1
|
Xi M, Kia SH, Shi H, Dong X, Shi Y, Zhang L, Jiang B. Synthesis and characterization of berberine-loaded nanoliposome for targeting of MAPK pathway to induce apoptosis and suppression of autophagy in glioblastoma. Biomed Mater 2025; 20:025036. [PMID: 39951894 DOI: 10.1088/1748-605x/adb673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Glioblastoma (GBM), the most aggressive and lethal primary brain tumor, demands innovative therapeutic strategies to improve patient outcomes and quality of life. Addressing this urgent need, our study focuses on developing a berberine (BBR)-loaded nanoliposome (NL) as a targeted drug delivery system to combat GBM. Synthesized using the thin film hydration method and characterized through advanced physical and spectroscopic techniques, these NLs demonstrate promising potential in enhancing BBR's therapeutic efficacy. The NL formulation achieved an impressive loading efficiency of 65.71 ± 1.31% with a particle size of 83 ± 12 nm, ensuring optimal delivery. Sustained release experiments revealed that 82.65 ± 1.75% of the encapsulated BBR was consistently released over 48 h, highlighting its controlled release capabilities.In vitroassays, including cell viability, TUNEL, and western blot analysis, confirmed the potent anti-cancer effects of NL-BBR. The formulation significantly disrupted the metabolism of U-87 glioblastoma cells, inducing enhanced autophagy and apoptosis, ultimately leading to cell death via intrinsic apoptotic pathways. Additionally, western blot results demonstrated that NL-BBR effectively suppressed the mitogen-activated protein kinase signaling pathway, a critical driver of GBM progression. This study underscores the transformative potential of incorporating BBR into NLs, which not only enhances its solubility and bioavailability but also significantly amplifies its therapeutic impact. These findings pave the way for advanced nano-based interventions in GBM treatment, offering a glimmer of hope for improved outcomes in this challenging cancer landscape.
Collapse
Affiliation(s)
- Min Xi
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| | | | - Hangyu Shi
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| | - Xinya Dong
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| | - Yongqiang Shi
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| | - Luyi Zhang
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| | - Bin Jiang
- Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, Xi'an 710000, People's Republic of China
| |
Collapse
|
2
|
Feng Y, Lu J, Jiang J, Wang M, Guo K, Lin S. Berberine: Potential preventive and therapeutic strategies for human colorectal cancer. Cell Biochem Funct 2024; 42:e4033. [PMID: 38742849 DOI: 10.1002/cbf.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.
Collapse
Affiliation(s)
- Yuqian Feng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiamin Lu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Sammarco A, Beffagna G, Sacchetto R, Vettori A, Bonsembiante F, Scarin G, Gelain ME, Cavicchioli L, Ferro S, Geroni C, Lombardi P, Zappulli V. Antitumor Effect of Berberine Analogs in a Canine Mammary Tumor Cell Line and in Zebrafish Reporters via Wnt/β-Catenin and Hippo Pathways. Biomedicines 2023; 11:3317. [PMID: 38137538 PMCID: PMC10741123 DOI: 10.3390/biomedicines11123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The heterogeneous nature of human breast cancer (HBC) can still lead to therapy inefficacy and high lethality, and new therapeutics as well as new spontaneous animal models are needed to benefit translational HBC research. Dogs are primarily investigated since they spontaneously develop tumors that share many features with human cancers. In recent years, different natural phytochemicals including berberine, a plant alkaloid, have been reported to have antiproliferative activity in vitro in human cancers and rodent animal models. In this study, we report the antiproliferative activity and mechanism of action of berberine, its active metabolite berberrubine, and eight analogs, on a canine mammary carcinoma cell line and in transgenic zebrafish models. We demonstrate both in vitro and in vivo the significant effects of specific analogs on cell viability via the induction of apoptosis, also identifying their role in inhibiting the Wnt/β-catenin pathway and activating the Hippo signals with a downstream reduction in CTGF expression. In particular, the berberine analogs NAX035 and NAX057 show the highest therapeutic efficacy, deserving further analyses to elucidate their mechanism of action more in detail, and in vivo studies on spontaneous neoplastic diseases are needed, aiming at improving veterinary treatments of cancer as well as translational cancer research.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Giulia Scarin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Cristina Geroni
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| |
Collapse
|
5
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
6
|
Nathani S, Mishra R, Katiyar P, Sircar D, Roy P. Zinc Acts Synergistically with Berberine for Enhancing Its Efficacy as an Anti-cancer Agent by Inducing Clusterin-Dependent Apoptosis in HT-29 Colorectal Cancer Cells. Biol Trace Elem Res 2022:10.1007/s12011-022-03460-8. [PMID: 36394793 DOI: 10.1007/s12011-022-03460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022]
Abstract
It is now widely accepted that anti-cancer medications are most effective when administered in combination. Zinc is an essential micronutrient whilst berberine is a well-known natural phytochemical, both having multiple molecular mechanisms of action. The present study aimed to determine the combinatorial effect of zinc and berberine on the human adenocarcinoma HT-29 cancer cell line. The anti-proliferative activity of berberine and zinc was determined by cell viability and colony-forming assays. The combination index and drug reduction index values of zinc and berberine co-treatments were estimated by suitable software. Flow cytometry was used to analyse cell cycle distribution and Annexin V/PI staining. The expression of apoptosis and zinc signalling markers were analysed by RT-qPCR and immunoblot analysis. Berberine decreased the viability of colon cancer cells in a dose-dependent manner whilst zinc alone had no significant influence on it. However, zinc and berberine co-treatment resulted in a synergistic anti-cancer action which was demonstrated by G2/M phase arrest of cell growth at a lower dose of berberine. Annexin V assay demonstrated that the synergistic impact of zinc and berberine boosted the number of apoptotic cells. Gene expression analysis at both transcriptional and translational levels showed the upregulation of apoptotic (caspase-3 and caspase-8) and a zinc-sensing receptor (GPR39) gene with concomitant downregulation of anti-apoptotic genes like proliferating cell nuclear antigen (PCNA) and clusterin. Our findings showed that the combination of zinc and berberine has synergistic anti-cancer efficacy and thus could be used as a potential chemopreventive option for colon cancer.
