per week for 6 successive weeks. Rats were then treated with RUP (4 mg/kg/day, p.o.) for 4 weeks with or without a single i.v. administration of MSC-EXOs. At the end of the experiment, animals were euthanized and serum and liver were separated for biochemical, and histological measurements. KEY FINDINGS The combined MSC-EXOs/RUP therapy provided an additional improvement towards inhibition of DEN-induced LF compared to MSC-EXOs group alone. These outcomes could be mediated through antioxidant, anti-inflammatory, and anti-fibrotic effects of RUP which created a more favorable environment for MSC-EXOs homing, and action. This in turn would enhance more effectively miR-200a expression which reduced oxidative stress, inflammation, necroptosis pathway, and subsequently fibrosis as revealed by turning off TGF-β1/α-SMA expression, and hedgehog axis. SIGNIFICANCE The present findings reveal that RUP enhanced the anti-fibrotic efficacy of MSC-EXOs when used as a combined therapy. This was revealed through attenuation of PAF/RIPK3/MLKL/HMGB1, and TGF-β1/hedgehog signaling pathways with a significant role for miR-200a.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
20
|
Khosravi A, Deyhim MR, Yari F, Nikougoftar Zarif M. Resveratrol; a Double-Edged Sword Antioxidant Agent for Preserving Platelet Cell Functions During Storage; Molecular Insights. Rep Biochem Mol Biol 2023; 11:553-564. [PMID: 37131901 PMCID: PMC10149130 DOI: 10.52547/rbmb.11.4.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 05/04/2023]
Abstract
Background In the current study we have aimed to find the effects of Resveratrol treatment on platelet concentrates (PCs) at the dose dependent manner. We have also attempted to find the molecular mechanism of the effects. Methods The PCs, have received from Iranian blood transfusion organization (IBTO). Totally 10 PCs were studied. The PCs divided into 4 groups including untreated (control) and treated by different dose of Resveratrol; 10, 30 and 50 µM. Platelet aggregation and total reactive oxygen species (ROS) levels were evaluated at day 3 of PCs storage. In silico analysis was carried out to find out the potential involved mechanisms. Results The aggregation against collagen has fallen dramatically in all studied groups but at the same time, aggregation was significantly higher in the control versus treated groups (p<0.05). The inhibitory effect was dose dependent. The aggregation against Ristocetin did not significantly affect by Resveratrol treatment. The mean of total ROS significantly increased in all studied groups except those PCs treated with 10 µM of Resveratrol (P=0.9). The ROS level significantly increased with increasing Resveratrol concentration even more than control group (slope=11.6, P=0.0034). Resveratrol could potently interact with more than 15 different genes which, 10 of them enrolled in cellular regulation of the oxidative stress. Conclusions Our findings indicated that the Resveratrol affect the platelet aggregation at the dose dependent manner. Moreover, we have also found that the Resveratrol play as double-edged sword in the controlling oxidative state of the cells. Therefore, Using the optimal dose of Resveratrol is the great of importance.
Collapse
Affiliation(s)
- Abbas Khosravi
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Reza Deyhim
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
- Corresponding author: Mohammad Reza Deyhim; Tel: +98 21 82052180; E-mail:
| | - Fatemeh Yari
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mahin Nikougoftar Zarif
- Blood Transfusion Research center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
21
|
Recent Progress in Research on Mechanisms of Action of Natural Products against Alzheimer's Disease: Dietary Plant Polyphenols. Int J Mol Sci 2022; 23:ijms232213886. [PMID: 36430365 PMCID: PMC9695301 DOI: 10.3390/ijms232213886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system and the most common type of dementia in the elderly. Despite years of extensive research efforts, our understanding of the etiology and pathogenesis of AD is still highly limited. Nevertheless, several hypotheses related to risk factors for AD have been proposed. Moreover, plant-derived dietary polyphenols were also shown to exert protective effects against neurodegenerative diseases such as AD. In this review, we summarize the regulatory effects of the most well-known plant-derived dietary polyphenols on several AD-related molecular mechanisms, such as amelioration of oxidative stress injury, inhibition of aberrant glial cell activation to alleviate neuroinflammation, inhibition of the generation and promotion of the clearance of toxic amyloid-β (Aβ) plaques, inhibition of cholinesterase enzyme activity, and increase in acetylcholine levels in the brain. We also discuss the issue of bioavailability and the potential for improvement in this regard. This review is expected to encourage further research on the role of natural dietary plant polyphenols in the treatment of AD.
