1
|
Sproten R, Nohr D, Guseva D. Nutritional strategies modulating the gut microbiome as a preventative and therapeutic approach in normal and pathological age-related cognitive decline: a systematic review of preclinical and clinical findings. Nutr Neurosci 2024; 27:1042-1057. [PMID: 38165747 DOI: 10.1080/1028415x.2023.2296727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
CONTEXT The proportion of the elderly population is on the rise across the globe, and with it the prevalence of age-related neurodegenerative diseases. The gut microbiota, whose composition is highly regulated by dietary intake, has emerged as an exciting research field in neurology due to its pivotal role in modulating brain functions via the gut-brain axis. OBJECTIVES We aimed at conducting a systematic review of preclinical and clinical studies investigating the effects of dietary interventions on cognitive ageing in conjunction with changes in gut microbiota composition and functionality. METHODS PubMed and Scopus were searched using terms related to ageing, cognition, gut microbiota and dietary interventions. Studies were screened, selected based on previously determined inclusion and exclusion criteria, and evaluated for methodological quality using recommended risk of bias assessment tools. RESULTS A total of 32 studies (18 preclinical and 14 clinical) were selected for inclusion. We found that most of the animal studies showed significant positive intervention effects on cognitive behavior, while outcomes on cognition, microbiome features, and health parameters in humans were less pronounced. The effectiveness of dietary interventions depended markedly on the age, gender, degree of cognitive decline and baseline microbiome composition of participants. CONCLUSION To harness the full potential of microbiome-inspired nutrition for cognitive health, one of the main challenges remains to better understand the interplay between host, his microbiome, dietary exposures, whilst also taking into account environmental influences. Future research should aim toward making use of host-specific microbiome data to guide the development of personalized therapies.
Collapse
Affiliation(s)
- Rieke Sproten
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Donatus Nohr
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Daria Guseva
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
- Institute of Child Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| |
Collapse
|
2
|
He H, Liu K, Liu M, Yang AJ, Cheng KW, Lu LW, Liu B, Chen JH. The impact of medium-chain triglycerides on weight loss and metabolic health in individuals with overweight or obesity: A systematic review and meta-analysis. Clin Nutr 2024; 43:1755-1768. [PMID: 38936302 DOI: 10.1016/j.clnu.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUNDS The efficacy of medium-chain triglycerides (MCTs) for weight management and mitigating metabolic disorders among individuals with overweight and obesity remains a topic of ongoing discussion. Notably, there is a gap in the distinction between pure MCTs and medium-long-chain triglycerides (MLCTs). METHODS This meta-analysis investigates the efficacy of MCTs on weight loss and glucolipid metabolism in these populations, explicitly evaluating the differential effects of pure MCTs and MLCTs. We performed a random-effects meta-analysis on relevant studies examining weight loss and glucolipid parameters, incorporating a subgroup analysis conducted based on intervention types, pure MCTs versus MLCTs. RESULTS Our findings revealed diets enriched with MCTs are more effective in achieving weight reduction (WMD: -1.53%; 95% CI: -2.44, -0.63; p < 0.01), particularly those containing pure MCTs (WMD: -1.62%; 95% CI: -2.78, -0.46; p < 0.01), compared to long-chain fatty acids (LCTs) enriched diets. However, our subgroup analysis indicates that an MLCTs-enriched diet did not significantly reduce weight loss. Additionally, MCTs-enriched diets were associated with significant reductions in blood triglyceride levels and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores, compared to LCTs-enriched diets. CONCLUSIONS Hence, the authors recommend incorporating pure MCTs in dietary interventions for individuals with overweight and obesity, particularly those with comorbidities such as dyslipidemia and impaired glucose metabolism.
Collapse
Affiliation(s)
- Hui He
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Kang Liu
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 511436, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Ai-Jia Yang
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Louise Weiwei Lu
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand. louise.%
| | - Bin Liu
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgangdong Road, Guangzhou 510260, China.