Collapse
Affiliation(s)
- Sandip Nathani
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Rutusmita Mishra
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Parul Katiyar
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
7
|
Park GS, Park B, Lee MY. Berberine Induces Autophagic Cell Death by Inactivating the Akt/mTOR Signaling Pathway. PLANTA MEDICA 2022; 88:1116-1122. [PMID: 35853472 DOI: 10.1055/a-1752-0311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The incidence of skin cancer has been increasing over the past decades, and melanoma is considered highly malignant because of its high rate of metastasis. Plant-derived berberine, an isoquinoline quaternary alkaloid, has been reported to possess multiple pharmacological effects against various types of cancer cells. Therefore, we treated melanoma B16F10 cells with berberine to induce cell death and understand the cell death mechanisms. The berberine-treated cells showed decreased cell viability, according to berberine concentration. However, western blot analysis of apoptosis-related marker proteins showed that the expression of Bcl-2, an apoptosis inhibitory protein, and the Bcl-2/Bax ratio were increased. Therefore, by adding 3-methyladenine to the berberine-treated cells, we investigated whether the reduced cell viability was due to autophagic cell death. The results showed that 3-methyladenine restored the cell viability decreased by berberine, suggesting autophagy. To clarify autophagic cell death, we performed transmission electron microscopy analysis, which revealed the presence of autophagosomes and autolysosomes in the cells after treatment with berberine. Next, by analyzing the expression of autophagy-related proteins, we found an increase in the levels of light chain 3A-II and Atg12-Atg5 complex in the berberine-treated cells. We then assessed the involvement of the Akt/mTOR signaling pathway and found that berberine inhibited the expression of phosphorylated Akt and mTOR. Our data demonstrated that berberine induces autophagic cell death by inactivating the Akt/mTOR signaling pathway in melanoma cells and that berberine can be used as a possible target for the development of anti-melanoma drugs.
Collapse
Affiliation(s)
- Gil-Sun Park
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Bokyung Park
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, Chungnam, Republic of Korea
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| |
Collapse
|
8
|
Bibak B, Shakeri F, Keshavarzi Z, Mollazadeh H, Javid H, Jalili-Nik M, Sathyapalan T, Afshari AR, Sahebkar A. Anticancer mechanisms of Berberine: a good choice for glioblastoma multiforme therapy. Curr Med Chem 2022; 29:4507-4528. [PMID: 35209812 DOI: 10.2174/0929867329666220224112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
The most typical malignant brain tumor, glioblastoma multiforme (GBM), seems to have a grim outcome, despite the intensive multi-modality interventions. Literature suggests that biologically active phytomolecules may exert anticancer properties by regulating several signaling pathways. Berberine, an isoquinoline alkaloid, has various pharmacological applications to combat severe diseases like cancer. Mechanistically, Berberine inhibits cell proliferation and invasion, suppresses tumor angiogenesis, and induces cell apoptosis. The effect of the antitumoral effect of Berberine in GBM is increasingly recognized. This review sheds new light on the regulatory signaling mechanisms of Berberine in various cancer, proposing its potential role as a therapeutic agent for GBM. .
Collapse
Affiliation(s)
- Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Zakieh Keshavarzi
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Javid
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
McCubrey JA, Abrams SL, Steelman LS, Cocco L, Ratti S, Martelli AM, Lombardi P, Gizak A, Duda P. APR-246-The Mutant TP53 Reactivator-Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells. Biomolecules 2022; 12:276. [PMID: 35204775 PMCID: PMC8961609 DOI: 10.3390/biom12020276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines.
Collapse
Affiliation(s)
- James Andrew McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Stephen L. Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Linda S. Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, USA; (S.L.A.); (L.S.S.)
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, 40126 Bologna, Italy; (L.C.); (S.R.); (A.M.M.)
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, 20026 Novate Milanese, Italy;
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wroclaw, Poland; (A.G.); (P.D.)
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, 50-335 Wroclaw, Poland; (A.G.); (P.D.)
| |
Collapse
|
10
|
Khan H, Alam W, Alsharif KF, Aschner M, Pervez S, Saso L. Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules 2022; 27:molecules27030920. [PMID: 35164185 PMCID: PMC8838632 DOI: 10.3390/molecules27030920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Samreen Pervez
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar 29050, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
11
|
Filli MS, Ibrahim AA, Kesse S, Aquib M, Boakye-Yiadom KO, Farooq MA, Raza F, Zhang Y, Wang B. Synthetic berberine derivatives as potential new drugs. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902020000318835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | - Md Aquib
- China Pharmaceutical University, China
| | | | | | | | | | - Bo Wang
- China Pharmaceutical University, China
| |
Collapse
|
12
|
Jin X, Gao X, Lan M, Li CN, Sun JM, Zhang H. Study the mechanism of peimisine derivatives on NF-κB inflammation pathway on mice with acute lung injury induced by lipopolysaccharide. Chem Biol Drug Des 2021; 99:717-726. [PMID: 34939324 DOI: 10.1111/cbdd.14013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
Peimisine is one of the alkaloids in Fritillariae ussuriensis Bulbus, which has anti-acute lung injury effect. In order to obtain compounds with superior bio-activity, 14 new derivatives were obtained from peimisine, and the better activity compounds were screened by MTT method. It was found that boc-leucine mono peimisine ester monoamide (compound G, 25 μg/ml) had increased cell survival rate and reduced the TNF-α, IL-1β, IL-6, and iNOS levels in RAW 264.7 by lipopolysaccharide (LPS)-stimulated. In vivo, LPS (10 mg/kg) was given intraperitoneally to establish ALI model, and compound G (2.5 or 10 mg/kg) was injected into mice as the experimental group. The results showed that after the compound G (10 mg/kg) treatment, the Wet / Dry ratio of the lung was reduced, and the expression of TNF-α, IL-1β, IL-6 and iNOS was inhibited. Meanwhile, compound G (10 mg/kg) could increase the content of IκB protein and reduce the content of p65 protein in lung tissue by Western blot analysis, which may play an anti-acute lung injury role by inhibiting the activity of NF-κB signaling pathway. In conclusion, compound G could attenuate LPS-induced ALI in mice and it may become a new approach to treat ALI.
Collapse
Affiliation(s)
- Xin Jin
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng Lan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chun-Nan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia-Ming Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hui Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
13
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
14
|
Trybus W, Król T, Trybus E, Stachurska A. Physcion Induces Potential Anticancer Effects in Cervical Cancer Cells. Cells 2021; 10:cells10082029. [PMID: 34440797 PMCID: PMC8392222 DOI: 10.3390/cells10082029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The extent of morphological and ultrastructural changes in HeLa cells was assessed by optical, fluorescence and electron microscopy after exposure to various concentrations of physcion, taking into account the biological properties of the test compound. METHODS Cell viability was assessed by MTT assay, while the cell cycle, LC3 expression, apoptosis, change of mitochondrial potential, Bcl-2 protein expression level and the level of reactive oxygen species were analyzed by flow cytometry. RESULTS As a result of physcion encumbrance, concentration-dependent inhibition of HeLa cell viability and the G0/G1 phase of the cell cycle was observed. Activation of the lysosomal system was also revealed, which was expressed by an increased number of lysosomes, autophage vacuoles and increased expression of the LC3 protein, a marker of the autophagy process. Transmission electron microscopy and fluorescence microscopy showed that physcion induced clear changes in cervical cancer cells, especially in the structure of the nucleus and mitochondria, which correlated with the production of reactive oxygen species by the test compound and indicated the induction of the oxidative process. At the same time, the pro-apoptotic effect of physcion was demonstrated, and this mechanism was dependent on the activation of caspases 3/7 and the reduction in Bcl-2 protein expression. CONCLUSION The obtained results indicate an antitumor mechanism of action of physcion, based on the induction of oxidative stress, autophagy and apoptosis.
