1
|
Dury LC, Yde Ohki CM, Lesch KP, Walitza S, Grünblatt E. The role of astrocytes in attention-deficit hyperactivity disorder: An update. Psychiatry Res 2025; 350:116558. [PMID: 40424648 DOI: 10.1016/j.psychres.2025.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/15/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Attention-deficit hyperactivity disorder (ADHD), the most prevalent neurodevelopmental disorder, is characterized by inattention, hyperactivity, and impulsivity, manifesting in distinct symptoms and varying degrees of severity among patients. While the cellular processes underlying the neurobiology of ADHD are still being explored, in vitro studies suggest the involvement of certain cellular pathways in its clinical manifestations. Neurodevelopmental disorders such as ADHD are caused by malfunctions in numerous cells in the central nervous system (CNS) throughout development; nevertheless, most of the research focuses on neuronal dysfunction. In the last decade, it has become evident that glia and astrocytes play a crucial role in neurodevelopmental processes, which, if deficient, may result in neurodevelopmental disorders. Besides contributing to homeostatic maintenance of the blood-brain barrier (BBB) and other glial cell types, astrocytes provide neurons with structural, trophic, and metabolic support, which is indispensable for their proper functionality. Emerging evidence implicates that astrocytes are involved in processes associated with the etiopathology of ADHD, including oxidative stress, aberrant synaptic formation, neuroinflammation, and excitatory/inhibitory imbalance. This review will summarize the current knowledge addressing astrocyte dysfunction in ADHD, the remaining caveats in clinical data, and the possibilities for drug therapy. Findings substantiated by in vivo, in vitro, and genetic data will be provided, along with the impact of methylphenidate on astrocyte condition.
Collapse
Affiliation(s)
- Louisa Charlotte Dury
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Biomedicine PhD Program, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland
| | - Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Klaus-Peter Lesch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany; Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Ying Y, Liu W, Wang H, Shi J, Wang Z, Fei J. GABA transporter mGat4 is involved in multiple neural functions in mice. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119740. [PMID: 38697303 DOI: 10.1016/j.bbamcr.2024.119740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system. The termination of GABA transmission is through the action of GABA transporters (GATs). mGAT4 (encoded by Slc6a11) is another GAT besides GAT1 (encoded by Slc6a1) that functions in GABA reuptake in CNS. Research on the function of mGAT4 is still in its infancy. We developed an mGat4 knockout mouse model (mGat4-/- mice) and performed a series of behavioral analyses for the first time to study the effect of mGat4 on biological processes in CNS. Our results indicated that homozygous mGat4-/- mice had less depression, anxiety-like behavior and more social activities than their wild-type littermate controls. However, they had weight loss and showed motor incoordination and imbalance. Meanwhile, mGat4-/- mice showed increased pain threshold and hypoalgesia behavior in nociceptive stimulus and learning and memory impairments. The expression of multiple components of the GABAergic system including GAD67, GABAA and KCC2 was altered. There is little or no compensatory change in mGat1. In a word, mGat4 may play a key role in normal motor coordination, sensation, emotion, learning and memory and could be the potential target of neurological disorders.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weitong Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Haoyue Wang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jiahao Shi
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai 201203, China.
| |
Collapse
|
3
|
Kim D, Yadav D, Song M. An updated review on animal models to study attention-deficit hyperactivity disorder. Transl Psychiatry 2024; 14:187. [PMID: 38605002 PMCID: PMC11009407 DOI: 10.1038/s41398-024-02893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neuropsychiatric disorder affecting both children and adolescents. Individuals with ADHD experience heterogeneous problems, such as difficulty in attention, behavioral hyperactivity, and impulsivity. Recent studies have shown that complex genetic factors play a role in attention-deficit hyperactivity disorders. Animal models with clear hereditary traits are crucial for studying the molecular, biological, and brain circuit mechanisms underlying ADHD. Owing to their well-managed genetic origins and the relative simplicity with which the function of neuronal circuits is clearly established, models of mice can help learn the mechanisms involved in ADHD. Therefore, in this review, we highlighting the important genetic animal models that can be used to study ADHD.