Collapse
|
22
|
Chaouhan HS, Vinod C, Mahapatra N, Yu SH, Wang IK, Chen KB, Yu TM, Li CY. Necroptosis: A Pathogenic Negotiator in Human Diseases. Int J Mol Sci 2022; 23:12714. [PMID: 36361505 PMCID: PMC9655262 DOI: 10.3390/ijms232112714] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Over the past few decades, mechanisms of programmed cell death have attracted the scientific community because they are involved in diverse human diseases. Initially, apoptosis was considered as a crucial mechanistic pathway for programmed cell death; recently, an alternative regulated mode of cell death was identified, mimicking the features of both apoptosis and necrosis. Several lines of evidence have revealed that dysregulation of necroptosis leads to pathological diseases such as cancer, cardiovascular, lung, renal, hepatic, neurodegenerative, and inflammatory diseases. Regulated forms of necrosis are executed by death receptor ligands through the activation of receptor-interacting protein kinase (RIPK)-1/3 and mixed-lineage kinase domain-like (MLKL), resulting in the formation of a necrosome complex. Many papers based on genetic and pharmacological studies have shown that RIPKs and MLKL are the key regulatory effectors during the progression of multiple pathological diseases. This review focused on illuminating the mechanisms underlying necroptosis, the functions of necroptosis-associated proteins, and their influences on disease progression. We also discuss numerous natural and chemical compounds and novel targeted therapies that elicit beneficial roles of necroptotic cell death in malignant cells to bypass apoptosis and drug resistance and to provide suggestions for further research in this field.
Collapse
Affiliation(s)
- Hitesh Singh Chaouhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Ch Vinod
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Nikita Mahapatra
- Department of Biological Sciences, School of Applied Sciences, KIIT University, Bhubaneshwar 751024, India
| | - Shao-Hua Yu
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Kuan Wang
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Internal Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kuen-Bao Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| | - Tung-Min Yu
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40402, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
23
|
Paeoniflorin Protects H9c2 Cardiomyocytes against Hypoxia/Reoxygenation Induced Injury via Regulating the AMPK/Nrf2 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7667770. [PMID: 36276847 PMCID: PMC9584672 DOI: 10.1155/2022/7667770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
Myocardial ischemia/reperfusion (MIR) injury contributes to the exacerbation of heart disease by causing cardiac arrhythmias, myocardial infarction, and even sudden death. Studies have found that paeoniflorin (PF) has a protective effect on coronary artery disease (CAD). However, the mechanism of PF in MIR has not been fully investigated. The purpose of this study was to investigate the functional role of PF in H9c2 cells subjected to hypoxia/reoxygenation (H/R). Here, PF treatment enhanced cell viability in H/R-stimulated H9c2 cells. In H9c2 cells, PF treatment reduced the formation of reactive oxygen species (ROS) induced by H/R. In H/R-stimulated H9c2 cells, PF also increased the activity of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase. Furthermore, PF protected H9c2 cells against H/R-induced apoptosis, as demonstrated by increased Bcl-2 expression, decreased Bax expression, and decreased caspase-3 activity. Furthermore, PF increased the levels of p-AMPK and nuclear Nrf2 expression in response to H/R stimulation. AMPK inhibition, on the other hand, abolished the PF-mediated increase in Nrf2 signaling and the cardiac-protective effect in H9c2 cells exposed to H/R. These data suggest that PF protected H9c2 cells against H/R-induced oxidative stress and apoptosis through modulating the AMPK/Nrf2 signaling pathway. Our findings support the therapeutic potential of PF in myocardial I/R damage.