Collapse
Affiliation(s)
- Wojciech Trybus
- Laboratory of Medical Biology, Institute of Biology, The Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
- Correspondence: (W.T.); (T.K.)
| | - Teodora Król
- Laboratory of Medical Biology, Institute of Biology, The Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
- Correspondence: (W.T.); (T.K.)
| | - Ewa Trybus
- Laboratory of Medical Biology, Institute of Biology, The Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| |
Collapse
|
15
|
Lee GY, Lee JS, Son CG, Lee NH. Combating Drug Resistance in Colorectal Cancer Using Herbal Medicines. Chin J Integr Med 2021; 27:551-560. [PMID: 32740824 DOI: 10.1007/s11655-020-3425-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancer types around the world. Most of the CRC patients are treated with chemotherapeutic drugs alone or combined. However, up to 90% of metastatic cancer patients experience the failure of treatment mostly because of the acquired drug resistance, which can be led to multidrug resistance (MDR). In this study, we reviewed the recent literature which studied potential CRC MDR reversal agents among herbal medicines (HMs). Among abundant HMs, 6 single herbs, Andrographis paniculata, Salvia miltiorrhiza, Hedyotis diffusa, Sophora flavescens, Curcuma longa, Bufo gargarizans, and 2 formulae, Pien Tze Huang and Zhi Zhen Fang, were found to overcome CRC MDR by two or more different mechanisms, which could be a promising candidate in the development of new drugs for adjuvant CRC chemotherapy.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
- Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
- Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Chang-Gue Son
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea
- Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea
| | - Nam-Hun Lee
- Department of Clinical Oncology, Cheonan Korean Medicine Hospital of Daejeon University, Cheonan, 31099, Republic of Korea.
- Liver & Immunology Research Center, Dunsan Korean Medicine Hospital of Daejeon University, Daejeon, 35235, Republic of Korea.
- Department of Internal Medicine, Graduated School of Korean Medicine, University of Daejeon, Daejeon, 34520, Republic of Korea.
| |
Collapse
|
16
|
Rahman MA, Hannan MA, Dash R, Rahman MDH, Islam R, Uddin MJ, Sohag AAM, Rahman MH, Rhim H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front Pharmacol 2021; 12:639628. [PMID: 34025409 PMCID: PMC8138161 DOI: 10.3389/fphar.2021.639628] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Bioactive plant derived compounds are important for a wide range of therapeutic applications, and some display promising anticancer properties. Further evidence suggests that phytochemicals modulate autophagy and apoptosis, the two crucial cellular pathways involved in the underlying pathobiology of cancer development and regulation. Pharmacological targeting of autophagy and apoptosis signaling using phytochemicals therefore offers a promising strategy that is complementary to conventional cancer chemotherapy. In this review, we sought to highlight the molecular basis of the autophagic-apoptotic pathway to understand its implication in the pathobiology of cancer, and explore this fundamental cellular process as a druggable anticancer target. We also aimed to present recent advances and address the limitations faced in the therapeutic development of phytochemical-based anticancer drugs.
Collapse
Affiliation(s)
- Md. Ataur Rahman
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Rokibul Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon-si, South Korea
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Dhaka, Bangladesh
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, South Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
| |
Collapse
|
17
|
Javed Iqbal M, Quispe C, Javed Z, Sadia H, Qadri QR, Raza S, Salehi B, Cruz-Martins N, Abdulwanis Mohamed Z, Sani Jaafaru M, Abdull Razis AF, Sharifi-Rad J. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power. Front Mol Biosci 2021; 7:624494. [PMID: 33521059 PMCID: PMC7843460 DOI: 10.3389/fmolb.2020.624494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/11/2020] [Indexed: 02/03/2023] Open
Abstract
Cancer is a multifactorial disease characterized by complex molecular landscape and altered cell pathways that results in an abnormal cell growth. Natural compounds are target-specific and pose a limited cytotoxicity; therefore, can aid in the development of new therapeutic interventions for the treatment of this versatile disease. Berberine is a member of the protoberberine alkaloids family, mainly present in the root, stem, and bark of various trees, and has a reputed anticancer activity. Nonetheless, the limited bioavailability and low absorption rate are the two major hindrances following berberine administration as only 0.5% of ingested berberine absorbed in small intestine while this percentage is further decreased to 0.35%, when enter in systemic circulation. Nano-based formulation is believed to be an ideal candidate to increase absorption percentage as at nano scale level, compounds can absorb rapidly in gut. Nanotechnology-based therapeutic approaches have been implemented to overcome such problems, ultimately promoting a higher efficacy in the treatment of a plethora of diseases. This review present and critically discusses the anti-proliferative role of berberine and the nanotechnology-based therapeutic strategies used for the nano-scale delivery of berberine. Finally, the current approaches and promising perspectives of latest delivery of this alkaloid are also critically analyzed and discussed.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | | | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Office of Research Innovation and Commercialization, Lahore Garrison University, Sector-C Phase VI, Defense Housing Authority (DHA), Lahore, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Zeinab Abdulwanis Mohamed
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohammed Sani Jaafaru
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | - Ahmad Faizal Abdull Razis
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
18
|
Samad MA, Saiman MZ, Abdul Majid N, Karsani SA, Yaacob JS. Berberine Inhibits Telomerase Activity and Induces Cell Cycle Arrest and Telomere Erosion in Colorectal Cancer Cell Line, HCT 116. Molecules 2021; 26:E376. [PMID: 33450878 PMCID: PMC7828342 DOI: 10.3390/molecules26020376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the most common cancer among males and females, which is associated with the increment of telomerase level and activity. Some plant-derived compounds are telomerase inhibitors that have the potential to decrease telomerase activity and/or level in various cancer cell lines. Unfortunately, a deeper understanding of the effects of telomerase inhibitor compound(s) on CRC cells is still lacking. Therefore, in this study, the aspects of telomerase inhibitors on a CRC cell line (HCT 116) were investigated. Screening on HCT 116 at 48 h showed that berberine (10.30 ± 0.89 µg/mL) is the most effective (lowest IC50 value) telomerase inhibitor compared to boldine (37.87 ± 3.12 µg/mL) and silymarin (>200 µg/mL). Further analyses exhibited that berberine treatment caused G0/G1 phase arrest at 48 h due to high cyclin D1 (CCND1) and low cyclin-dependent kinase 4 (CDK4) protein and mRNA levels, simultaneous downregulation of human telomerase reverse transcriptase (TERT) mRNA and human telomerase RNA component (TERC) levels, as well as a decrease in the TERT protein level and telomerase activity. The effect of berberine treatment on the cell cycle was time dependent as it resulted in a delayed cell cycle and doubling time by 2.18-fold. Telomerase activity and level was significantly decreased, and telomere erosion followed suit. In summary, our findings suggested that berberine could decrease telomerase activity and level of HCT 116, which in turn inhibits the proliferative ability of the cells.