Collapse
Affiliation(s)
- Daegeon Kim
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan-si, South Korea.
| |
Collapse
|
4
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Lee WS, Yoon BE. Necessity of an Integrative Animal Model for a Comprehensive Study of Attention-Deficit/Hyperactivity Disorder. Biomedicines 2023; 11:biomedicines11051260. [PMID: 37238931 DOI: 10.3390/biomedicines11051260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Animal models of attention-deficit/hyperactivity disorder (ADHD) have been used to study and understand the behavioral, neural, and physiological mechanisms underlying ADHD. These models allow researchers to conduct controlled experiments and manipulate specific brain regions or neurotransmitter systems to investigate the underlying causes of ADHD and test potential drug targets or treatments. However, it is essential to note that while these models can provide valuable insights, they do not ideally mimic the complex and heterogeneous nature of ADHD and should be interpreted cautiously. Additionally, since ADHD is a multifactorial disorder, environmental and epigenetic factors should be considered simultaneously. In this review, the animal models of ADHD reported thus far are classified into genetic, pharmacological, and environmental models, and the limitations of the representative models are discussed. Furthermore, we provide insights into a more reliable alternative model for the comprehensive study of ADHD.
Collapse
Affiliation(s)
- Won-Seok Lee
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam-do, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
6
|
Fogarty MJ. Inhibitory Synaptic Influences on Developmental Motor Disorders. Int J Mol Sci 2023; 24:ijms24086962. [PMID: 37108127 PMCID: PMC10138861 DOI: 10.3390/ijms24086962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During development, GABA and glycine play major trophic and synaptic roles in the establishment of the neuromotor system. In this review, we summarise the formation, function and maturation of GABAergic and glycinergic synapses within neuromotor circuits during development. We take special care to discuss the differences in limb and respiratory neuromotor control. We then investigate the influences that GABAergic and glycinergic neurotransmission has on two major developmental neuromotor disorders: Rett syndrome and spastic cerebral palsy. We present these two syndromes in order to contrast the approaches to disease mechanism and therapy. While both conditions have motor dysfunctions at their core, one condition Rett syndrome, despite having myriad symptoms, has scientists focused on the breathing abnormalities and their alleviation-to great clinical advances. By contrast, cerebral palsy remains a scientific quagmire or poor definitions, no widely adopted model and a lack of therapeutic focus. We conclude that the sheer abundance of diversity of inhibitory neurotransmitter targets should provide hope for intractable conditions, particularly those that exhibit broad spectra of dysfunction-such as spastic cerebral palsy and Rett syndrome.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
7
|
Custodio RJP, Kim M, Chung YC, Kim BN, Kim HJ, Cheong JH. Thrsp Gene and the ADHD Predominantly Inattentive Presentation. ACS Chem Neurosci 2023; 14:573-589. [PMID: 36716294 DOI: 10.1021/acschemneuro.2c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There are three presentations of attention-deficit/hyperactivity disorder (ADHD): the predominantly inattention (ADHD-PI), predominantly hyperactive-impulsive (ADHD-HI), and combined (ADHD-C) presentations of ADHD. These may represent distinct childhood-onset neurobehavioral disorders with separate etiologies. ADHD diagnoses are behaviorally based, so