Collapse
|
24
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
25
|
Zhang Y, Lu J, Ma Y, Sun L, Wang S, Yue X, Yu J, Xue P. Establishment of fingerprint and mechanism of anti-myocardial ischemic effect of Syringa pinnatifolia. Biomed Chromatogr 2022; 36:e5475. [PMID: 35947036 DOI: 10.1002/bmc.5475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To establish the fingerprint of Syringa pinnatifolia Hemsl. (SP), analyze the blood components of SP, and explore the possible mechanism of SP's anti-myocardial ischemia, so as to provide scientific basis for the follow-up development and research of SP and lay a foundation for its clinical application. METHODS The fingerprint of SP was established by UPLC-QE-MS and GC-MS. A rat Myocardial infarction (MI) was constructed by ligating the left anterior descending branch (LAD) of the rat coronary artery, and SP alcohol extract was administered to evaluate its anti-myocardial ischemic effect. We analyzed the blood components of SP, screened the active compounds, established a database of SP anti-myocardial ischemic targets, and explored the possible mechanism of SP in treating MI by bioinformatics. The rats were examined by echocardiography, serum biomarkers were determined, and pathological changes were observed by histopathological examination. TUNEL staining was performed to detect the apoptotic level of cells, and western blot and qRT-PCR were performed to detect the expression levels of Bcl-2, Bax and caspase-3 in heart tissues. RESULTS In the fingerprint of SP, 24 common peaks were established, and the similarity evaluation results of 10 batches of SP were all > 0.9. UPLC-QE-MS and GC-MS detected a total of 17 active ingredients in the drug-containing serum, including terpenoids, flavonoids, phenols, phenylpropanoids and phenolic acids, the most abundant of which was resveratrol. Enrichment analysis of SP targets against myocardial ischemia revealed that key candidate targets of SP were significantly enriched in multiple pathways associated with apoptosis. Resveratrol was administered to the successfully modeled rats, and the results showed that the resveratrol group significantly reduced LVEDd and LVEDs and significantly increased EF and FS in all groups compared with the model group. Resveratrol significantly reduced the levels of CK-MB and LDH in serum compared to the model group (p < 0.001). Hematoxylin-eosin (HE) staining of rat myocardial tissue showed that all lesions were reduced under microscopic observation in the resveratrol group compared with the model group. RT-PCR and western blot results showed that resveratrol group down-regulated the expression of the pro-apoptotic factor Bax, up-regulated the expression of the anti-apoptotic factor Bcl-2, and decreased the expression of Caspase-3. CONCLUSION The established fingerprints are accurate, reliable and reproducible, and can be used as an effective method for the quality control of the herbs. The anti-myocardial ischemia effect of SP may be that resveratrol can improve cardiac function and inhibit cardiomyocyte apoptosis to protect cardiomyocytes. The present study provides ample evidence for the clinical use of SP, suggesting that this drug has great potential in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Ye Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jingkun Lu
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Lijun Sun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Suwei Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Xin Yue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Jiuwang Yu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Peifeng Xue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| |
Collapse
|
26
|
Ca2+/Calmodulin-Dependent Protein Kinase II Regulation by Inhibitor of RIPK3 Protects against Cardiac Hypertrophy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7941374. [PMID: 36046685 PMCID: PMC9423983 DOI: 10.1155/2022/7941374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
The activity of Ca2+/calmodulin-dependent protein kinase II δ (CaMKII δ) is central to the mechanisms of cardiovascular diseases. Receptor-interacting protein kinase 3- (RIPK3-) mediated necroptosis has been reported to contribute to cardiac dysfunction. However, the potential protective role of inhibition of RIPK3, a regulator of CaMKII, on cardiac hypertrophy remains unclear. The present study is aimed at investigating how the RIPK3 inhibitor GSK'872 regulates CaMKII activity and exploring its effect on hypertrophic cardiomyopathy (HCM). Wild-type (WT) and RIPK3 gene knockout (RIPK3−/−) mice were implanted subcutaneously with Alzet miniosmotic pumps (200 μL) and perfused with angiotensin II (AMP-AngII) to induce cardiac hypertrophy. After WT mice were induced by AngII for 72 hours, they were injected with GSK'872 with an intraperitoneal (IP) dose of 6 mg/kg once a day for two weeks. After this, they were physiologically examined for Echocardiography, myocardial injury, CaMKII activity, necroptosis, RIPK3 expression, mixed lineage kinase domain-like protein (MLKL) phosphorylation, and mitochondrial ultrastructure. The results indicated that deletion of the RIPK3 gene or administration of GSK'872 could reduce CaMKII activity, alleviate oxidative stress, reduce necroptosis, and reverse myocardial injury and cardiac dysfunction caused by AngII-induced cardiac hypertrophy in mice. The present study demonstrated that CaMKII activation and necroptosis augment cardiac hypertrophy in a RIPK3-dependent manner, which may provide therapeutic strategies for HCM. RIPK3 inhibitor GSK'872 has a protective effect on cardiac hypertrophy and could be an efficacious targeted medicine for HCM in clinical treatment.
