1
|
Arévalo-Martinez M, Ede J, van der Have O, Ritsvall O, Zetterberg FR, Nilsson UJ, Leffler H, Holmberg J, Albinsson S. Myocardin related transcription factor and galectin-3 drive lipid accumulation in human blood vessels. Vascul Pharmacol 2024; 156:107383. [PMID: 38830455 DOI: 10.1016/j.vph.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Diabetes and hypertension are important risk factors for vascular disease, including atherosclerosis. A driving factor in this process is lipid accumulation in smooth muscle cells of the vascular wall. The glucose- and mechano-sensitive transcriptional coactivator, myocardin-related transcription factor A (MRTF-A/MKL1) can promote lipid accumulation in cultured human smooth muscle cells and contribute to the formation of smooth muscle-derived foam cells. The purpose of this study was to determine if intact human blood vessels ex vivo can be used to evaluate lipid accumulation in the vascular wall, and if this process is dependent on MRTF and/or galectin-3/LGALS3. Galectin-3 is an early marker of smooth muscle transdifferentiation and a potential mediator for foam cell formation and atherosclerosis. APPROACH AND RESULTS Human mammary arteries and saphenous veins were exposed to altered cholesterol and glucose levels in an organ culture model. Accumulation of lipids, quantified by Oil Red O, was increased by cholesterol loading and elevated glucose concentrations. Pharmacological inhibition of MRTF with CCG-203971 decreased lipid accumulation, whereas adenoviral-mediated overexpression of MRTF-A had the opposite effect. Cholesterol-induced expression of galectin-3 was decreased after inhibition of MRTF. Importantly, pharmacological inhibition of galectin-3 with GB1107 reduced lipid accumulation in the vascular wall after cholesterol loading. CONCLUSION Ex vivo organ culture of human arteries and veins can be used to evaluate lipid accumulation in the intact vascular wall, as well as adenoviral transduction and pharmacological inhibition. Although MRTF and galectin-3 may have beneficial, anti-inflammatory effects under certain circumstances, our results, which demonstrate a significant decrease in lipid accumulation, support further evaluation of MRTF- and galectin-3-inhibitors for therapeutic intervention against atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Marycarmen Arévalo-Martinez
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Jacob Ede
- Department of Clinical Sciences Lund, Department of Cardiothoracic Surgery, Lund University, Skåne University Hospital, Lund, Sweden
| | - Oscar van der Have
- Vessel Wall Biology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Olivia Ritsvall
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Fredrik R Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden
| | - Ulf J Nilsson
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8 A, SE-413 46 Lund, Sweden; Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University BMC-C1228b, Klinikgatan 28, 221 84 Lund, Sweden
| | - Johan Holmberg
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden
| | - Sebastian Albinsson
- Molecular Vascular Physiology, Department of Experimental Medical Science, BMC D12, Lund University, SE-221 84 Lund, Sweden.
| |
Collapse
|
2
|
Wang N, Huo Y, Gao X, Li Y, Cheng F, Zhang Z. Lead exposure exacerbates liver injury in high-fat diet-fed mice by disrupting the gut microbiota and related metabolites. Food Funct 2024; 15:3060-3075. [PMID: 38414441 DOI: 10.1039/d3fo05148j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lead (Pb) is a widespread toxic endocrine disruptor that could cause liver damage and gut microbiota dysbiosis. However, the causal relationship and underlying mechanisms between the gut microbiota and Pb-induced liver injury are unclear. In this study, we investigated the metabolic toxicity caused by Pb exposure in normal chow (Chow) and high-fat diet (HFD) mice and confirmed the causal relationship by fecal microbial transplantation (FMT) and antibiotic cocktail experiments. The results showed that Pb exposure exacerbated HFD-induced hepatic lipid deposition, fibrosis, and inflammation, but it had no significant effect on Chow mice. Pb increased serum lipopolysaccharide (LPS) levels and induced intestinal inflammation and barrier damage by activating TLR4/NFκB/MLCK in HFD mice. Furthermore, Pb exposure disrupted the gut microbiota, reduced short-chain fatty acid (SCFA) concentrations and the colonic SCFA receptors, G protein-coupled receptor (GPR) 41/43/109A, in HFD mice. Additionally, Pb significantly inhibited the hepatic GPR109A-mediated adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway, resulting in hepatic lipid accumulation. FMT from Pb-exposed HFD mice exacerbated liver damage, disturbed lipid metabolic pathways, impaired intestinal barriers, and altered the gut microbiota and metabolites in recipient mice. However, mice exposed to HFD + Pb and HFD mice had similar levels of these biomarkers in microbiota depleted by antibiotics. In conclusion, our study provides new insights into gut microbiota dysbiosis as a potential novel mechanism for human health related to liver function impairment caused by Pb exposure.