Collapse
Affiliation(s)
- Muhammad Azizan Samad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Mohd Zuwairi Saiman
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (M.A.S.); (M.Z.S.); (S.A.K.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Ali F, Alom S, Zaman MK. Berberine: A Comprehensive Review on its Isolation,
Biosynthesis, Chemistry and Pharmacology. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2548-2560. [DOI: 10.14233/ajchem.2021.23365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The isoquinoline compounds from alkaloidal class have been excellent source of important
phytoconstituents having wide range of pharmacological activities. Berberine is a protoberberine
alkaloidal compound obtained from Berberis genus plants which belongs to family Barberidaceae.
Due to its unique structural properties, berberine and its derivatives has been exploited extensively for
its potential uses in various pharmacological targets such as cancer, inflammation, diabetes,
gastrointestinal disorder, viral and microbial infections, neurological disorder like Alzheimer, anxiety,
schizophrenia, depression, etc. This review illustrates the updated information on berberine with respect
to its isolation, biosynthesis, chemical synthesis, structural modification and pharmacological activities.
An extensive literature search were carried out in various search engine like PubMed, Google Scholars,
Research Gate and SCOPUS by using keywords like Berberine, protoberberine alkaloids, isoquinoline
derivatives, pharmacological effects, etc. Prephenic acid is the starting material for biosynthesis of
berberine. Structural modifications lead to generation of various potential derivatives, which earn
patents by researchers. Besides toxicities, the complications of low solubility and bioavailability should
be eliminated. To improve its safety, efficacy and selectivity the berberine should be carefully derivatized.
Collapse
Affiliation(s)
- Farak Ali
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Shahnaz Alom
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| | - Md Kamaruz Zaman
- Faculty of Science and Engineering, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh-786004, India
| |
Collapse
|
20
|
Cytotoxic Property of Grias neuberthii Extract on Human Colon Cancer Cells: A Crucial Role of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1565306. [PMID: 32328120 PMCID: PMC7152961 DOI: 10.1155/2020/1565306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Traditional herbal medicine has become an important alternative in the treatment of various cancer types, including colon cancer, which represents one of the main health problems around the world. Therefore, the search for new therapies to counteract this disease is very active. Grias neuberthii is an endemic plant located in the Ecuadorian Amazon region, which has been used in traditional medicine for its pharmacological properties, including its ability to inhibit tumor cell growth, although scientific studies are limited. We have analyzed the effect of this plant on two colon carcinoma cell lines, that is, RKO (normal p53) and SW613-B3 (mutated p53) cells. Among several extracts obtained from various parts of G. neuberthii plant, we identified the extract with the greatest cytotoxic potential, derived from the stem bark. The cytotoxic effect was similar on both cell lines, thus indicating that it is independent of the status of p53. However, significant differences were observed after the analysis of colony formation, with RKO cells being more sensitive than SW613-B3. No evidence for apoptotic markers was recorded; nevertheless, both cell lines showed signs of autophagy after the treatment, including increased Beclin-1 and LC3-II and decreased p62. Finally, three chemical compounds, possibly responsible for the effect observed in both cell lines, were identified: lupeol (1), 3′-O-methyl ellagic acid 4-O-β-D-rhamnopyranoside (2), and 19-α-hydroxy-asiatic acid monoglucoside (3).
Collapse
|
21
|
Chen J, Tao C, Huang X, Chen Z, Wang L, Li X, Ma M, Wu Z. CT2-3, a novel magnolol analogue suppresses NSCLC cells through triggering cell cycle arrest and apoptosis. Bioorg Med Chem 2020; 28:115352. [PMID: 32044229 DOI: 10.1016/j.bmc.2020.115352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Magnolol, a major bioactive component found in Magnolia officinalis with anti-inflammation and anti-oxidation activities as well as minimized cytotoxic effects. Although magnolol has a wide range of clinical applications, the anti-tumor activity of magnolol is not efficient. Herein, we reported the synthesis and anti-cancer activities of three novel magnolol analogues CT2-1, CT2-2, CT2-3, among which CT2-3 revealed more efficient anti-non-small cell lung cancer (NSCLC) activity than magnolol. Our data showed that CT2-3 could significantly inhibit the proliferation of human NSCLC cells in a dose-dependent manner. In addition, we revealed CT2-3 could induce cell cycle arrest through down-regulating mRNA expression of CDK4, CDK6 and cyclin D1. Moreover, we verified that CT2-3 could cause ROS generation, leading to apoptosis of human NSCLC cells. Further more, we also provided strong evidences that CT2-3 down-regulates the expression of c-Myc and topoisomerases, and contributes to the apoptosis of human NSCLC cells. Taken together, the current study is the first to report a promising new chemotherapeutic drug candidate CT2-3 that can efficiently eliminate human NSCLC cells through triggering cell cycle arrest as well as ROS-mediated and c-Myc/topoisomerases-mediated apoptosis.
Collapse
Affiliation(s)
- Jian Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Cheng Tao
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Xiaofei Huang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zide Chen
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Li Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xinping Li
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China
| | - Min Ma
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; The First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| | - Zhengzhi Wu
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China; Shenzhen Institute of Geriatrics, Shenzhen 518020, China; The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
Papi F, Bazzicalupi C, Ferraroni M, Ciolli G, Lombardi P, Khan AY, Kumar GS, Gratteri P. Pyridine Derivative of the Natural Alkaloid Berberine as Human Telomeric G 4-DNA Binder: A Solution and Solid-State Study. ACS Med Chem Lett 2020; 11:645-650. [PMID: 32435365 DOI: 10.1021/acsmedchemlett.9b00516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Telomerase is an enzyme deputed to the maintenance of eukaryotic chromosomes; however, its overexpression is a recognized hallmark of many cancer forms. A viable route for the inhibition of telomerase in malignant cells is the stabilization of G-quadruplex structures (G4) at the 3' overhang of telomeres. Berberine has shown in this regard valuable G4 binding properties together with a significant anticancer activity and telomerase inhibition effects. Here, we focused on a berberine derivative featuring a pyridine containing side group at the 13th position. Such modification actually improves the binding toward telomeric G-quadruplexes and establishes a degree of selectivity in the interaction with different sequences. Moreover, the X-ray crystal structure obtained for the complex formed by the ligand and a bimolecular human telomeric quadruplex affords a better understanding of the 13-berberine derivatives behavior with telomeric G4 and allows to draw useful insights for the future design of derivatives with remarkable anticancer properties.
