1
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
2
|
Abdelhamed W, El-Kassas M. Hepatitis B virus as a risk factor for hepatocellular carcinoma: There is still much work to do. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:83-90. [PMID: 39959873 PMCID: PMC11771266 DOI: 10.1016/j.livres.2024.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 04/03/2025]
Abstract
Hepatitis B virus (HBV) infection is a significant health problem that can result in progression to liver cirrhosis, decompensation, and the development of hepatocellular carcinoma (HCC). On a country level, the prevalence of chronic HBV infection varies between 0.1% and 35.0%, depending on the locality and the population being investigated. One-third of all liver cancer fatalities worldwide are attributable to HBV. The adoption of standard birth-dose immunization exerted the most significant impact on the decline of HBV prevalence. HCC incidence ranges from 0.01% to 1.40% in noncirrhotic patients and from 0.9% to 5.4% annually, in the settings of liver cirrhosis. Although antiviral therapy significantly reduces the risk of developing HBV-related HCC, studies have demonstrated that the risk persists, and that HCC screening is still essential. This review discusses the complex relationship between HBV infection and HCC, recent epidemiological data, different aspects of clinical disease characteristics, and the impact of antiviral therapy in this context.
Collapse
Affiliation(s)
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
- Liver Disease Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
4
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
5
|
Relevance of HBx for Hepatitis B Virus-Associated Pathogenesis. Int J Mol Sci 2023; 24:ijms24054964. [PMID: 36902395 PMCID: PMC10003785 DOI: 10.3390/ijms24054964] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The hepatitis B virus (HBV) counts as a major global health problem, as it presents a significant causative factor for liver-related morbidity and mortality. The development of hepatocellular carcinomas (HCC) as a characteristic of a persistent, chronic infection could be caused, among others, by the pleiotropic function of the viral regulatory protein HBx. The latter is known to modulate an onset of cellular and viral signaling processes with emerging influence in liver pathogenesis. However, the flexible and multifunctional nature of HBx impedes the fundamental understanding of related mechanisms and the development of associated diseases, and has even led to partial controversial results in the past. Based on the cellular distribution of HBx-nuclear-, cytoplasmic- or mitochondria-associated-this review encompasses the current knowledge and previous investigations of HBx in context of cellular signaling pathways and HBV-associated pathogenesis. In addition, particular focus is set on the clinical relevance and potential novel therapeutic applications in the context of HBx.
Collapse
|
6
|
Feitelson MA, Arzumanyan A, Spector I, Medhat A. Hepatitis B x (HBx) as a Component of a Functional Cure for Chronic Hepatitis B. Biomedicines 2022; 10:biomedicines10092210. [PMID: 36140311 PMCID: PMC9496119 DOI: 10.3390/biomedicines10092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Patients who are carriers of the hepatitis B virus (HBV) are at high risk of chronic liver disease (CLD) which proceeds from hepatitis, to fibrosis, cirrhosis and to hepatocellular carcinoma (HCC). The hepatitis B-encoded X antigen, HBx, promotes virus gene expression and replication, protects infected hepatocytes from immunological destruction, and promotes the development of CLD and HCC. For virus replication, HBx regulates covalently closed circular (ccc) HBV DNA transcription, while for CLD, HBx triggers cellular oxidative stress, in part, by triggering mitochondrial damage that stimulates innate immunity. Constitutive activation of NF-κB by HBx transcriptionally activates pro-inflammatory genes, resulting in hepatocellular destruction, regeneration, and increased integration of the HBx gene into the host genome. NF-κB is also hepatoprotective, which sustains the survival of infected cells. Multiple therapeutic approaches include direct-acting anti-viral compounds and immune-stimulating drugs, but functional cures were not achieved, in part, because none were yet devised to target HBx. In addition, many patients with cirrhosis or HCC have little or no virus replication, but continue to express HBx from integrated templates, suggesting that HBx contributes to the pathogenesis of CLD. Blocking HBx activity will, therefore, impact multiple aspects of the host–virus relationship that are relevant to achieving a functional cure.
Collapse
Affiliation(s)
- Mark A. Feitelson
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +1-215-204-8434
| | - Alla Arzumanyan
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran 1975933411, Iran
| |
Collapse
|
7
|
Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022; 14:v14050986. [PMID: 35632728 PMCID: PMC9146458 DOI: 10.3390/v14050986] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is DNA-based virus, member of the Hepadnaviridae family, which can cause liver disease and increased risk of hepatocellular carcinoma (HCC) in infected individuals, replicating within the hepatocytes and interacting with several cellular proteins. Chronic hepatitis B can progressively lead to liver cirrhosis, which is an independent risk factor for HCC. Complications as liver decompensation or HCC impact the survival of HBV patients and concurrent HDV infection worsens the disease. The available data provide evidence that HBV infection is associated with the risk of developing HCC with or without an underlying liver cirrhosis, due to various direct and indirect mechanisms promoting hepatocarcinogenesis. The molecular profile of HBV-HCC is extensively and continuously under study, and it is the result of altered molecular pathways, which modify the microenvironment and lead to DNA damage. HBV produces the protein HBx, which has a central role in the oncogenetic process. Furthermore, the molecular profile of HBV-HCC was recently discerned from that of HDV-HCC, despite the obligatory dependence of HDV on HBV. Proper management of the underlying HBV-related liver disease is fundamental, including HCC surveillance, viral suppression, and application of adequate predictive models. When HBV-HCC occurs, liver function and HCC characteristics guide the physician among treatment strategies but always considering the viral etiology in the treatment choice.