Collapse
Affiliation(s)
- Nana Wang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Yuan Huo
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Xue Gao
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Yuting Li
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Fangru Cheng
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Johnston TP, Edwards G, Koulen P. Synergism of mechanisms underlying early-stage changes in retina function in male hyperglycemic db/db mice in the absence and presence of chemically-induced dyslipidemia. Sci Rep 2023; 13:17347. [PMID: 37833428 PMCID: PMC10576038 DOI: 10.1038/s41598-023-44446-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
The study was designed to quantify retina function in a spontaneous mutation mouse model of diabetes, in which sustained dyslipidemia was induced chemically. The goal of the study was to identify if dyslipidemia in the presence of hyperglycemia resulted in either a synergistic, or a merely additive, exacerbation of retinal and visual dysfunctions in diabetes. Two cohorts of mice, male C57BL/6 and C57BL/KsJ-db/db mice were divided into two groups each. One group of each strain received the triblock copolymer, poloxamer 407 (P-407), administered by intraperitoneal injection ("WT P-407" and "db/db P-407" groups) with saline as a control in the remaining two groups ("WT" and "db/db" groups). Blood glucose, total cholesterol (TC) and total triglyceride (TG) levels were quantified using enzyme-based colorimetric assays. Retina function was measured using electroretinography (ERG) and visual acuity was determined by behaviorally assessing parameters of the optomotor reflex. TC and TG levels were normal in both saline controls (WT) and db/db mice but were significantly elevated in the WT P-407 group (p < 0.01 for TC; p < 0.001 for TG), while levels of the same lipids were further elevated in the db/db P-407 group when compared to the WT P-407 group levels (p < 0.001 for both TC and TG). Behavioral assessment of the optomotor reflex indicated reduced visual acuity for the db/db P-407 group when compared to either the WT P-407 or the db/db groups (p < 0.001, p < 0.0001). ERG measurements of scotopic retina function showed a significant decline in the scotopic b-wave amplitude of the WT P-407 animals (p < 0.01) and a further reduction for the db/db P-407 group when compared to controls (p < 0.0001). Very significant, strong correlations between scotopic b-wave amplitude and implicit time to TC (r = - 0.8376, p = < 0.0001 and r = 0.7069, p = 0.0022, respectively) and TG levels (r = - 0.8554, p = < 0.0001 and r = 0.7150, p = 0.0019, respectively) were found. Dyslipidemia in the presence of hyperglycemia synergistically exacerbated the severity of retinal dysfunction in diabetes. P-407 administration significantly elevated plasma TC and TG levels in male wild-type (WT) and diabetic mice (db/db), but the resulting hyperlipidemia was more significantly pronounced in the diabetic mice. While elevated plasma lipid and blood glucose levels were individually correlated with a decline in retinal function, the combination of both exacerbated retinal dysfunction. This model of combined hyperglycemia and dyslipidemia can be used to dissect individual contributions of features of the metabolic syndrome to the pathogenesis of retinal dysfunction in diabetes.