investigations into potential etiologies should be founded on behavior. Animal models of ADHD demonstrate face, predictive, and construct validity when they accurately reproduce elements of the symptoms, etiology, biochemistry, and disorder treatment. Spontaneously hypertensive rats (SHR/NCrl) fulfill many validation criteria and compare well with clinical cases of ADHD-C. Compounding the difficulty of selecting an ideal model to study specific presentations of ADHD is a simple fact that our knowledge regarding ADHD neurobiology is insufficient. Accordingly, the current review has explored a potential animal model for a specific presentation, ADHD-PI, with acceptable face, predictive, and construct validity. The Thrsp gene could be a biomarker for ADHD-PI presentation, and THRSP OE mice could represent an animal model for studying this distinct ADHD presentation.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors─IfADo, Ardeystraße 67, 44139 Dortmund, Germany
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, College of Medicine, Seoul National University, 101 Daehakro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarangro, Nowon-gu, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| |
Collapse
|
8
|
Kuffner MTC, Koch SP, Kirchner M, Mueller S, Lips J, An J, Mertins P, Dirnagl U, Endres M, Boehm-Sturm P, Harms C, Hoffmann CJ. Paracrine Interleukin 6 Induces Cerebral Remodeling at Early Stages After Unilateral Common Carotid Artery Occlusion in Mice. Front Cardiovasc Med 2022; 8:805095. [PMID: 35155612 PMCID: PMC8830347 DOI: 10.3389/fcvm.2021.805095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Aims Carotid artery disease is frequent and can result in chronic modest hypoperfusion of the brain. If no transient ischemic attack or stroke occur, it is classified asymptomatic. In the long-term, though, it can lead to cognitive impairment. Fostering cerebral remodeling after carotid artery occlusion might be a new concept of treatment. Paracrine Interleukin 6 (IL-6) can induce such remodeling processes at early stages. However, it has neurodegenerative long-term effects. With this exploratory study, we investigated the effect of paracrine IL-6 on cerebral remodeling in early stages after asymptomatic carotid artery occlusion to identify new treatment targets. Methods and Results To mimic a human asymptomatic carotid artery disease, we used a mouse model of unilateral common carotid artery (CCA) occlusion. We developed a mouse model for inducible paracrine cerebral IL-6 expression (Cx30-Cre-ERT2;FLEX-IL6) and induced IL-6 2 days after CCA occlusion. We studied the effects of paracrine IL-6 after CCA occlusion on neuronal connectivity using diffusion tensor imaging and on local proteome regulations of the hypo-perfused striatum and contralateral motor cortex using mass spectrometry of laser capture micro-dissected tissues. Paracrine IL-6 induced cerebral remodeling leading to increased inter-hemispheric connectivity and changes in motor system connectivity. We identified changes in local protein abundance which might have adverse effects on functional outcome such as upregulation of Synuclein gamma (Sncg) or downregulation of Proline Dehydrogenase 1 (Prodh). However, we also identified changes in local protein abundance having potentially beneficial effects such as upregulation of Caprin1 or downregulation of GABA transporter 1 (Gat1). Conclusions Paracrine cerebral IL-6 at early stages induces changes in motor system connectivity and the proteome after asymptomatic CCA occlusion. Our results may help to distinguish unfavorable from beneficial IL-6 dependent protein regulations. Focusing on these targets might generate new treatments to improve long-term outcome in patients with carotid artery disease.