Collapse
|
8
|
Canonical and Divergent N-Terminal HBx Isoform Proteins Unveiled: Characteristics and Roles during HBV Replication. Biomedicines 2021; 9:biomedicines9111701. [PMID: 34829930 PMCID: PMC8616016 DOI: 10.3390/biomedicines9111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a viral regulatory and multifunctional protein. It is well-known that the canonical HBx reading frame bears two phylogenetically conserved internal in-frame translational initiation codons at Met2 and Met3, thus possibly generating divergent N-terminal smaller isoforms during translation. Here, we demonstrate that the three distinct HBx isoforms are generated from the ectopically expressed HBV HBx gene, named XF (full-length), XM (medium-length), and XS (short-length); they display different subcellular localizations when expressed individually in cultured hepatoma cells. Particularly, the smallest HBx isoform, XS, displayed a predominantly cytoplasmic localization. To study HBx proteins during viral replication, we performed site-directed mutagenesis to target the individual or combinatorial expression of the HBx isoforms within the HBV viral backbone (full viral genome). Our results indicate that of all HBx isoforms, only the smallest HBx isoform, XS, can restore WT levels of HBV replication, and bind to the viral mini chromosome, thereby establishing an active chromatin state, highlighting its crucial activities during HBV replication. Intriguingly, we found that sequences of HBV HBx genotype H are devoid of the conserved Met3 position, and therefore HBV genotype H infection is naturally silent for the expression of the HBx XS isoform. Finally, we found that the HBx XM (medium-length) isoform shares significant sequence similarity with the N-terminus domain of the COMMD8 protein, a member of the copper metabolism MURR1 domain-containing (COMMD) protein family. This novel finding might facilitate studies on the phylogenetic origin of the HBV X protein. The identification and functional characterization of its isoforms will shift the paradigm by changing the concept of HBx from being a unique, canonical, and multifunctional protein toward the occurrence of different HBx isoforms, carrying out different overlapping functions at different subcellular localizations during HBV genome replication. Significantly, our current work unveils new crucial HBV targets to study for potential antiviral research, and human virus pathogenesis.
Collapse
|
9
|
Elpek GO. Molecular pathways in viral hepatitis-associated liver carcinogenesis: An update. World J Clin Cases 2021; 9:4890-4917. [PMID: 34307543 PMCID: PMC8283590 DOI: 10.12998/wjcc.v9.i19.4890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of cancer among primary malignant tumors of the liver and is a consequential cause of cancer-related deaths worldwide. In recent years, uncovering the molecular mechanisms involved in the development and behavior of this tumor has led to the identification of multiple potential treatment targets. Despite the vast amount of data on this topic, HCC remains a challenging tumor to treat due to its aggressive behavior and complex molecular profile. Therefore, the number of studies aiming to elucidate the mechanisms involved in both carcinogenesis and tumor progression in HCC continues to increase. In this context, the close association of HCC with viral hepatitis has led to numerous studies focusing on the direct or indirect involvement of viruses in the mechanisms contributing to tumor development and behavior. In line with these efforts, this review was undertaken to highlight the current understanding of the molecular mechanisms by which hepatitis B virus (HBV) and hepatitis C virus (HCV) participate in oncogenesis and tumor progression in HCC and summarize new findings. Cumulative evidence indicates that HBV DNA integration promotes genomic instability, resulting in the overexpression of genes related to cancer development, metastasis, and angiogenesis or inactivation of tumor suppressor genes. In addition, genetic variations in HBV itself, especially preS2 deletions, may play a role in malignant transformation. Epigenetic dysregulation caused by both viruses might also contribute to tumor formation and metastasis by modifying the methylation of DNA and histones or altering the expression of microRNAs. Similarly, viral proteins of both HBV and HCV can affect pathways that are important anticancer targets. The effects of these two viruses on the Hippo-Yap-Taz pathway in HCC development and behavior need to be investigated. Additional, comprehensive studies are also needed to determine these viruses' interaction with integrins, farnesoid X, and the apelin system in malignant transformation and tumor progression. Although the relationship of persistent inflammation caused by HBV and HCV hepatitis with carcinogenesis is well defined, further studies are warranted to decipher the relationship among inflammasomes and viruses in carcinogenesis and elucidate the role of virus-microbiota interactions in HCC development and progression.