Collapse
|
27
|
Yang Z, Zhang Y, Yang S, Ding Y, Qu Y. Low-Dose Resveratrol Inhibits RIPK3-Mediated Necroptosis and Delays the Onset of Age-Related Hearing Loss. Front Pharmacol 2022; 13:910308. [PMID: 35846996 PMCID: PMC9277008 DOI: 10.3389/fphar.2022.910308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Background: To investigate the pathophysiology of age-related hearing loss (ARHL) and the mechanism of resveratrol (RSV) in prevention and treatment of ARHL. Methods: C57BL/6 mice of different ages were used in this study. Auditory brainstem response (ABR) was performed to assess hearing and identify abnormalities. Surface preparation and hair cell-specific marker Myo VIIa were employed to evaluated cochlear hair cell losses. Scanning electron microscopy (SEM) was to observe the microstructure of the organ of Corti (OC). The expression of related proteins in the RIPK1/RIPK3/MLKL pathway in cochlear tissue was detected by immunofluorescence. Results: In old mice (15 months), the ABR threshold increased significantly compared with the young mice. After 50 mg/kg RSV intervention, the hearing threshold of the old mice was significantly reduced at 8 kHz and 12 kHz as well as click. 100 mg/kg RSV led to a statistically significant reduction in hearing threshold only at clicks, whereas 300 mg/kg RSV showed no difference at all frequencies tested. In terms of cochlear hair cell loss, the damage of OHC and IHC was severe in old mice, but the damage was evidently reduced in RSV 50 mg/kg group. Notably, in the RSV 300 mg/kg group, the loss and disorientation of both the OHCs and IHCs were aggravated. Under SEM, a large number of OHCs were lost in the old group, but increased significantly in the RSV 50 mg/kg group, and even the OHCs were more seriously damaged in the RSV 300 mg/kg group. Furthermore, immunofluorescence showed that 50 mg/kg RSV significantly reduced the expression of RIPK3, RIPK1, and MLKL in the cochlea during aging, especially in necroptosis-sensitive regions OCs and SGN. Conclusion: Low-dose RSV inhibited RIPK3-mediated necroptosis in aging cochlea and delayed the onset of ARHL, which was a promising therapeutic strategy for ARHL.
Collapse
Affiliation(s)
- Zeyin Yang
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- ENT & HN Surgery Department, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Yan Zhang
- Department of Otolaryngology, Tangshan People’s Hospital, Tangshan, China
| | - Shuling Yang
- Animal Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongqing Ding
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Qu
- Department of Otolaryngology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Yan Qu,
| |
Collapse
|
28
|
Liu J, Zhang M, Qin C, Wang Z, Chen J, Wang R, Hu J, Zou Q, Niu X. Resveratrol Attenuate Myocardial Injury by Inhibiting Ferroptosis Via Inducing KAT5/GPX4 in Myocardial Infarction. Front Pharmacol 2022; 13:906073. [PMID: 35685642 PMCID: PMC9171715 DOI: 10.3389/fphar.2022.906073] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Myocardial infarction (MI) is a coronary artery-related disease and ranks as the leading cause of sudden death globally. Resveratrol (Res) is a bioactive component and has presented antioxidant, anti-inflammatory and anti-microbial properties. However, the effect of Res on ferroptosis during MI progression remains elusive. Here, we aimed to explore the function of Res in the regulation of ferroptosis and myocardial injury in MI. We observed that the treatment of Res attenuated the MI-related myocardium injury and fibrosis in the rats. The expression of collagen 1 and α-SMA was induced in MI rats, in which the treatment of Res could decrease the expression. Treatment of Res suppressed the levels of IL-6 and IL-1β in MI rats. The GSH levels were inhibited and MDA, lipid ROS, and Fe2+ levels were induced in MI rats, in which the treatment of Res could reverse the phenotypes. Meanwhile, the expression of GPX4 and SLC7A11 was reduced in MI rats, while the treatment of Res could rescue the expression in the model. Meanwhile, Res relieved oxygen-glucose deprivation (OGD)-induced cardiomyocyte injury. Importantly, Res repressed OGD-induced cardiomyocyte ferroptosis in vitro. Mechanically, we identified that Res was able to enhance GPX4 expression by inducing KAT5 expression. We confirmed that KAT5 alleviated OGD-induced cardiomyocyte injury and ferroptosis. The depletion of KAT5 or GPX4 could reverse the effect of Res on OGD-induced cardiomyocyte injury. Thus, we concluded that Res attenuated myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction. Our finding provides new evidence of the potential therapeutic effect of Res on MI by targeting ferroptosis.