Collapse
Affiliation(s)
- Melanie T. C. Kuffner
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan P. Koch
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janet Lips
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jeehye An
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ulrich Dirnagl
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- QUEST Quality, Ethics, Open Science, Translation, Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
| | - Philipp Boehm-Sturm
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- Christoph Harms
| | - Christian J. Hoffmann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Christian J. Hoffmann
| |
Collapse
|
9
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
10
|
Scheuer T, dem Brinke EA, Grosser S, Wolf SA, Mattei D, Sharkovska Y, Barthel PC, Endesfelder S, Friedrich V, Bührer C, Vida I, Schmitz T. Reduction of cortical parvalbumin-expressing GABAergic interneurons in a rodent hyperoxia model of preterm birth brain injury with deficits in social behavior and cognition. Development 2021; 148:272278. [PMID: 34557899 DOI: 10.1242/dev.198390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/17/2021] [Indexed: 12/18/2022]
Abstract
The inhibitory GABAergic system in the brain is involved in the etiology of various psychiatric problems, including autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD) and others. These disorders are influenced not only by genetic but also by environmental factors, such as preterm birth, although the underlying mechanisms are not known. In a translational hyperoxia model, exposing mice pups at P5 to 80% oxygen for 48 h to mimic a steep rise of oxygen exposure caused by preterm birth from in utero into room air, we documented a persistent reduction of cortical mature parvalbumin-expressing interneurons until adulthood. Developmental delay of cortical myelin was observed, together with decreased expression of oligodendroglial glial cell-derived neurotrophic factor (GDNF), a factor involved in interneuronal development. Electrophysiological and morphological properties of remaining interneurons were unaffected. Behavioral deficits were observed for social interaction, learning and attention. These results demonstrate that neonatal oxidative stress can lead to decreased interneuron density and to psychiatric symptoms. The obtained cortical myelin deficit and decreased oligodendroglial GDNF expression indicate that an impaired oligodendroglial-interneuronal interplay contributes to interneuronal damage.
Collapse
Affiliation(s)
- Till Scheuer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Elena Auf dem Brinke
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Susanne A Wolf
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Department of Experimental Ophthalmology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Daniele Mattei
- Cellular Neurocience, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich CH-8057, Switzerland
| | - Yuliya Sharkovska
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Paula C Barthel
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Institute for Cell and Neurobiology, Center for Anatomy, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Vivien Friedrich
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany.,Berlin Institute of Health (BIH), Berlin 10178, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Imre Vida
- Institute for Integrative Neuroanatomy, NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité - Universitätsmedizin Berlin, Berlin 13353, Germany
| |
Collapse
|
11
|
Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021; 11:529. [PMID: 34650032 PMCID: PMC8517032 DOI: 10.1038/s41398-021-01651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Collapse
|
12
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
13
|
Yuan FF, Gu X, Huang X, Zhong Y, Wu J. SLC6A1 gene involvement in susceptibility to attention-deficit/hyperactivity disorder: A case-control study and gene-environment interaction. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:202-208. [PMID: 28442423 DOI: 10.1016/j.pnpbp.2017.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is an early onset childhood neurodevelopmental disorder with an estimated heritability of approximately 76%. We conducted a case-control study to explore the role of the SLC6A1 gene in ADHD. The genotypes of eight variants were determined using Sequenom MassARRAY technology. The participants in the study were 302 children with ADHD and 411 controls. ADHD symptoms were assessed using the Conners Parent Symptom Questionnaire. In our study, rs2944366 was consistently shown to be associated with the ADHD risk in the dominant model (odds ratio [OR]=0.554, 95% confidence interval [CI]=0.404-0.760), and nominally associated with Hyperactive index score (P=0.027). In addition, rs1170695 has been found to be associated with the ADHD risk in the addictive model (OR=1.457, 95%CI=1.173-1.809), while rs9990174 was associated with the Hyperactive index score (P=0.010). Intriguingly, gene-environmental interactions analysis consistently revealed the potential interactions of rs1170695 with blood lead (Pmul=0.044) to modify the ADHD risk. Expression quantitative trait loci analysis suggested that these positive single nucleotide polymorphisms (SNPs) may mediate SLC6A1 gene expression. Therefore, our results suggest that selected SLC6A1 gene variants may have a significant effect on the ADHD risk.
Collapse
Affiliation(s)
- Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China
| | - Yan Zhong
- Department of Child Health Care, Hunan Children's Hospital, Changsha 410007, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, People's Republic of China.