Collapse
Affiliation(s)
- Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
10
|
Zhang J, Ling N, Lei Y, Peng M, Hu P, Chen M. Multifaceted Interaction Between Hepatitis B Virus Infection and Lipid Metabolism in Hepatocytes: A Potential Target of Antiviral Therapy for Chronic Hepatitis B. Front Microbiol 2021; 12:636897. [PMID: 33776969 PMCID: PMC7991784 DOI: 10.3389/fmicb.2021.636897] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) is considered a “metabolic virus” and affects many hepatic metabolic pathways. However, how HBV affects lipid metabolism in hepatocytes remains uncertain yet. Accumulating clinical studies suggested that compared to non-HBV-infected controls, chronic HBV infection was associated with lower levels of serum total cholesterol and triglycerides and a lower prevalence of hepatic steatosis. In patients with chronic HBV infection, high ALT level, high body mass index, male gender, or old age was found to be positively correlated with hepatic steatosis. Furthermore, mechanisms of how HBV infection affected hepatic lipid metabolism had also been explored in a number of studies based on cell lines and mouse models. These results demonstrated that HBV replication or expression induced extensive and diverse changes in hepatic lipid metabolism, by not only activating expression of some critical lipogenesis and cholesterolgenesis-related proteins but also upregulating fatty acid oxidation and bile acid synthesis. Moreover, increasing studies found some potential targets to inhibit HBV replication or expression by decreasing or enhancing certain lipid metabolism-related proteins or metabolites. Therefore, in this article, we comprehensively reviewed these publications and revealed the connections between clinical observations and experimental findings to better understand the interaction between hepatic lipid metabolism and HBV infection. However, the available data are far from conclusive, and there is still a long way to go before clarifying the complex interaction between HBV infection and hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Lei
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
D'souza S, Lau KCK, Coffin CS, Patel TR. Molecular mechanisms of viral hepatitis induced hepatocellular carcinoma. World J Gastroenterol 2020; 26:5759-5783. [PMID: 33132633 PMCID: PMC7579760 DOI: 10.3748/wjg.v26.i38.5759] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/03/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with viral hepatitis affects half a billion individuals worldwide and can lead to cirrhosis, cancer, and liver failure. Liver cancer is the third leading cause of cancer-associated mortality, of which hepatocellular carcinoma (HCC) represents 90% of all primary liver cancers. Solid tumors like HCC are complex and have heterogeneous tumor genomic profiles contributing to complexity in diagnosis and management. Chronic infection with hepatitis B virus (HBV), hepatitis delta virus (HDV), and hepatitis C virus (HCV) are the greatest etiological risk factors for HCC. Due to the significant role of chronic viral infection in HCC development, it is important to investigate direct (viral associated) and indirect (immune-associated) mechanisms involved in the pathogenesis of HCC. Common mechanisms used by HBV, HCV, and HDV that drive hepatocarcinogenesis include persistent liver inflammation with an impaired antiviral immune response, immune and viral protein-mediated oxidative stress, and deregulation of cellular signaling pathways by viral proteins. DNA integration to promote genome instability is a feature of HBV infection, and metabolic reprogramming leading to steatosis is driven by HCV infection. The current review aims to provide a brief overview of HBV, HCV and HDV molecular biology, and highlight specific viral-associated oncogenic mechanisms and common molecular pathways deregulated in HCC, and current as well as emerging treatments for HCC.
Collapse
Affiliation(s)
- Simmone D'souza
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Keith CK Lau
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Carla S Coffin
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
| | - Trushar R Patel
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary T2N 1N4, AB, Canada
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge T1K3M4, AB, Canada
| |
Collapse
|
12
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Yen CJ, Yang ST, Chen RY, Huang W, Chayama K, Lee MH, Yang SJ, Lai HS, Yen HY, Hsiao YW, Wang JM, Lin YJ, Hung LY. Hepatitis B virus X protein (HBx) enhances centrosomal P4.1-associated protein (CPAP) expression to promote hepatocarcinogenesis. J Biomed Sci 2019; 26:44. [PMID: 31170980 PMCID: PMC6551916 DOI: 10.1186/s12929-019-0534-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Background Our previous report suggested that centrosomal P4.1-associated protein (CPAP) is required for Hepatitis B virus (HBV) encoded non-structure protein X (HBx)-mediated nuclear factor kappa light chain enhancer of activated B cells (NF-κB) activation. CPAP is overexpressed in HBV-associated hepatocellular carcinoma (HCC); however, the interaction between CPAP and HBx in HBV-HCC remains unclear. Methods The mRNA expression of CPAP and HBx was analyzed by quantitative-PCR (Q-PCR). NF-κB transcriptional activity and CPAP promoter activity were determined using a reporter assay in Huh7 and Hep3B cells. Immunoprecipitation (IP) and in situ proximal ligation assay (PLA) were performed to detect the interaction between CPAP and HBx. Chromatin-IP was used to detect the association of cAMP response element binding protein (CREB) and HBx with the CPAP promoter. Cell proliferation was measured using cell counting kit CCK-8, Bromodeoxyuridine (5-bromo-2′-deoxyuridine, BrdU) incorporation, and clonogenic assays. The tumorigenic effects of CPAP were determined using xenograft animal models. Results HBx can transcriptionally up-regulate CPAP via interacting with CREB. Overexpressed CPAP directly interacted with HBx to promote HBx-mediated cell proliferation and migration; SUMO modification of CPAP was involved in interacting with HBx. Knocked-down expression of CPAP decreased the HBx-mediated tumorigenic effects, including cytokines secretion. Interestingly, overexpressed CPAP maintained the HBx protein stability in an NF-κB-dependent manner; and the expression levels of CPAP and HBx were positively correlated with the activation status of NF-κB in HCC. Increased expression of CPAP and CREB mRNAs existed in the high-risk group with a lower survival rate in HBV-HCC. Conclusion The interaction between CPAP and HBx can provide a microenvironment to facilitate HCC development via enhancing NF-κB activation, inflammatory cytokine production, and cancer malignancies. This study not only sheds light on the role of CPAP in HBV-associated HCC, but also provides CPAP as a potential target for blocking the hyper-activated NF-κB in HCC. Electronic supplementary material The online version of this article (10.1186/s12929-019-0534-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chia-Jui Yen
- Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shu-Ting Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ruo-Yu Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Wenya Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ming-Hao Lee
- Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Shiang-Jie Yang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hong-Sheng Lai
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Yen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Wei Hsiao
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yih-Jyh Lin
- Division of General and Transplantation Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Department of Pharmacology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
14
|
Mészáros I, Olasz F, Kádár-Hürkecz E, Bálint Á, Hornyák Á, Belák S, Zádori Z. Cellular localisation of the proteins of region 3 of feline enteric coronavirus. Acta Vet Hung 2018; 66:493-508. [PMID: 30264619 DOI: 10.1556/004.2018.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Feline enteric coronaviruses have three open reading frames (ORFs) in region 3 (3a, 3b, and 3c). All three ORFs were expressed with C-terminal eGFP and 3xFLAG tags in different cell lines and their localisation was determined. ORF 3a is predicted to contain DNA-binding and transcription activator domains, and it is localised in the nucleus and in the cytoplasm. ORF 3b is also predicted to contain DNA-binding and activator domains, and was found to localise in the mitochondrion. Besides that, in some of the non-infected and FIPV-infected cells nucleolar, perinuclear or nuclear membrane accumulation of the eGFP-tagged 3b was observed. The exact compartmental localisation of ORF 3c is yet to be determined. However, based on our co-localisation studies 3c does not seem to be localised in the ER-Golgi network, ERGIC or peroxisomes. The expression of 3c-eGFP is clearly cell type dependent, it is more stable in MARC 145 cells than in Fcwf-4 or CrFK cells, which might reflect in vivo stability differences of 3c in natural target cells (enterocytes vs. monocytes/macrophages).
Collapse
Affiliation(s)
- István Mészáros
- 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Ferenc Olasz
- 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| | - Enikő Kádár-Hürkecz
- 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
- 2 National Institute of Environmental Health, Budapest, Hungary
| | - Ádám Bálint
- 3 National Food Chain Safety Office Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Ákos Hornyák
- 3 National Food Chain Safety Office Veterinary Diagnostic Directorate, Budapest, Hungary
| | - Sándor Belák
- 4 Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Zoltán Zádori
- 1 Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, H-1143 Budapest, Hungary
| |
Collapse
|
15
|
Huang XY, Li D, Chen ZX, Huang YH, Gao WY, Zheng BY, Wang XZ. Hepatitis B Virus X protein elevates Parkin-mediated mitophagy through Lon Peptidase in starvation. Exp Cell Res 2018; 368:75-83. [PMID: 29689279 DOI: 10.1016/j.yexcr.2018.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 01/13/2023]
Abstract
Hepatocellular Carcinoma (HCC) is the fifth most prevalent cancer worldwide. Specially, Hepatitis B viurs X protein (HBx) is a leading factor in the progression of Hepatitis B viurs-related HCC. Nutrient-deprived tumor microenvironment also contributes to tumor development. However, the role of HBx in nutrient-deprived HCC has received little investigation. Here, we show that HBx elevates PINK1-Parkin mediating mitophagy in starvation. HBx not only increases the PINK1/Parkin gene expression but also accelerates Parkin recruitment to partial mitochondria. Further analysis indicates that, HBx either promotes mitochondrial unfolded protein response, with remarkable mitochondrial LONP1 increases, or reduces LONP1 expression in cytosol inducing LONP1-Parkin pathway, both consequently enhancing mitophagy. Moreover, the enhanced mitophagy lowers mitochondrial apoptosis in starved hepatoma cells, and Bax is implied in the machinery. In addition, we define differential centrifuge, 3000 g or 12,000 g to pellet mitochondria, as an effective method to obtain distinct mitochondria. In collect, HBx regulates diverse aspects of LONP1 and Parkin, enhancing mitophagy in starvation. This study may shed new insights into the machinery development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiao-Yun Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Zhi-Xin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Yue-Hong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Wen-Yu Gao
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Bi-Yun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, 29, Xinquan Road, Gulou, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
16
|
Zheng BY, Gao WY, Huang XY, Lin LY, Fang XF, Chen ZX, Wang XZ. HBx promotes the proliferative ability of HL‑7702 cells via the COX‑2/Wnt/β‑catenin pathway. Mol Med Rep 2018; 17:8432-8438. [PMID: 29693167 DOI: 10.3892/mmr.2018.8906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Hepatitis B virus X protein (HBx) has been termed a viral oncoprotein, and is involved in the initiation and progression of hepatocellular carcinoma (HCC). Cyclooxygenase‑2 (COX‑2) and β‑catenin have been attributed to the oncogenic activity of HBx in HBV‑associated HCC. The present study aimed to determine whether there is crosstalk between COX‑2 and the Wnt/β‑catenin signaling pathway during HL‑7702‑HBx cell proliferation, and to investigate the associated underlying molecular mechanism. In the present study, cell proliferation assay, colony formation assay and flow cytometric analysis were used to detect the proliferative ability of cells. Reverse transcription‑quantitative polymerase chain reaction and western blotting were performed to examine the mRNA and protein expression of COX‑2, β‑catenin, cyclin‑D1 and c‑myc. The results demonstrated that HL‑7702‑HBx exhibited increased cell proliferation, higher colony formation efficiency and a shortened G1 period of the cell cycle. In addition, the mRNA and protein expression levels of COX‑2 were increased, and this was associated with HL‑7702‑HBx cell growth. Furthermore, the expression of β‑catenin and its target genes, cyclin‑D1 and c‑myc proto‑oncogene protein, was upregulated by HBx via COX‑2. Finally, HBx promoted HL‑7702 cell proliferation through the Wnt/β‑catenin signaling pathway. In conclusion, the primary finding of the present study was that HBx may promote HL‑7702 cell proliferation via the COX‑2/Wnt/β‑catenin pathway. Thus, it may be helpful to further investigate the molecular mechanism of HBV‑associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bi-Yun Zheng
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wen-Yu Gao
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Yun Huang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Li-Ying Lin
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xue-Fen Fang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Xin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
17
|
X protein variants of the autochthonous Latin American hepatitis B virus F genotype promotes human hepatocyte death by the induction of apoptosis and autophagy. Virus Res 2017; 242:156-165. [PMID: 28986109 PMCID: PMC7114566 DOI: 10.1016/j.virusres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023]
Abstract
The impact of BCP mutations on HBV-X biologic activity was analyzed. Genotype F wild type and mutant HBV-X induce apoptosis of human hepatocytes. HBV-X variants modulate the expression of Bcl-2 family proteins. Subgenotypes F1b and F4 HBV-X and variants induce autophagy of human hepatocytes.