Collapse
Affiliation(s)
- Francesco Papi
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Carla Bazzicalupi
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Marta Ferraroni
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Giulia Ciolli
- Department of Chemistry ’Ugo Schiff’, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio 70, 20026 Novate Milanese (MI), Italy
| | - Asma Yasmeen Khan
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, CSIR-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Paola Gratteri
- Department NEUROFARBA − Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
23
|
Ahadi H, Emami S. Modification of 7-piperazinylquinolone antibacterials to promising anticancer lead compounds: Synthesis and in vitro studies. Eur J Med Chem 2020; 187:111970. [DOI: 10.1016/j.ejmech.2019.111970] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
|
24
|
Wang L, Yang X, Li X, Stoika R, Wang X, Lin H, Ma Y, Wang R, Liu K. Synthesis of hydrophobically modified berberine derivatives with high anticancer activity through modulation of the MAPK pathway. NEW J CHEM 2020. [DOI: 10.1039/d0nj01645d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Linoleic acid-modified berberine derivative induces apoptosis of A549 cells and affects the expression of proteins associated with the MAPK pathway.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis
- Institute of Cell Biology
- National Academy of Sciences of Ukraine
- Lviv
- Ukraine
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Houwen Lin
- Research Center for Marine Drugs
- State Key Laboratory of Oncogenes and Related Genes
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Yukui Ma
- Shandong Provincial Key Laboratory of Chemical Drugs
- Shandong Academy of Pharmaceutical Sciences
- 250101 Jinan
- China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province
- Qilu University of Technology (Shandong Academy of Sciences)
| |
Collapse
|
25
|
Wang ZC, Wang J, Chen H, Tang J, Bian AW, Liu T, Yu LF, Yi Z, Yang F. Synthesis and anticancer activity of novel 9,13-disubstituted berberine derivatives. Bioorg Med Chem Lett 2020; 30:126821. [DOI: 10.1016/j.bmcl.2019.126821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/16/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022]
|
26
|
Akula SM, Candido S, Libra M, Abrams SL, Steelman LS, Lertpiriyapong K, Ramazzotti G, Ratti S, Follo MY, Martelli AM, Murata RM, Rosalen PL, Bueno-Silva B, Matias de Alencar S, Montalto G, Cervello M, Gizak A, Rakus D, Mao W, Lin HL, Lombardi P, McCubrey JA. Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 73:100633. [PMID: 31047842 DOI: 10.1016/j.jbior.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other natural compounds may share some of the effects of metformin. One "medicinal" fruit consumed by millions worldwide is berberine (BBR). Metformin and BBR both activate AMP-activated protein kinase (AMPK) which is a key mediator of glucose metabolism. Glucose metabolism has been shown to be very important in cancer and its significance is increasing. In the following studies, we have examined the effects of metformin, BBR and a panel of modified BBRs (NAX compounds) and chemotherapeutic drugs on the growth of four different human pancreatic adenocarcinoma cell lines (PDAC). Interestingly, the effects of metformin could be enhanced by BBR and certain modified BBRs. Upon restoration of WT-TP53 activity in MIA-PaCa-2 cells, an altered sensitivity to the combination of certain NAX compounds and metformin was observed compared to the parental cells which normally lack WT-TP53. Certain NAX compounds may interact with WT-TP53 and metformin treatment to alter the expression of key molecules involved in cell growth. These results suggest a therapeutic approach by combining certain pharmaceutical drugs and nutraceuticals to suppress the growth of cancer cells.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Giulia Ramazzotti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Heng-Liang Lin
- Catholic Fu Jen University Hospital, New Taipei City, Taiwan
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese, 20026, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
27
|
Milata V, Svedova A, Barbierikova Z, Holubkova E, Cipakova I, Cholujova D, Jakubikova J, Panik M, Jantova S, Brezova V, Cipak L. Synthesis and Anticancer Activity of Novel 9- O-Substituted Berberine Derivatives. Int J Mol Sci 2019; 20:ijms20092169. [PMID: 31052469 PMCID: PMC6539820 DOI: 10.3390/ijms20092169] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 01/05/2023] Open
Abstract
Berberine is a bioactive isoquinoline alkaloid derived from many plants. Although berberine has been shown to inhibit growth and induce apoptosis of several tumor cell lines, its poor absorption and moderate activity hamper its full therapeutic potential. Here, we describe the synthesis of a series of 9-O-substituted berberine derivatives with improved antiproliferative and apoptosis-inducing activities. An analysis of novel berberine derivatives by EPR spectroscopy confirmed their similar photosensitivity and analogous behavior upon UVA irradiation as berberine, supporting their potential to generate ROS. Improved antitumor activity of novel berberine derivatives was revealed by MTT assay, by flow cytometry and by detection of apoptotic DNA fragmentation and caspase-3 activation, respectively. We showed that novel berberine derivatives are potent inhibitors of growth of HeLa and HL-60 tumor cell lines with IC50 values ranging from 0.7 to 16.7 µM for HL-60 cells and 36 to >200 µM for HeLa cells after 48 h treatment. Further cell cycle analysis showed that the observed inhibition of growth of HL-60 cells treated with berberine derivatives was due to arresting these cells in the G2/M and S phases. Most strikingly, we found that berberine derivative 3 (9-(3-bromopropoxy)-10-methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquino[3,2-a] isoquinolin-7-ylium bromide) possesses 30-fold superior antiproliferative activity with an IC50 value of 0.7 µM and 6-fold higher apoptosis-inducing activity in HL-60 leukemia cells compared to berberine. Therefore, further studies are merited of the antitumor activity in leukemia cells of this berberine derivative.