| |
Collapse
|
14
|
de la Peña JB, Dela Peña IJ, Custodio RJ, Botanas CJ, Kim HJ, Cheong JH. Exploring the Validity of Proposed Transgenic Animal Models of Attention-Deficit Hyperactivity Disorder (ADHD). Mol Neurobiol 2017; 55:3739-3754. [PMID: 28534274 DOI: 10.1007/s12035-017-0608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common, behavioral, and heterogeneous neurodevelopmental condition characterized by hyperactivity, impulsivity, and inattention. Symptoms of this disorder are managed by treatment with methylphenidate, amphetamine, and/or atomoxetine. The cause of ADHD is unknown, but substantial evidence indicates that this disorder has a significant genetic component. Transgenic animals have become an essential tool in uncovering the genetic factors underlying ADHD. Although they cannot accurately reflect the human condition, they can provide insights into the disorder that cannot be obtained from human studies due to various limitations. An ideal animal model of ADHD must have face (similarity in symptoms), predictive (similarity in response to treatment or medications), and construct (similarity in etiology or underlying pathophysiological mechanism) validity. As the exact etiology of ADHD remains unclear, the construct validity of animal models of ADHD would always be limited. The proposed transgenic animal models of ADHD have substantially increased and diversified over the years. In this paper, we compiled and explored the validity of proposed transgenic animal models of ADHD. Each of the reviewed transgenic animal models has strengths and limitations. Some fulfill most of the validity criteria of an animal model of ADHD and have been extensively used, while there are others that require further validation. Nevertheless, these transgenic animal models of ADHD have provided and will continue to provide valuable insights into the genetic underpinnings of this complex disorder.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Irene Joy Dela Peña
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Raly James Custodio
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Chrislean Jun Botanas
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul, 01795, Republic of Korea.
| |
Collapse
|
15
|
Fujiwara H, Tsushima R, Okada R, Awale S, Araki R, Yabe T, Matsumoto K. Sansoninto, a traditional herbal medicine, ameliorates behavioral abnormalities and down-regulation of early growth response-1 expression in mice exposed to social isolation stress. J Tradit Complement Med 2017; 8:81-88. [PMID: 29321993 PMCID: PMC5755994 DOI: 10.1016/j.jtcme.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 12/02/2022] Open
Abstract
Social isolation (SI) mice exhibit behavioral abnormalities such as impairments of sociability- and attention-like behaviors, offering an animal model of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). This study aimed to identify the effects of Sansoninto (SST; 酸棗仁湯 suān zǎo rén tāng) on the psychiatric symptoms related to ADHD using SI mice. Four-week-old mice were socially isolated during the experimental period, and SST administration (800 or 2400 mg/kg, p.o.) was started at 2 weeks after starting SI. SST ameliorated SI-induced impairments of sociability- and attention-like behaviors in a dose-dependent manner, and tended to ameliorate contextual- and auditory-dependent fear memory deficit. Moreover, the expression level of Egr-1 was down-regulated by SI stress, and was restored by a high dose of SST. These findings suggest that SST is useful for improvement of psychiatric disorders such as ADHD.
Collapse
Affiliation(s)
- Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryohei Tsushima
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryo Okada
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka, 573-0101, Japan
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka, 573-0101, Japan
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
16
|
Naaijen J, Bralten J, Poelmans G, The IMAGE consortium FaraoneStephenAshersonPhilipBanaschewskiTobiasBuitelaarJanFrankeBarbaraP EbsteinRichardGillMichaelMirandaAnaD OadesRobertRoeyersHerbertRothenbergerAribertSergeantJosephSonuga-BarkeEdmundAnneyRichardMulasFernandoSteinhausenHans-Christoph, Glennon JC, Franke B, Buitelaar JK. Glutamatergic and GABAergic gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in ADHD and autism. Transl Psychiatry 2017; 7:e999. [PMID: 28072412 PMCID: PMC5545734 DOI: 10.1038/tp.2016.273] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 02/02/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) often co-occur. Both are highly heritable; however, it has been difficult to discover genetic risk variants. Glutamate and GABA are main excitatory and inhibitory neurotransmitters in the brain; their balance is essential for proper brain development and functioning. In this study we investigated the role of glutamate and GABA genetics in ADHD severity, autism symptom severity and inhibitory performance, based on gene set analysis, an approach to investigate multiple genetic variants simultaneously. Common variants within glutamatergic and GABAergic genes were investigated using the MAGMA software in an ADHD case-only sample (n=931), in which we assessed ASD symptoms and response inhibition on a Stop task. Gene set analysis for ADHD symptom severity, divided into inattention and hyperactivity/impulsivity symptoms, autism symptom severity and inhibition were performed using principal component regression analyses. Subsequently, gene-wide association analyses were performed. The glutamate gene set showed an association with severity of hyperactivity/impulsivity (P=0.009), which was robust to correcting for genome-wide association levels. The GABA gene set showed nominally significant association with inhibition (P=0.04), but this did not survive correction for multiple comparisons. None of single gene or single variant associations was significant on their own. By analyzing multiple genetic variants within candidate gene sets together, we were able to find genetic associations supporting the involvement of excitatory and inhibitory neurotransmitter systems in ADHD and ASD symptom severity in ADHD.