Collapse
Affiliation(s)
- Thomas P Johnston
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
4
|
Liu XQ, Jiang TT, Wang MY, Liu WT, Huang Y, Huang YL, Jin FY, Zhao Q, Wang GH, Ruan XZ, Liu BC, Ma KL. Using Machine Learning to Evaluate the Role of Microinflammation in Cardiovascular Events in Patients With Chronic Kidney Disease. Front Immunol 2022; 12:796383. [PMID: 35082785 PMCID: PMC8784809 DOI: 10.3389/fimmu.2021.796383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Lipid metabolism disorder, as one major complication in patients with chronic kidney disease (CKD), is tied to an increased risk for cardiovascular disease (CVD). Traditional lipid-lowering statins have been found to have limited benefit for the final CVD outcome of CKD patients. Therefore, the purpose of this study was to investigate the effect of microinflammation on CVD in statin-treated CKD patients. Methods We retrospectively analysed statin-treated CKD patients from January 2013 to September 2020. Machine learning algorithms were employed to develop models of low-density lipoprotein (LDL) levels and CVD indices. A fivefold cross-validation method was employed against the problem of overfitting. The accuracy and area under the receiver operating characteristic (ROC) curve (AUC) were acquired for evaluation. The Gini impurity index of the predictors for the random forest (RF) model was ranked to perform an analysis of importance. Results The RF algorithm performed best for both the LDL and CVD models, with accuracies of 82.27% and 74.15%, respectively, and is therefore the most suitable method for clinical data processing. The Gini impurity ranking of the LDL model revealed that hypersensitive C-reactive protein (hs-CRP) was highly relevant, whereas statin use and sex had the least important effects on the outcomes of both the LDL and CVD models. hs-CRP was the strongest predictor of CVD events. Conclusion Microinflammation is closely associated with potential CVD events in CKD patients, suggesting that therapeutic strategies against microinflammation should be implemented to prevent CVD events in CKD patients treated by statin.
Collapse
Affiliation(s)
- Xiao Qi Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Ting Jiang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Meng Ying Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen Tao Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yang Huang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Lin Huang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Yong Jin
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qing Zhao
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, London, United Kingdom
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Natural killer and NKT cells in the male reproductive tract. J Reprod Immunol 2020; 142:103178. [PMID: 32739646 DOI: 10.1016/j.jri.2020.103178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
Abstract
Natural killer (NK) cells are important effector lymphocytes that play a pivotal role in the innate and adaptive immune responses to tumors and viral infection. NKT cells are a heterogeneous group of T cells that share properties with both T cells and NK cells. They display immunoregulatory properties as they facilitate the cell-mediated immune response to tumors and infectious diseases, and inhibit cell-mediated immunity associated with autoimmune diseases and allograft rejection. However, the roles of NK and NKT cells in the male reproductive tract remain largely unexplored, in particular, NKT cells, tissue distribution, and state of health or disease. Infection and inflammation of the male genital tract are thought to be the primary etiological factors of male infertility. In this review, we considered this complex and rapidly growing field. We summarize the recent findings and the characterization and roles of NK and NKT cells in the male reproductive tract, including the testis, epididymis, prostate, seminal vesicle, and semen, to enhance our understanding of the immunological mechanisms of male infertility and for the design effective vaccines for male reproductive health in the future.
Collapse
|
6
|
Funes A, Saez Lancellotti TE, Santillan LD, Della Vedova MC, Monclus MA, Cabrillana ME, Gomez Mejiba SE, Ramirez DC, Fornes MW. A chronic high-fat diet causes sperm head alterations in C57BL/6J mice. Heliyon 2019; 5:e02868. [PMID: 31844747 PMCID: PMC6895587 DOI: 10.1016/j.heliyon.2019.e02868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
A chronic-positive energetic balance has been directly correlated with infertility in men, but the involved mechanisms remain unknown. Herein we investigated weather in a mouse model a chronic feeding with a diet supplemented with chicken fat affects sperm head morphology. To accomplish this, we fed mice for 16 weeks with either control food (low-fat diet, LFD) or control food supplemented with 22% chicken fat (high-fat diet, HFD). At the end of the feeding regimen, we measured: redox and inflammatory changes, cholesterol accumulation in testis and analyzed testicular morphological structure and ultra-structure and liver morphology. We found that the mice fed HFD resembled some features of the human metabolic syndrome, including systemic oxidative stress and inflammation, this group showed an increment in the following parameters; central adiposity (adiposity index: 1.07 ± 0.10 vs 2.26 ± 0.17), dyslipidemia (total cholesterol: 153.3 ± 2.6 vs 175.1 ± 8.08 mg/dL), insulin resistance (indirect Insulin resistance index, TG/HDL-c: 2.94 ± 0.33 vs 3.68 ± 0.15) and fatty liver. Increased cholesterol content measured by filipin was found in the testicles from HFD (fluorescence intensity increase to 50%), as well as an alteration of spermiogenesis. Most remarkably, a disorganized manchette-perinuclear ring complex and an altered morphology of the sperm head were observed in the spermatozoa of HFD-fed mice. These results add new information to our understanding about the mechanisms by which systemic oxidative stress and inflammation may influence sperm-head morphology and indirectly male fertility.