Collapse
Affiliation(s)
- Viktor Milata
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Alexandra Svedova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Zuzana Barbierikova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Eva Holubkova
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Ingrid Cipakova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Dana Cholujova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Miroslav Panik
- Institute of Management, Slovak University of Technology, 812 33 Bratislava, Slovakia.
| | - Sona Jantova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Vlasta Brezova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia.
| | - Lubos Cipak
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| |
Collapse
|
28
|
Abrams SL, Follo MY, Steelman LS, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Montalto G, Cervello M, Gizak A, Rakus D, Mao W, Lombardi P, McCubrey JA. Abilities of berberine and chemically modified berberines to inhibit proliferation of pancreatic cancer cells. Adv Biol Regul 2019; 71:172-182. [PMID: 30361003 DOI: 10.1016/j.jbior.2018.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Berberine (BBR) is a common nutraceutical consumed by millions worldwide. BBR has many different effects on human health, e.g., diabetes, diarrhea, inflammation and now more recently it has been proposed to have potent anti-cancer effects. BBR has been shown to suppress the growth of cancer cells more than normal cells. BBR has been proposed to exert its growth-inhibitory effects by many different biochemical mechanisms including: suppression of cell cycle progression, induction of reactive oxygen species, induction of apoptosis and autophagy and interactions with DNA potentially leading to DNA damage, and altered gene expression. Pancreatic cancer is a leading cancer worldwide associated with a poor prognosis. As our population ages, pancreatic cancer has an increasing incidence and will likely become the second leading cause of death from cancer. There are few truly-effective therapeutic options for pancreatic cancer. Surgery and certain chemotherapeutic drugs are used to treat pancreatic cancer patients. Novel approaches to treat pancreatic cancer patients are direly needed as they usually survive for less than a year after being diagnosed. In the following manuscript, we discuss the abilities of BBR and certain chemically-modified BBRs (NAX compounds) to suppress growth of pancreatic cancer cells.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, NY, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe di Vittorio 70, Novate Milanese, 20026, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
29
|
Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed Pharmacother 2018; 107:408-423. [DOI: 10.1016/j.biopha.2018.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
|
30
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
31
|
Li J, Liu F, Jiang S, Liu J, Chen X, Zhang S, Zhao H. Berberine hydrochloride inhibits cell proliferation and promotes apoptosis of non-small cell lung cancer via the suppression of the MMP2 and Bcl-2/Bax signaling pathways. Oncol Lett 2018; 15:7409-7414. [PMID: 29725453 DOI: 10.3892/ol.2018.8249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2017] [Indexed: 12/30/2022] Open
Abstract
Berberine, also known as berberine hydrochloride and isoquinoline alkaloid, is a major alkaloid from Coptis chinensis. Berberine's extensive biological properties have previously been studied, and it has been used clinically for the treatment of diarrhea, hypertension, diabetes and other diseases. The present study aimed to determine the possible anticancer effects of berberine hydrochloride treatment on human non-small cell lung cancer (NSCLC) cell proliferation and apoptosis via the matrix metalloproteinase 2 (MMP-2) and the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) signaling pathway. Human A549 lung carcinoma cells were exposed to various concentrations of berberine hydrochloride in order to analyze the possible anticancer effects on NSCLC cell proliferation and apoptosis, using a MTT assay and an Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis kit. Subsequently, the present study detected the expression of MMP-2, Bcl-2, Bax and Janus kinase 2 (Jak2). Berberine hydrochloride treatment inhibited the expression of vascular endothelial growth factor (VEGF) and nuclear factor κB (NF-κB) and transcription factor AP-1 (AP-1) proteins, in A549 cells. Firstly, it was revealed that berberine hydrochloride treatment may inhibit proliferation, increase cytotoxicity and enhance apoptosis in A549 cells. Subsequently, treatment with berberine hydrochloride significantly downregulated MMP-2 protein expression, increased the activity of the Bcl-2/Bax signaling pathway and suppressed the Jak2/VEGF/NF-κB/AP-1signaling pathways. These results suggest that berberine hydrochloride may be a potential novel anticancer drug, since it inhibits cell proliferation and promotes the rate of apoptosis of NSCLC cells by the suppression of the MMP-2, Bcl-2/Bax and Jak2/VEGF/NF-κB/AP-1 signaling pathways.
Collapse
Affiliation(s)
- Jie Li
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Fang Liu
- Department of Oncology, Dongying City People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Shulong Jiang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute Shandong Academy of Medical Sciences, Jinan, Shandong 257091, P.R. China
| | - Xiuhong Chen
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Shangnuan Zhang
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Haibo Zhao
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
32
|
Wang P, Zhu L, Sun D, Gan F, Gao S, Yin Y, Chen L. Natural products as modulator of autophagy with potential clinical prospects. Apoptosis 2018; 22:325-356. [PMID: 27988811 DOI: 10.1007/s10495-016-1335-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Natural compounds derived from living organisms are well defined for their remarkable biological and pharmacological properties likely to be translated into clinical use. Therefore, delving into the mechanisms by which natural compounds protect against diverse diseases may be of great therapeutic benefits for medical practice. Autophagy, an intricate lysosome-dependent digestion process, with implications in a wide variety of pathophysiological settings, has attracted extensive attention over the past few decades. Hitherto, accumulating evidence has revealed that a large number of natural products are involved in autophagy modulation, either inducing or inhibiting autophagy, through multiple signaling pathways and transcriptional regulators. In this review, we summarize natural compounds regulating autophagy in multifarious diseases including cancer, neurodegenerative diseases, cardiovascular diseases, metabolic diseases, and immune diseases, hoping to inspire further investigation of the underlying mechanisms of natural compounds and to facilitate their clinical use for multiple human diseases.
Collapse
Affiliation(s)
- Peiqi Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lingjuan Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feihong Gan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Suyu Gao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuanyuan Yin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lixia Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
33
|
Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget 2018; 7:66944-66958. [PMID: 27557493 PMCID: PMC5341849 DOI: 10.18632/oncotarget.11396] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
There is an urgent need for new therapeutic strategies for patients with glioblastoma multiforme (GBM). Previous studies have shown that berberine (BBR), a natural plant alkaloid, has potent anti-tumor activity. However, the mechanisms leading to cancer cell death have not been clearly elucidated. In this study, we show that BBR has profound effects on the metabolic state of GBM cells, leading to high autophagy flux and impaired glycolytic capacity. Functionally, these alterations reduce the invasive properties, proliferative potential and induce apoptotic cell death. The molecular alterations preceding these changes are characterized by inhibition of the AMPK/mTOR/ULK1 pathway. Finally, we demonstrate that BBR significantly reduces tumor growth in vivo, demonstrating the potential clinical benefits for autophagy modulating plant alkaloids in cancer therapy.