Collapse
Affiliation(s)
- J Naaijen
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Noord 10 (Huispost 126), Nijmegen 6525 EZ, The Netherlands. E-mail:
| | - J Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Poelmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands,Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute of Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands,Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Zhou R, Han X, Wang J, Sun J. Baicalin may have a therapeutic effect in attention deficit hyperactivity disorder. Med Hypotheses 2016; 85:761-4. [PMID: 26604025 DOI: 10.1016/j.mehy.2015.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/29/2015] [Accepted: 10/11/2015] [Indexed: 11/19/2022]
Abstract
Baicalin is a flavonoid purified from Scutellaria baicalensis Georgi. It possesses a variety of pharmacological properties, such as anti-inflammatory, antioxidant, antiapoptotic, and neuro-protective properties, and provides protection against cerebral hemorrhage. However, it is seldom considered a therapeutic in mental disorders. Recent studies showed that baicalin protects cerebral functions against ischemia and has sedative and anxiolytic-like effects. Animal experiments showed that it protects dopaminergic neurons in the striatum, hippocampus and substantia nigra. It also has effects such as anti-depressive and anti-epileptic and offers resistance to Parkinson's disease. Attention deficit hyperactivity disorder (ADHD) pathogenesis is closely related to dopamine deficiency. However, the therapeutic effect of baicalin in ADHD has not been studied. We hypothesize that baicalin may protect dopaminergic neurons and increase brain dopamine levels, thus serving as an effective novel treatment for ADHD.
Collapse
|
18
|
Hyperactivity and impaired attention in Gamma aminobutyric acid transporter subtype 1 gene knockout mice. Acta Neuropsychiatr 2015; 27:368-74. [PMID: 26072958 DOI: 10.1017/neu.2015.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Attention-deficit hyperactivity disorder (ADHD) is a common neurobehavioural disorder. It is conceivable that Gamma aminobutyric acid (GABA) neurotransmission is implicated in the pathophysiology of ADHD. This study investigated the effect of GABA transporter 1 (GAT-1) on the anxiety-like behaviours and cognitive function in knockout mice. METHODS In all, 20 adult male mice were divided into two groups: wild-type (WT) group and GAT-1-/- group. The open field test, elevated O-maze (EZM) and Morris water maze were used to evaluate behavioural traits relevant to ADHD. RESULTS Compared with WT mice, the GAT-1-/- mice travelled longer and displayed an enhanced kinematic velocity with the significant reduction of rest time in the open field test (p<0.05). The EZM showed that GAT-1-/- mice displayed a significant increase in total entries into the open sectors and the closed sectors compared with the WT mice. The WT mice showed shorter latencies after the training session (p<0.01), whereas the GAT-1-/- mice made no difference during probe test, the GAT-1-/- mice spent less time in the target quadrant (p<0.01). CONCLUSION Our results demonstrated that GAT-1-/- mice have phenotypes of hyperactivity, impaired sustained attention and learning deficiency, and the performance of GAT-1-/- mice is similar to ADHD symptoms. So, the study of the GAT-1-/- mice may provide new insights into the mechanisms and the discovery of novel therapeutics for the treatment of ADHD.