Collapse
Affiliation(s)
- A Funes
- LIAM, Andrology Research Laboratory from Mendoza, IHEM-CCT-CONICET, National University of Cuyo and University of Aconcagua, Mendoza, 5500, Argentina
| | - T E Saez Lancellotti
- LIAM, Andrology Research Laboratory from Mendoza, IHEM-CCT-CONICET, National University of Cuyo and University of Aconcagua, Mendoza, 5500, Argentina
| | - L D Santillan
- LETM, Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CONICET, National University of San Luis, San Luis, 5700, Argentina
| | - M C Della Vedova
- LETM, Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CONICET, National University of San Luis, San Luis, 5700, Argentina
| | - M A Monclus
- LIAM, Andrology Research Laboratory from Mendoza, IHEM-CCT-CONICET, National University of Cuyo and University of Aconcagua, Mendoza, 5500, Argentina
| | - M E Cabrillana
- LIAM, Andrology Research Laboratory from Mendoza, IHEM-CCT-CONICET, National University of Cuyo and University of Aconcagua, Mendoza, 5500, Argentina
| | - S E Gomez Mejiba
- LET, Laboratory of Experimental Therapeutics, IMIBIO-SL, CONICET, National University of San Luis, San Luis, 5700, Argentina
| | - D C Ramirez
- LETM, Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CONICET, National University of San Luis, San Luis, 5700, Argentina
| | - M W Fornes
- LIAM, Andrology Research Laboratory from Mendoza, IHEM-CCT-CONICET, National University of Cuyo and University of Aconcagua, Mendoza, 5500, Argentina
| |
Collapse
|
7
|
Wang H, Wu T, Wang Y, Wan X, Qi J, Li L, Wang X, Luo X, Ning Q. Regulatory T cells suppress excessive lipid accumulation in alcoholic liver disease. J Lipid Res 2019; 60:922-936. [PMID: 30792182 DOI: 10.1194/jlr.m083568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Sensitization of hepatic immune cells from chronic alcohol consumption gives rise to inflammatory accumulation, which is considered a leading cause of liver damage. Regulatory T cells (Tregs) are an immunosuppressive cell subset that plays an important role in a variety of liver diseases; however, data about pathological involvement of Tregs in liver steatosis of alcoholic liver disease (ALD) is insufficient. In mouse models of ALD, we found that increased lipid accumulation by chronic alcohol intake was accompanied by oxidative stress, inflammatory accumulation, and Treg decline in the liver. Adoptive transfer of Tregs relieved lipid metabolic disorder, oxidative stress, inflammation, and, consequently, ameliorated the alcoholic fatty liver. Macrophages are a dominant source of inflammation in ALD. Aberrant macrophage activation and cytokine production were activated during chronic alcohol consumption, but were significantly inhibited after Treg transfer. In vitro, macrophages were co-activated by alcohol and lipopolysaccharide to mimic a condition for alcoholic liver microenvironment. Tregs suppressed monocyte chemoattractant protein-1 and TNF-α production from these macrophages. However, such effects of Tregs were remarkably neutralized when interleukin (IL)-10 was blocked. Altogether, our data uncover a novel role of Tregs in restoring liver lipid metabolism in ALD, which partially relies on IL-10-mediated suppression of hepatic pro-inflammatory macrophages.