Collapse
|
34
|
Halicka HD, Garcia J, Li J, Zhao H, Darzynkiewicz Z. Synergy of 2-deoxy-D-glucose combined with berberine in inducing the lysosome/autophagy and transglutaminase activation-facilitated apoptosis. Apoptosis 2018; 22:229-238. [PMID: 27796611 DOI: 10.1007/s10495-016-1315-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.
Collapse
Affiliation(s)
- H Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, BSB 438, Valhalla, NY, 10595, USA.
| |
Collapse
|
35
|
Sharma N, Kumar A, Sharma PR, Qayum A, Singh SK, Dutt P, Paul S, Gupta V, Verma MK, Satti NK, Vishwakarma R. A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis in HCT-116 colon cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:295-310. [PMID: 28962889 DOI: 10.1016/j.jep.2017.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/15/2017] [Accepted: 09/24/2017] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia is a miraculous ayurvedic herb used in the treatment of innumerable diseases such as diabetes, gonorrhea, secondary syphilis, anaemia, rheumatoid arthritis, dermatological diseases, cancer, gout, jaundice, asthma, leprosy, in the treatment of bone fractures, liver & intestinal disorders, purifies the blood, gives new life to the whole body; (rejuvenating herb) and many more. Recent studies have revealed the anticancer potential of this plant but not much work has been done on the anticancer chemical constituents actually responsible for its amazing anticancer effects. This prompted us to investigate this plant further for new potent anticancer molecules. AIM OF THE STUDY The present study was designed to isolate and identify new promising anticancer candidates from the aqueous alcoholic extract of T. cordifolia using bioassay-guided fractionation. MATERIALS AND METHODS The structures of the isolated compounds were determined on the basis of spectroscopic data interpretation and that of new potent anticancer molecule, TC-2 was confirmed by a single-crystal X-ray crystallographic analysis of its corresponding acetate. The in vitro anti-cancer activity of TC-2 was evaluated by SRB assay and the autophagic activity was investigated by immunofluorescence microscopy. Annexin-V FITC and PI dual staining was applied for the detection of apoptosis. The studies on Mitochondrial Membrane potential and ROS (Reactive oxygen species) production were also done. RESULTS Bioassay guided fractionation and purification of the aqueous alcoholic stem extract of Tinospora cordifolia led to the isolation of a new clerodane furano diterpene glycoside (TC-2) along with five known compounds i.e. cordifolioside A (β-D-Glucopyranoside,4-(3-hydroxy-1-propenyl)- 2,6-dimethoxyphenyl 3-O-D-apio-β-D-furanosyl) (TC-1), β-Sitosterol(TC-3), 2β,3β:15,16-Diepoxy- 4α, 6β-dihydroxy-13(16),14-clerodadiene-17,12:18,1-diolide (TC-4), ecdysterone(TC-5) and tinosporoside(TC-6). TC-2 emerged as a potential candidate for the treatment of colon cancer. CONCLUSION The overall study on the bioassay guided isolation of T.cordifolia identified and isolated a new clerodane furano diterpenoid that exhibited anticancer activity via induction of mitochondria mediated apoptosis and autophagy in HCT116 cells. We have reported a promising future candidate for treating colon cancer.
Collapse
Affiliation(s)
- Neha Sharma
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Analytical Chemistry Division (Instrumentation), CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Ashok Kumar
- Cancer Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; AcSIR: Academy of Scientific and Innovative Research, Jammu- Campus, Jammu, India
| | - P R Sharma
- Cancer Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; AcSIR: Academy of Scientific and Innovative Research, Jammu- Campus, Jammu, India
| | - Arem Qayum
- Cancer Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; AcSIR: Academy of Scientific and Innovative Research, Jammu- Campus, Jammu, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; AcSIR: Academy of Scientific and Innovative Research, Jammu- Campus, Jammu, India
| | - Prabhu Dutt
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Satya Paul
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Vivek Gupta
- Post- Graduate Department of Physics, University of Jammu, Jammu 180006, India
| | - M K Verma
- Analytical Chemistry Division (Instrumentation), CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - N K Satti
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | - R Vishwakarma
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
36
|
Okubo S, Uto T, Goto A, Tanaka H, Nishioku T, Yamada K, Shoyama Y. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure–Activity Relationships. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1497-1511. [DOI: 10.1142/s0192415x17500811] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.
Collapse
Affiliation(s)
- Shinya Okubo
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Aya Goto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Tsuyoshi Nishioku
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Katsushi Yamada
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| | - Yukihiro Shoyama
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Nagasaki International University, Japan
| |
Collapse
|
37
|
Lin SR, Fu YS, Tsai MJ, Cheng H, Weng CF. Natural Compounds from Herbs that can Potentially Execute as Autophagy Inducers for Cancer Therapy. Int J Mol Sci 2017; 18:ijms18071412. [PMID: 28671583 PMCID: PMC5535904 DOI: 10.3390/ijms18071412] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 01/07/2023] Open
Abstract
Accumulated evidence indicates that autophagy is a response of cancer cells to various anti-cancer therapies. Autophagy is designated as programmed cell death type II, and is characterized by the formation of autophagic vacuoles in the cytoplasm. Numerous herbs, including Chinese herbs, have been applied to cancer treatments as complementary and alternative medicines, supplements, or nutraceuticals to dampen the side or adverse effects of chemotherapy drugs. Moreover, the tumor suppressive actions of herbs and natural products induced autophagy that may lead to cell senescence, increase apoptosis-independent cell death or complement apoptotic processes. Hereby, the underlying mechanisms of natural autophagy inducers are cautiously reviewed in this article. Additionally, three natural compounds—curcumin, 16-hydroxycleroda-3,13-dien-15,16-olide, and prodigiosin—are presented as candidates for autophagy inducers that can trigger cell death in a supplement or alternative medicine for cancer therapy. Despite recent advancements in therapeutic drugs or agents of natural products in several cancers, it warrants further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, 97401 Hualien, Taiwan.
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 807 Kaohsiung city, Taiwan.
| | - May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
| | - Henrich Cheng
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
- Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, 11221 Taipei, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, 97401 Hualien, Taiwan.
| |
Collapse
|
38
|
Jiang SX, Qi B, Yao WJ, Gu CW, Wei XF, Zhao Y, Liu YZ, Zhao BS. Berberine displays antitumor activity in esophageal cancer cells in vitro. World J Gastroenterol 2017; 23:2511-2518. [PMID: 28465635 PMCID: PMC5394514 DOI: 10.3748/wjg.v23.i14.2511] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms.
METHODS Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting.
RESULTS Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G2/M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner.
CONCLUSION Berberine is an inhibitor of human EC cell growth and could be considered as a potential drug for the treatment of EC patients.