Collapse
|
29
|
He F, Zheng G, Hu J, Ge W, Ji X, Bradley JL, Peberdy MA, Ornato JP, Tang W. Necrosulfonamide improves post-resuscitation myocardial dysfunction via inhibiting pyroptosis and necroptosis in a rat model of cardiac arrest. Eur J Pharmacol 2022; 926:175037. [PMID: 35588872 DOI: 10.1016/j.ejphar.2022.175037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
The systemic inflammatory response following global myocardial ischemia/reperfusion (I/R) injury is a critical driver of poor outcomes. Both pyroptosis and necroptosis are involved in the systemic inflammatory response and contribute to regional myocardial I/R injury. This study aimed to explore the effect of necrosulfonamide (NSA) on post-resuscitation myocardial dysfunction in a rat model of cardiac arrest. Sprague-Dawley rats were randomly categorized to Sham, CPR and CPR-NSA groups. For rats in the latter two groups, ventricular fibrillation was induced without treatment for 6 min, with cardiopulmonary resuscitation (CPR) being sustained for 8 min. Rats were injected with NSA (10 mg/kg in DMSO) or vehicle at 5 min following return of spontaneous circulation. Myocardial function was measured by echocardiography, survival and neurological deficit score (NDS) were recorded at 24, 48, and 72 h after ROSC. Western blotting was used to assess pyroptosis- and necroptosis-related protein expression. ELISAs were used to measure levels of inflammatory cytokine. Rats in the CPR-NSA group were found to exhibit superior post-resuscitation myocardial function, and better NDS values in the group of CPR-NSA. Rats in the group of CPR-NSA exhibited median survival duration of 68 ± 8 h as compared to 34 ± 21 h in the CPR group. After treatment with NSA, NOD-like receptor 3 (NLRP3), GSDMD-N, phosphorylated-MLKL, and phosphorylated-RIP3 levels in cardiac tissue were reduced with corresponding reductions in inflammatory cytokine levels. Administration of NSA significantly improved myocardial dysfunction succeeding global myocardial I/R injury and enhanced survival outcomes through protective mechanisms potentially related to inhibition of pyroptosis and necroptosis pathways.
Collapse
Affiliation(s)
- Fenglian He
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Guanghui Zheng
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Juntao Hu
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Weiwei Ge
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Xianfei Ji
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Jennifer L Bradley
- Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA.
| | - Mary Ann Peberdy
- Departments of Internal Medicine and Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Joseph P Ornato
- Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| | - Wanchun Tang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Weil Institute of Emergency and Critical Care Research, Virginia Commonwealth University, Richmond, VA, USA; Department of Emergency Medicine, Virginia Commonwealth University Health System, Richmond, VA, USA.
| |
Collapse
|
30
|
Antioxidant Cardioprotection against Reperfusion Injury: Potential Therapeutic Roles of Resveratrol and Quercetin. Molecules 2022; 27:molecules27082564. [PMID: 35458766 PMCID: PMC9027566 DOI: 10.3390/molecules27082564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemia-reperfusion myocardial damage is a paradoxical tissue injury occurring during percutaneous coronary intervention (PCI) in acute myocardial infarction (AMI) patients. Although this damage could account for up to 50% of the final infarct size, there has been no available pharmacological treatment until now. Oxidative stress contributes to the underlying production mechanism, exerting the most marked injury during the early onset of reperfusion. So far, antioxidants have been shown to protect the AMI patients undergoing PCI to mitigate these detrimental effects; however, no clinical trials to date have shown any significant infarct size reduction. Therefore, it is worthwhile to consider multitarget antioxidant therapies targeting multifactorial AMI. Indeed, this clinical setting involves injurious effects derived from oxygen deprivation, intracellular pH changes and increased concentration of cytosolic Ca2+ and reactive oxygen species, among others. Thus, we will review a brief overview of the pathological cascades involved in ischemia-reperfusion injury and the potential therapeutic effects based on preclinical studies involving a combination of antioxidants, with particular reference to resveratrol and quercetin, which could contribute to cardioprotection against ischemia-reperfusion injury in myocardial tissue. We will also highlight the upcoming perspectives of these antioxidants for designing future studies.