The hepatitis B virus X protein (HBV-X) is a multifunctional regulatory protein associated with the pathogenesis of liver disease in chronic HBV infection. Basal core promoter mutations (BCP), associated with the clinical course of chronic HBV infection, affect HBV-X at 130–131 positions. The role of these mutations on HBV-X biological activity remains largely unknown. The aim of this study was to analyze the impact of the presence of different amino acids at 130–131 positions of HBV-X on the biological activity of the protein. Transient expression of wild type and mutant F1b and F4 HBV-X increased cell mortality by the induction of apoptosis in human hepatoma cells. The wild type and mutant HBV-X differentially modulate the expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2 and Bcl-X) regulatory proteins of the Bcl-2 family. Furthermore, the expression of HBV-X variants of both subgenotypes induced autophagy of human tumoral hepatocytes. In conclusion, HBV-X variants of the Latin American HBV F genotype promotes human hepatocytes death by the induction of apoptosis and autophagy. The results of this work describe some of the molecular mechanisms by which HBV-X variants contribute to the pathogenesis of liver diseases in the infected liver and help to the biological characterization of genotype F, responsible of the majority of HBV infections in Argentina.
Collapse
|
18
|
He Z, Yu Y, Nong Y, Du L, Liu C, Cao Y, Bai L, Tang H. Hepatitis B virus X protein promotes hepatocellular carcinoma invasion and metastasis via upregulating thioredoxin interacting protein. Oncol Lett 2017; 14:1323-1332. [PMID: 28789347 DOI: 10.3892/ol.2017.6296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus X protein (HBx), a multifunctional protein encoded by the X gene of the hepatitis B virus (HBV) is involved in the metastasis of HBV-associated hepatocellular carcinoma (HCC) through various pathways, including upregulating intracellular reactive oxygen species (ROS). Thioredoxin interacting protein (TXNIP) is a key mediator of intracellular ROS, but its function in HBx-mediated metastasis of HBV-associated HCC is elusive. In the present study, HBV-associated HCC tissues with or without metastasis and HepG2 cells were used to study the function of TXNIP in HBx-mediated metastasis of HBV-associated HCC. Initially, the expression levels of TXNIP and HBx in HBV-associated HCC tissues were detected by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. The results revealed that high expression of TXNIP may be an independent risk factor for metastasis of HBV-associated HCC, and the mRNA levels of TXNIP and HBx were positively associated. Secondly, the association between HBx and TXNIP was investigated using a HBx expression stable cell line, in which HBx expression was induced and controlled by doxycycline. The results demonstrated that HBx may upregulate TXNIP expression in HepG2 cells. Thirdly, the effects of TXNIP and HBx on HepG2 cell migration and invasion were studied by scratch and Matrigel invasion assays, respectively. The results demonstrated that TXNIP overexpression enhanced HepG2 cell migration and invasion. In addition, ectopic expression of HBx promoted HepG2 cell migration and invasion, and this effect may be attenuated by knockdown of TXNIP expression, which indicated that TXNIP may be involved in the process. In summary, the present results demonstrated that TXNIP may be involved in HBx-mediated metastasis of HBV-associated HCC.
Collapse
Affiliation(s)
- Zhiliang He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Youjia Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yunhong Nong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Cong Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Yong Cao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017; 18:ijms18061126. [PMID: 28538669 PMCID: PMC5485950 DOI: 10.3390/ijms18061126] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease.