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Leclerc M, Tremblay C, Bourassa P, Schneider JA, Bennett DA, Calon F. Lower GLUT1 and unchanged MCT1 in Alzheimer's disease cerebrovasculature. J Cereb Blood Flow Metab 2024; 44:1417-1432. [PMID: 38441044 PMCID: PMC11342728 DOI: 10.1177/0271678x241237484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
The brain is a highly demanding organ, utilizing mainly glucose but also ketone bodies as sources of energy. Glucose transporter-1 (GLUT1) and monocarboxylates transporter-1 (MCT1) respectively transport glucose and ketone bodies across the blood-brain barrier. While reduced glucose uptake by the brain is one of the earliest signs of Alzheimer's disease (AD), no change in the uptake of ketone bodies has been evidenced yet. To probe for changes in GLUT1 and MCT1, we performed Western immunoblotting in microvessel extracts from the parietal cortex of 60 participants of the Religious Orders Study. Participants clinically diagnosed with AD had lower cerebrovascular levels of GLUT1, whereas MCT1 remained unchanged. GLUT1 reduction was associated with lower cognitive scores. No such association was found for MCT1. GLUT1 was inversely correlated with neuritic plaques and cerebrovascular β-secretase-derived fragment levels. No other significant associations were found between both transporters, markers of Aβ and tau pathologies, sex, age at death or apolipoprotein-ε4 genotype. These results suggest that, while a deficit of GLUT1 may underlie the reduced transport of glucose to the brain in AD, no such impairment occurs for MCT1. This study thus supports the exploration of ketone bodies as an alternative energy source for the aging brain.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| | - Julie A Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, Québec, Canada
| |
Collapse
|
4
|
Carrera-Juliá S, Obrador E, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Ketogenic effect of coconut oil in ALS patients. Front Nutr 2024; 11:1429498. [PMID: 39086545 PMCID: PMC11289842 DOI: 10.3389/fnut.2024.1429498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
A recent pilot study in amyotrophic lateral sclerosis (ALS) patients analyzed the effect of a Mediterranean diet (MeDi) supplemented with nicotinamide riboside (NR, a NAD+ promoter), pterostilbene (PTER, a natural antioxidant) and/or coconut oil on anthropometric variables in ALS patients. The results suggested that the MeDi supplemented with NR, PTER and coconut oil is the nutritional intervention showing the greatest benefits at anthropometric levels. Over the last 30 years, glucose intolerance has been reported in ALS patients. Thus, suggesting that an alternative source of energy may be preferential for motor neurons to survive. Ketone bodies (KBs), provided through a MeDi with a lower carbohydrate content but enriched with medium chain triglycerides, could be a therapeutic alternative to improve the neuromotor alterations associated with the disease. Nevertheless, the use of a coconut oil-supplemented diet, as potentially ketogenic, is a matter of controversy. In the present report we show that a MeDi supplemented with coconut oil increases the levels of circulating KBs in ALS patients.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Elena Obrador
- Department of Physiology, University of Valencia, Valencia, Spain
- Scientia BioTech, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, University of Valencia, Valencia, Spain
- Scientia BioTech, Valencia, Spain
| | | | - Paz Moreno-Murciano
- Department of Physiology, University of Valencia, Valencia, Spain
- Scientia BioTech, Valencia, Spain
| | - José M. Estrela
- Department of Physiology, University of Valencia, Valencia, Spain
- Scientia BioTech, Valencia, Spain
| |
Collapse
|
5
|
Volkert D, Beck AM, Faxén-Irving G, Frühwald T, Hooper L, Keller H, Porter J, Rothenberg E, Suominen M, Wirth R, Chourdakis M. ESPEN guideline on nutrition and hydration in dementia - Update 2024. Clin Nutr 2024; 43:1599-1626. [PMID: 38772068 DOI: 10.1016/j.clnu.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND & AIMS Dementia is accompanied by a variety of changes that result in an increased risk of malnutrition and low-intake dehydration. This guideline update aims to give evidence-based recommendations for nutritional care of persons with dementia in order to prevent and treat these syndromes. METHODS The previous guideline version was reviewed and expanded in accordance with the standard operating procedure for ESPEN guidelines. Based on a systematic search in three databases, strength of evidence of appropriate literature was graded by use of the SIGN system. The original recommendations were reviewed and reformulated, and new recommendations were added, which all then underwent a consensus process. RESULTS 40 recommendations for nutritional care of older persons with dementia were developed and agreed, seven at institutional level and 33 at individual level. As a prerequisite for good nutritional care, organizations caring for persons with dementia are recommended to employ sufficient qualified staff and offer attractive food and drinks with choice in a functional and appealing environment. Nutritional care should be based on a written care concept with standardized operating procedures. At the individual level, routine screening for malnutrition and dehydration, nutritional assessment and close monitoring are unquestionable. Oral nutrition may be supported by eliminating potential causes of malnutrition and dehydration, and adequate social and nursing support (including assistance, utensils, training and oral care). Oral nutritional supplements are recommended to improve nutritional status but not to correct cognitive impairment or prevent cognitive decline. Routine use of dementia-specific ONS, ketogenic diet, omega-3 fatty acid supplementation and appetite stimulating agents is not recommended. Enteral and parenteral nutrition and hydration are temporary options in patients with mild or moderate dementia, but not in severe dementia or in the terminal phase of life. In all stages of the disease, supporting food and drink intake and maintaining or improving nutrition and hydration status requires an individualized, comprehensive approach. Due to a lack of appropriate studies, most recommendations are good practice points. CONCLUSION Nutritional care should be an integral part of dementia management. Numerous interventions are available that should be implemented in daily practice. Future high-quality studies are needed to clarify the evidence.