Collapse
|
39
|
Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of β-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol 2017; 91:25-33. [PMID: 28223223 DOI: 10.1016/j.exger.2017.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/02/2023]
Abstract
This study investigates the neuroprotective properties of berberine (a natural isoquinoline alkaloid isolated from the Rhizoma coptidis) and finds that berberine could promote β-amyloid (Aβ) clearance and inhibit Aβ production in the triple-transgenic mouse model of Alzheimer's disease (3×Tg-AD). During the study, berberine was first administrated to treat 3×Tg-AD mice and primary neurons. Morris water maze assay, western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining and histological analysis, transmission electron microscopic analysis were then used to evaluate the effects of the berberine administration. The result showed that berberine significantly improved 3×Tg-AD mice's spatial learning capacity and memory retention, promoted autophagy activity identified by the enhancement of brain LC3-II, beclin-1, hVps34, and Cathepsin-D levels as well as the reduction of brain P62 and Bcl-2 levels in AD mice, facilitated reduction of Aβ and APP levels, reduced Aβ plaque deposition in the hippocampus of AD mice, and inhibited b-site APP cleavage enzyme 1 (BACE1) expression. Similar results were also found in 3×Tg-AD primary hippocampal neurons: berbernine treatment decreased the levels of extracellular and intracellular Aβ1-42, increased the protein levels of LC3-II, beclin-1, hVps34, and Cathepsin-D, and decreased the levels of P62, Bcl-2, APP and BACE1 levels. In summary, berberine shows neuroprotective effects on 3×Tg-AD mice and may be a promising multitarget drug in the preventionand protection against AD.
Collapse
|
40
|
Zou K, Li Z, Zhang Y, Zhang HY, Li B, Zhu WL, Shi JY, Jia Q, Li YM. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol Sin 2017; 38:157-167. [PMID: 27917872 PMCID: PMC5309756 DOI: 10.1038/aps.2016.125] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022]
Abstract
It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity.
Collapse
Affiliation(s)
- Kun Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhao Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao-yue Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei-liang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ji-ye Shi
- UCB Biopharma SPRL, Chemin du Foriest, Braine-l'Alleud, Belgium
- Kellogg College, University of Oxford, Oxford, OX2 6PN, United Kingdom
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
41
|
Guamán-Ortiz LM, Orellana MIR, Ratovitski EA. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells. Curr Genomics 2017; 18:132-155. [PMID: 28367073 PMCID: PMC5345338 DOI: 10.2174/1389202917666160803150639] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023] Open
Abstract
Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis.
Collapse
Affiliation(s)
- Luis Miguel Guamán-Ortiz
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria Isabel Ramirez Orellana
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward A Ratovitski
- 1 Departamento de Ciencias de la Salud, Universidad Técnica Particular de Loja, Loja, Ecuador ; 2 Head and Neck Cancer Research Division, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, Dowluru KSVGK, Chintala R, Duddukuri GR. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41:48-81. [PMID: 26853158 DOI: 10.1016/j.semcancer.2016.02.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/23/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Arachidonic acid (AA) pathway, a metabolic process, plays a key role in carcinogenesis. Hence, AA pathway metabolic enzymes phospholipase A2s (PLA2s), cyclooxygenases (COXs) and lipoxygenases (LOXs) and their metabolic products, such as prostaglandins and leukotrienes, have been considered novel preventive and therapeutic targets in cancer. Bioactive natural products are a good source for development of novel cancer preventive and therapeutic drugs, which have been widely used in clinical practice due to their safety profiles. AA pathway inhibitory natural products have been developed as chemopreventive and therapeutic agents against several cancers. Curcumin, resveratrol, apigenin, anthocyans, berberine, ellagic acid, eugenol, fisetin, ursolic acid, [6]-gingerol, guggulsteone, lycopene and genistein are well known cancer chemopreventive agents which act by targeting multiple pathways, including COX-2. Nordihydroguaiaretic acid and baicalein can be chemopreventive molecules against various cancers by inhibiting LOXs. Several PLA2s inhibitory natural products have been identified with chemopreventive and therapeutic potentials against various cancers. In this review, we critically discuss the possible utility of natural products as preventive and therapeutic agents against various oncologic diseases, including prostate, pancreatic, lung, skin, gastric, oral, blood, head and neck, colorectal, liver, cervical and breast cancers, by targeting AA pathway. Further, the current status of clinical studies evaluating AA pathway inhibitory natural products in cancer is reviewed. In addition, various emerging issues, including bioavailability, toxicity and explorability of combination therapy, for the development of AA pathway inhibitory natural products as chemopreventive and therapeutic agents against human malignancy are also discussed.
Collapse
Affiliation(s)
- Nagendra Sastry Yarla
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL 33169, USA.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India
| | - Arunasree M Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, Telagana, India; Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bhadrapura Lakkappa Dhananjaya
- Toxinology/Toxicology and Drug Discovery Unit, Center for Emerging Technologies, Jain Global Campus, Jain University, Kanakapura Taluk, Ramanagara 562 112, Karnataka, India
| | - Kaladhar S V G K Dowluru
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India; Department of Microbiology and Bioinformatics, Bilaspur University, Bilaspur 495 001, Chhattisgarh, India
| | - Ramakrishna Chintala
- Department of Environmental Sciences, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India
| | - Govinda Rao Duddukuri
- Department of Biochemisty/Bionformatics, Institute of Science, GITAM University, Rushikonda, Visakhapatnam 530 045, Adhra Pradesh, India.
| |
Collapse
|
43
|
Ferraroni M, Bazzicalupi C, Papi F, Fiorillo G, Guamán-Ortiz LM, Nocentini A, Scovassi AI, Lombardi P, Gratteri P. Solution and Solid-State Analysis of Binding of 13-Substituted Berberine Analogues to Human Telomeric G-quadruplexes. Chem Asian J 2016; 11:1107-15. [DOI: 10.1002/asia.201600116] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Marta Ferraroni
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Carla Bazzicalupi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
| | - Francesco Papi
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino FI Italy
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Gaetano Fiorillo
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Luis Miguel Guamán-Ortiz
- Universidad Técnica Particular de Loja; Departamento de Ciencias de la Salud; San Cayetano Alto Calle Paris 1101608 Loja Ecuador
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Alessio Nocentini
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| | - Anna Ivana Scovassi
- Istituto di Genetica Molecolare del CNR, Via Abbiategrasso 207; 27100 Pavia Italy
| | - Paolo Lombardi
- Naxospharma srl; via G. Di Vittorio, 70 20026 Novate Milanese Italy
| | - Paola Gratteri
- Department NEUROFARBA-Pharmaceutical and nutraceutical section; Laboratory of Molecular Modeling Cheminformatics&QSAR; University of Firenze; via Ugo Schiff 6 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|