Collapse
|
20
|
Gao WY, Li D, Cai DE, Huang XY, Zheng BY, Huang YH, Chen ZX, Wang XZ. Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore. Oncol Rep 2016; 37:48-56. [PMID: 27840960 PMCID: PMC5355673 DOI: 10.3892/or.2016.5225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a leading cause of liver cirrhosis and cancer. Among the pathogenic factors of HBV, HBV X protein (HBx) is attracting increased attention. Although it is documented that HBx is a multifunctional regulator that modulates cell inflammation and apoptosis, the exact mechanism remains controversial. In the present study, we explored the effect of HBx on oxidative stress-induced apoptosis in normal liver cell line, HL-7702. Our results showed that the existence of HBx affected mitochondrial biogenesis by modulating the opening of the mitochondrial permeability transition pore (MPTP). Notably, this phenomenon was associated with a pronounced translocation of Bax from the cytosol to the mitochondria during the period of exposure to oxidative stress with a release of cytochrome c and activation of cleaved caspase-3 and PARP. Moreover, MPTP blockage with cyclosporin A prevented the translocation of Bax, and inhibited oxidative stress-induced apoptotic killing in the HBx-expressing HL-7702 cells. Our findings suggest that HBx exhibits pro-apoptotic effects upon normal liver cells following exposure to oxidative stress by modulating the MPTP gateway.
Collapse
Affiliation(s)
- Wen-Yu Gao
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| | - Dan Li
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| | - De-En Cai
- Graduate School, Fujian Medical University, Fujian 350001, P.R. China
| | - Xiao-Yun Huang
- Graduate School, Fujian Medical University, Fujian 350001, P.R. China
| | - Bi-Yun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| | - Yue-Hong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| | - Zhi-Xin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fujian 350001, P.R. China
| |
Collapse
|
21
|
Ferré CA, Davezac N, Thouard A, Peyrin JM, Belenguer P, Miquel MC, Gonzalez-Dunia D, Szelechowski M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. FASEB J 2015; 30:1523-33. [PMID: 26700735 DOI: 10.1096/fj.15-279620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.
Collapse
Affiliation(s)
- Cécile A Ferré
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Noélie Davezac
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Anne Thouard
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Jean-Michel Peyrin
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Pascale Belenguer
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marie-Christine Miquel
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Daniel Gonzalez-Dunia
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marion Szelechowski
- *INSERM, Unité Mixte de Recherche (UMR) 1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France; Centre National de la Recherche Scientifique (CNRS), UMR 5282, Toulouse, France; Université Toulouse III Paul Sabatier, Toulouse, France; CNRS UMR 5547, Centre de Biologie du Développement, Toulouse, France; CNRS UMR 8256, Biological Adaptation and Aging, Institut de Biologie Paris Seine, Université Pierre et Marie Curie, Paris, France; and Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| |
Collapse
|
22
|
Schrader M, Costello J, Godinho LF, Islinger M. Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 2015; 38:681-702. [PMID: 25687155 DOI: 10.1007/s10545-015-9819-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.
Collapse
Affiliation(s)
- Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK,
| | | | | | | |
Collapse
|
23
|
Kim S, Lee HS, Ji JH, Cho MY, Yoo YS, Park YY, Cha HJ, Lee Y, Kim Y, Cho H. Hepatitis B virus X protein activates the ATM-Chk2 pathway and delays cell cycle progression. J Gen Virol 2015; 96:2242-2251. [PMID: 25872745 DOI: 10.1099/vir.0.000150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic instability is intimately associated with tumour development. In particular, liver cancers associated with hepatitis B virus (HBV) exhibit high genetic instability; however, our understanding of the underlying molecular mechanisms remains limited. In this study, we found that γ-H2AX, a marker of DNA double-strand breaks (DSBs), and the levels of phospho-Chk2 (p-Chk2, the activated form) were significantly elevated in HBV-associated hepatocellular carcinomas and neighbouring regenerating nodules. Likewise, introduction of the pHBV or pMyc-HBx plasmids into cells induced accumulation of γ-H2AX foci and increased the p-Chk2 level. In these cells, inhibitory phosphorylation of Cdc25C phosphatase (Ser(216)) and CDK1 (Tyr(15)) was elevated; consequently, cell-cycle progression was delayed at G2/M phase, suggesting that activation of the ATM-Chk2 pathway by the HBV X protein (HBx) induces cell-cycle delay. Accordingly, inhibition of ataxia telangiectasia mutated (ATM) by caffeine or siRNA abolished the increase in the p-Chk2 level and restored the delayed CDK1 kinase activity in ChangX cells. We also found that cytoplasmic HBx, but not nuclear HBx, induced reactive oxygen species (ROS) production and led to the accumulation of γ-H2AX foci and the increased p-Chk2 level. Together, these data indicate that HBx-induced ROS accumulation induces DNA damage that activates the ATM-Chk2 pathway. Our findings provide insight into the mechanisms of HBV pathogenesis.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jae-Hoon Ji
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Mi-Young Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Republic of Korea
| | - Young-Suk Yoo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yong-Yea Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyuk-Jin Cha
- Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Youngsoo Lee
- Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Youngbae Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyeseong Cho
- Department of Biomedical Sciences, The Graduate School of Ajou University, Suwon, Republic of Korea.,Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.,Genomic Instability Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
24
|
Zheng BY, Fang XF, Zou LY, Huang YH, Chen ZX, Li D, Zhou LY, Chen H, Wang XZ. The co-localization of HBx and COXIII upregulates COX-2 promoting HepG2 cell growth. Int J Oncol 2014; 45:1143-50. [PMID: 24938358 DOI: 10.3892/ijo.2014.2499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/27/2014] [Indexed: 11/06/2022] Open