Collapse
|
31
|
Gong W, Zhang S, Chen Y, Shen J, Zheng Y, Liu X, Zhu M, Meng G. Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radic Biol Med 2022; 181:29-42. [PMID: 35101564 DOI: 10.1016/j.freeradbiomed.2022.01.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 01/25/2022] [Indexed: 12/11/2022]
Abstract
Diabetic cardiomyopathy lacks effective and novel methods. Hydrogen sulfide (H2S) as the third gasotransmitter plays an important role in the cardiovascular system. Our study was to elucidate the protective effect and possible mechanism of H2S on diabetic cardiomyopathy from the perspective of necroptosis. Leptin receptor deficiency (db/db) mice and streptozotocin (STZ)-induced diabetic cystathionine-γ-lyase (CSE) knockout (KO) mice were investigated. In addition, cardiomyocytes were stimulated with high glucose. We found that plasma H2S level, myocardial H2S production and CSE mRNA expression was impaired in the diabetic mice. CSE deficiency exacerbated diabetic cardiomyopathy, and promoted myocardial oxidative stress, necroptosis and inflammasome in STZ-induced mice. CSE inhibitor dl-propargylglycine (PAG) aggravated cell damage and oxidative stress, deteriorated necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. H2S donor sodium hydrosulfide (NaHS) improved diabetic cardiomyopathy, attenuated myocardial oxidative stress, necroptosis and the NLR family pyrin domain-containing protein 3 (NLRP3) in db/db mice. NaHS also alleviated cell damage, oxidative stress, necroptosis and inflammasome in cardiomyocytes with high glucose stimulation. In Conclusion, H2S deficiency aggravated mitochondrial damage, increased reactive oxygen species accumulation, promoted necroptosis, activated NLRP3 inflammasome, and finally exacerbated diabetic cardiomyopathy. Exogenous H2S supplementation alleviated necroptosis to suppress NLRP3 inflammasome activation and attenuate diabetic cardiomyopathy via mitochondrial dysfunction improvement and oxidative stress inhibition. Our study provides the first evidence and a new mechanism that necroptosis inhibition by a pharmacological manner of H2S administration protected against diabetic cardiomyopathy. It is beneficial to provide a novel strategy for the prevention and treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Weiwei Gong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Shuping Zhang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Jieru Shen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yangyang Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Mingxian Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
32
|
Ke J, Zhao F, Luo Y, Deng F, Wu X. MiR-124 Negatively Regulated PARP1 to Alleviate Renal Ischemia-reperfusion Injury by Inhibiting TNFα/RIP1/RIP3 Pathway. Int J Biol Sci 2021; 17:2099-2111. [PMID: 34131409 PMCID: PMC8193263 DOI: 10.7150/ijbs.58163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 12/01/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is one of the underlying causes of acute kidney injury and also an unavoidable problem in renal transplantation. Lots of miRNAs and targets have been found to participate in some post-transcriptional processes in renal IRI, however, the detailed knowledge of miRNA targets and mechanism is unknown. In this study, miR-124 was found inhibited and PARP1 was overexpressed in renal IRI cells and mouse models. Dual-luciferase reporter assay revealed that miR-124 post-transcriptionally regulated PAPR1 3′UTR activity. Our results also demonstrated miR-124 negatively regulated PARP1 which played a role in necroptosis of renal ischemia-reperfusion injury by activating TNFα. TNFα induced the RIP1/RIP3 necroptosis signaling pathway to aggravate the renal injury. Collectively, these studies identified PARP1 as a direct target of miR-124 and activated RIP1/RIP3 necroptosis signaling pathway through TNFα. It elucidated the protective effect of miR-124 in renal ischemia-reperfusion injury, which demonstrated the regulatory mechanism of miR-124/PARP1 in renal injury and exhibited the potential as a novel therapeutic for the treatment of renal IRI.
Collapse
Affiliation(s)
- Jing Ke
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Endocrinology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Fan Zhao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwen Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangjing Deng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|