Collapse
Affiliation(s)
- Hongwu Wang
- Institute of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China; Departments of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Wu
- Departments of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaqi Wang
- Institute of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyang Wan
- Institute of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junying Qi
- Departments of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lan Li
- Departments of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojing Wang
- Institute of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Luo
- Pediatrics Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qin Ning
- Institute of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China; Departments of Infectious Disease Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Filippello A, Urbano F, Di Mauro S, Scamporrino A, Di Pino A, Scicali R, Rabuazzo AM, Purrello F, Piro S. Chronic Exposure to Palmitate Impairs Insulin Signaling in an Intestinal L-cell Line: A Possible Shift from GLP-1 to Glucagon Production. Int J Mol Sci 2018; 19:E3791. [PMID: 30487448 PMCID: PMC6321596 DOI: 10.3390/ijms19123791] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and impaired glucagon-like peptide-1 (GLP-1) secretion/function. Lipotoxicity, a chronic elevation of free fatty acids in the blood, could affect insulin-signaling in many peripheral tissues. To date, the effects of lipotoxicity on the insulin receptor and insulin resistance in the intestinal L-cells need to be elucidated. Moreover, recent observations indicate that L-cells may be able to process not only GLP-1 but also glucagon from proglucagon. The aim of this study was to investigate the effects of chronic palmitate exposure on insulin pathways, GLP-1 secretion and glucagon synthesis in the GLUTag L-cell line. Cells were cultured in the presence/absence of palmitate (0.5 mM) for 24 h to mimic lipotoxicity. Palmitate treatment affected insulin-stimulated GLP-1 secretion, insulin receptor phosphorylation and IRS-1-AKT pathway signaling. In our model lipotoxicity induced extracellular signal-regulated kinase (ERK 44/42) activation both in insulin stimulated and basal conditions and also up-regulated paired box 6 (PAX6) and proglucagon expression (Gcg). Interestingly, palmitate treatment caused an increased glucagon secretion through the up-regulation of prohormone convertase 2. These results indicate that a state of insulin resistance could be responsible for secretory alterations in L-cells through the impairment of insulin-signaling pathways. Our data support the hypothesis that lipotoxicity might contribute to L-cell deregulation.
Collapse
Affiliation(s)
- Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy.
| |
Collapse
|
9
|
Mustafa M, Wang TN, Chen X, Gao B, Krepinsky JC. SREBP inhibition ameliorates renal injury after unilateral ureteral obstruction. Am J Physiol Renal Physiol 2016; 311:F614-25. [DOI: 10.1152/ajprenal.00140.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Tubulointerstitial fibrosis is a major feature associated with declining kidney function in chronic kidney disease of diverse etiology. No effective means as yet exists to prevent the progression of fibrosis. We have shown that the transcription factor sterol-regulatory element-binding protein 1 (SREBP-1) is an important mediator of the profibrotic response to transforming growth factor-β (TGF-β) and angiotensin II, both key cytokines in the fibrotic process. Here, we examined the role of SREBP in renal interstitial fibrosis in the unilateral ureteral obstruction (UUO) model. The two isoforms of SREBP (-1 and -2) were activated by 3 days after UUO, with SREBP-1 showing a more sustained activation to 21 days. We then examined whether SREBP1/2 inhibition with the small-molecule inhibitor fatostatin could attenuate fibrosis after 14 days of UUO. SREBP activation was confirmed to be inhibited by fatostatin. Treatment decreased interstitial fibrosis, TGF-β signaling, and upregulation of α-smooth muscle actin (SMA), a marker of fibroblast activation. Fatostatin also attenuated inflammatory cell infiltrate and apoptosis. Associated with this, fatostatin preserved proximal tubular mass. The significant increase in atubular glomeruli observed after UUO, known to correlate with irreversible renal functional decline, was also decreased by treatment. In cultured primary fibroblasts, TGF-β1 induced the activation of SREBP-1 and -2. Fatostatin blocked TGF-β1-induced α-SMA and matrix protein upregulation. The inhibition of SREBP is thus a potential novel therapeutic target in the treatment of fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Maria Mustafa
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Tony N. Wang
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Xing Chen
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| | - Joan C. Krepinsky
- Division of Nephrology, McMaster University and Hamilton Centre for Kidney Research (HCKR), Hamilton, Ontario, Canada
| |
Collapse
|