Abstract
HBx is a multifunctional regulator that interacts with host factors to contribute to the development of hepatocellular carcinoma. In this study, to explore the co-localization of HBx and COXIII in HepG2 cells and to investigate the molecular mechanism of HBx in HepG2 cell growth promotion, we first constructed a HepG2 cell line stably expressing the HBx gene in vitro by lentivirus vectors. In addition, we found that HBx co-localized with the inner mitochondrial protein, COXIII, in HepG2 cells by confocal laser scanning microscopy. It led to changes of mitochondrial biogenesis and morphology, including upregulation of COXIII protein expression, increased cytochrome c oxidase activity and higher mitochondrial membrane potential. The upregulation of COX-2 caused by HBx through generation of mitochondrial reactive oxygen species promoted cell growth. Thus, we conclude that co-localization of HBx and COXIII leads to upregulation of COX-2 that promotes HepG2 cell growth. Such a mechanism provides deeper insights into the molecular mechanism of HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bi-Yun Zheng
- Graduate School, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xue-Fen Fang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lai-Yu Zou
- Department of Infection, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yue-Hong Huang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhi-Xin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Dan Li
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lin-Ying Zhou
- Laboratory of Electron Microscopy, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hao Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350108, P.R. China
| | - Xiao-Zhong Wang
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
25
|
Peroxisome-localized hepatitis Bx protein increases the invasion property of hepatocellular carcinoma cells. Arch Virol 2014; 159:2549-57. [PMID: 24810099 DOI: 10.1007/s00705-014-2105-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
HBx acts as a multifunctional regulator that modulates various cellular responses, which can lead to development and progression of hepatocellular carcinoma (HCC). Here, we show that the HBx protein is also localized to peroxisomes, and this increases cellular reactive oxygen species (ROS) to levels that are higher than when HBx is localized to other organelles. The elevated ROS strongly activated nuclear factor (NF)-κB. In addition, the peroxisome-localized HBx increased the expressions of matrix metalloproteinases and decreased the expression of E-cadherin, which increased the invasive ability of HCC cells. Thus, a specific distribution of HBx to peroxisomes may contribute to HCC progression by increasing the invasive ability of HCC cells through elevation of the cellular ROS level.
Collapse
|
26
|
Feitelson MA, Bonamassa B, Arzumanyan A. The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets 2014; 18:293-306. [PMID: 24387282 DOI: 10.1517/14728222.2014.867947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hepatitis B virus (HBV) is a major cause of chronic liver disease (CLD) and hepatocellular carcinoma (HCC) worldwide. More than 350 million people are at risk for HCC, and with few treatment options available, therapeutic approaches to targets other than the virus polymerase will be needed. This review suggests that the HBV-encoded X protein, HBx, would be an outstanding target because it contributes to the biology and pathogenesis of HBV in three fundamental ways. AREAS COVERED First, HBx is a trans-activating protein that stimulates virus gene expression and replication, thereby promoting the development and persistence of the carrier state. Second, HBx partially blocks the development of immune responses that would otherwise clear the virus, and protects infected hepatocytes from immune-mediated destruction. Thus, HBx contributes to the development of CLD without virus clearance. Third, HBx alters patterns of host gene expression that make possible the emergence of HCC. The selected literature cited is from the National Library of Medicine (Pubmed and Medline). EXPERT OPINION Understanding the mechanisms, whereby HBx supports virus replication and promotes pathogenesis, suggests that HBx will be an important therapeutic target against both virus replication and CLD aimed at the chemoprevention of HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Temple University, College of Science and Technology, Department of Biology , Room 409 BioLife Science Building, 1900 N. 12th Street, Philadelphia, PA 19122 , USA +1 215 204 8434 ; +1 215 204 8359 ;
| | | | | |
Collapse
|
27
|
Duan CH, Tai S. Role of hepatitis B virus X protein in hepatocarcinogenesis. Shijie Huaren Xiaohua Zazhi 2013; 21:2397-2402. [DOI: 10.11569/wcjd.v21.i24.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world and the third most common cause of cancer-related death. Chronic hepatitis B virus (HBV) infection has been identified as a major risk factor for HCC. Evidence suggests that the HBV X protein (HBx) plays a crucial role in the carcinogenesis of HCC. HBx is a multifunctional regulator that plays a key role in the occurrence, development, invasion and metastasis of cancers. Due to its important roles in the development of HCC, the research on the HBx protein has become a hot topic in recent years. This review describes the latest advances in understanding the role of the HBx protein in hepatocarcinogenesis.
Collapse
|
28
|
Li W, Zhu MY, Lu Y, Zhu LQ, Dong X, Chen Y, Li MS. Construction and identification of a green fluorescent protein expression vector carrying the HBx gene (pHBx-EGFP) and its expression in hepatocellular carcinoma cell line Bel 7402. Shijie Huaren Xiaohua Zazhi 2013; 21:2016-2022. [DOI: 10.11569/wcjd.v21.i21.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct an eukaryotic expression vector carrying hepatitis B virus X (HBx) gene and enhanced green fluorescent protein gene (pHBx-EGFP), and to express it transiently in hepatocellular carcinoma (HCC) Bel 7402 cells for observing the expression and cellular localization of HBx-EGFP fusion protein and providing an experimental tool for investigating the function of HBx gene.