Collapse
|
19
|
Abstract
Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.
Collapse
Affiliation(s)
- Alfredo Meneses
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Mexico City, Mexico
| |
Collapse
|
20
|
Itohara S, Kobayashi Y, Nakashiba T. Genetic factors underlying attention and impulsivity: mouse models of attention-deficit/hyperactivity disorder. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Kobayashi M, Nakatani T, Koda T, Matsumoto KI, Ozaki R, Mochida N, Takao K, Miyakawa T, Matsuoka I. Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders. Mol Brain 2014; 7:12. [PMID: 24528488 PMCID: PMC3928644 DOI: 10.1186/1756-6606-7-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously identified BRINP (BMP/RA-inducible neural-specific protein-1, 2, 3) family genes that possess the ability to suppress cell cycle progression in neural stem cells. Of the three family members, BRINP1 is the most highly expressed in various brain regions, including the hippocampus, in adult mice and its expression in dentate gyrus (DG) is markedly induced by neural activity. In the present study, we generated BRINP1-deficient (KO) mice to clarify the physiological functions of BRINP1 in the nervous system. RESULTS Neurogenesis in the subgranular zone of dentate gyrus was increased in BRINP1-KO mice creating a more immature neuronal population in granule cell layer. The number of parvalbumin expressing interneuron in hippocampal CA1 subregion was also increased in BRINP1-KO mice. Furthermore, BRINP1-KO mice showed abnormal behaviors with increase in locomotor activity, reduced anxiety-like behavior, poor social interaction, and slight impairment of working memory, all of which resemble symptoms of human psychiatric disorders such as schizophrenia and attention-deficit/hyperactivity disorder (ADHD). CONCLUSIONS Absence of BRINP1 causes deregulation of neurogenesis and impairments of neuronal differentiation in adult hippocampal circuitry. Abnormal behaviors comparable to those of human psychiatric disorders such as hyperactivity and poor social behavior were observed in BRINP1-KO mice. These abnormal behaviors could be caused by alteration of hippocampal circuitry as a consequence of the lack of BRINP1.
Collapse
Affiliation(s)
- Miwako Kobayashi
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Toshiyuki Nakatani
- Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Nishi 6, Kita 12, Kita-ku, Sapporo 060-0812, Japan
| | - Toshiaki Koda
- Laboratory of Embryonic and Genetic Engineering, Graduate School of Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, 89-1 Enya-cho, Izumo 693-8501, Japan
| | - Ryosuke Ozaki
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Natsuki Mochida
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigo-naka Myodaiji, Okazaki 444-8585, Japan
- Japan Science and Technology Agency, CREST, Kawaguchi 332-0012, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | - Ichiro Matsuoka
- Laboratory of Physiological Chemistry, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
22
|
Hayes DJ, Jupp B, Sawiak SJ, Merlo E, Caprioli D, Dalley JW. Brain γ-aminobutyric acid: a neglected role in impulsivity. Eur J Neurosci 2014; 39:1921-32. [DOI: 10.1111/ejn.12485] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Dave J. Hayes
- Toronto Western Research Institute; Toronto Western Hospital and Division of Neurosurgery; University of Toronto; Toronto ON Canada
- Mind, Brain Imaging and Neuroethics; Institute of Mental Health Research; University of Ottawa; Ottawa ON Canada
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Bianca Jupp
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | - Steve J. Sawiak
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Wolfson Brain Imaging Centre; Department of Clinical Neurosciences; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
| | - Emiliano Merlo
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| | | | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Department of Psychiatry; Addenbrooke's Hospital; University of Cambridge; Cambridge UK
- Department of Psychology; University of Cambridge; Cambridge CB2 3EB UK
| |
Collapse
|