METHODS: pcDNA3.1-HBx was used to amplify the HBx gene fragment by polymerase chain reaction (PCR). Recombinant DNA technology was used to insert the HBx gene into the eukaryotic expression vector pEGFP to obtain a recombinant vector pHBx-EGFP. After the recombinant vector or pEGFP was transfected into Bel 7402 cells for 24 h, the expression and subcellular location of HBx-EGFP was detected under an inverted fluorescence microscope, and the expression of HBx protein in total cellular proteins was detected by Western blot.
RESULTS: Restriction digestion and DNA sequence analyses verified that the recombinant plasmid was constructed successfully. After the HBx-EGFP recombinant plasmid was transfected into Bel 7402 cells, it was found that HBx-EGFP was present in the perinuclear region, while EGFP was distributed throughout the cells. Western blot analysis demonstrated that EGFP and HBx were expressed efficiently.
CONCLUSION: A recombinant eukaryotic fluorescent expression vector carrying the HBx gene (pHBx-EGFP) has been constructed successfully, which could express EGFP and HBx in Bel 7402 cells.
Collapse
|
29
|
Liu B, Wen X, Huang C, Wei Y. Unraveling the complexity of hepatitis B virus: from molecular understanding to therapeutic strategy in 50 years. Int J Biochem Cell Biol 2013; 45:1987-96. [PMID: 23819994 DOI: 10.1016/j.biocel.2013.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 06/18/2013] [Accepted: 06/21/2013] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a well-known hepadnavirus with a double-stranded circular DNA genome. Although HBV was first described approximately 50 years ago, the precise mechanisms of HBV infection and effective therapeutic strategies remain unclear. Here, we focus on summarizing the complicated mechanisms of HBV replication and infection, as well as genomic factors and epigenetic regulation. Additionally, we discuss in vivo models of HBV, as well as diagnosis, prevention and therapeutic drugs for HBV. Together, the data in this 50-year review may provide new clues to elucidate molecular mechanisms of HBV pathogenesis and shed new light on the future HBV therapies.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | |
Collapse
|
30
|
Sun LF, Shi C, Yuan L, Sun Y, Yao XX, Ma JW, Huang CM, Zhu HF, Lei P, Shen GX. Expression of cytokines in mouse hepatitis B virus X gene-transfected model. ACTA ACUST UNITED AC 2013; 33:172-177. [PMID: 23592125 DOI: 10.1007/s11596-013-1092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Indexed: 12/31/2022]
Abstract
The expression profile in the mouse hepatitis B virus X (HBx)-transfected model was investigated in order to lay a foundation for further study on the implication of cytokines expression in hepatitis B virus (HBV) infection. Hydrodynamic injection method via the tail vein was used to establish the animal HBx-transfected model. By using microassay, the differential expression of gene in each group was analyzed, which was further confirmed by using real-time PCR and semi-quantitative PCR. Most of chemokine genes such as Ccl2, Ccl5, Ccl9, MIG and IP-10 were up-regulated in the HBx-transfected mouse model versus the control mice, which was coincided with the microarray results. Western blotting and immunohistochemistry were applied to detect the expression of MIG and IP-10 in the liver tissues. Simultaneously, ELISA was adopted to measure the content of IFN-γ in the liver tissues. DNA microassay revealed that the expression of 611 genes changed in HBx-transfected mice as compared with that in pCMV-tag2B-transfected mice, and most of the screened chemokines were up-regulated (including MIG and IP-10). Additionally, IFN-γ protein levels were increased by 20.7% (P<0.05) in pCMV-tag2B-HBx-transfected mice as compared with the untreated mice. IFN-γ protein levels were reduced by 53.9% (P<0.05) in pCMV-tag2B-transfected mice as compared with the untreated mice, which was consistent with the up-regulation of MIG and IP-10. It was suggested HBx transfection could induce the expression of MIG and IP-10 in the liver tissues, which might play the roles in HBV-related liver immunity and cytokines-mediated antiviral effect.
Collapse
Affiliation(s)
- Li-Fang Sun
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Laboratory, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuan Shi
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Yuan
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Xin Yao
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Wei Ma
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chun-Mei Huang
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Fen Zhu
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Lei
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guan-Xin Shen
- Department of Immunology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
32
|
Jung SY, Kim YJ. C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett 2012; 331:76-83. [PMID: 23246371 DOI: 10.1016/j.canlet.2012.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 02/07/2023]
Abstract
HBx is strongly associated with hepatocellular carcinoma development through transcription factor activation and reactive oxygen species (ROSs) production. However, the exact role of HBx during hepatocellular carcinogenesis is not fully understood. Recently, it was reported that C-terminal truncated HBx is associated with tumor metastasis. In the present study, we confirmed that the C-terminal region of HBx is required for ROS production and 8-oxoguanine (8-oxoG) formation, which is considered as a reliable biomarker of oxidative stress. These results suggest ROS production induced by the C-terminal region of HBx leads to mitochondrial DNA damage, which may play a role in HCC development.
Collapse
Affiliation(s)
- Seung-Youn Jung
- Department of Molecular Biology, Pusan National University, Busan 609-735, Republic of Korea
| | | |
Collapse
|
33
|
Yang CH, Song BC, Cho M. A natural mutation of the hepatitis B virus X gene affects cell cycle progression and apoptosis in Huh7 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2012-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|