Collapse
Affiliation(s)
- Dorothee Volkert
- Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nuremberg, Germany.
| | - Anne Marie Beck
- Dietetic and Nutritional Research Unit, Herlev and Gentofte University Hospital, Herlev, Denmark
| | - Gerd Faxén-Irving
- Division of Clinical Geriatrics, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Frühwald
- Department of Geriatric Acute Care, Hietzing Municipal Hospital, Vienna, Austria
| | - Lee Hooper
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Heather Keller
- Department of Kinesiology & Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Canada; Schlegel-UW Research Institute for Aging, Waterloo, Canada
| | - Judi Porter
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Elisabet Rothenberg
- Department of Nursing and Integrated Health Sciences, Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Merja Suominen
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Rainer Wirth
- Department of Geriatric Medicine, Marien Hospital Herne, Ruhr-University Bochum, Herne, Germany
| | - Michael Chourdakis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
6
|
Carrera-Juliá S, Estrela JM, Zacarés M, Navarro MÁ, Vega-Bello MJ, de la Rubia Ortí JE, Moreno ML, Drehmer E. Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis. Nutrients 2024; 16:350. [PMID: 38337635 PMCID: PMC10857415 DOI: 10.3390/nu16030350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neurodegenerative disease that leads to the loss of motor neurons. The dietary intake of ALS patients is thought to influence the prognosis and progression of the disease. The aim of this study was to examine the nutritional, clinical and sociodemographic characteristics of ALS patients in Spain. A cross-sectional descriptive study with demographics, clinical anamnesis and anthropometric assessment was carried out. Nutritional intake was recorded and compared with dietary reference intakes (DRI). Forty subjects (25 males; 15 females) aged 54.7 ± 10.17 were included in the study. The mean weight and height were 67.99 ± 8.85 kg and 167.83 ± 8.79 cm, respectively. Clinical phenotype, time to diagnosis, year of onset and family history were not associated with the place of origin. Clinical phenotype had no influence on time of diagnosis. Caloric and protein intakes were adequate, while carbohydrate, vitamin B8 and iodine intakes were significantly lower than the DRI. Lipids; vitamins B1, B2, B3, B5, B6, B12, C and E; sodium; phosphorus; and selenium intakes were significantly higher than the recommended nutritional standards. ALS patients, who are homogeneously distributed throughout our national territory, should modify their dietary habits to minimize ultra-processed products and prioritize foods rich in healthy fats and fiber.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Department of Nutrition and Dietetics, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - José M. Estrela
- Department of Physiology, University of Valencia, 46010 Valencia, Spain;
| | - Mario Zacarés
- Department of Basic and Transversal Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Z.); (M.Á.N.)
| | - Mari Ángeles Navarro
- Department of Basic and Transversal Sciences, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain; (M.Z.); (M.Á.N.)
| | - María Jesús Vega-Bello
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | | | - Mari Luz Moreno
- Department of Anatomy and Physiology, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Eraci Drehmer
- Department of Health and Functional Assessment, Catholic University of Valencia San Vicente Mártir, 46001 Valencia, Spain;
| |
Collapse
|
7
|
Andrews V, Zammit G, O’Leary F. Dietary pattern, food, and nutritional supplement effects on cognitive outcomes in mild cognitive impairment: a systematic review of previous reviews. Nutr Rev 2023; 81:1462-1489. [PMID: 37027832 PMCID: PMC10563860 DOI: 10.1093/nutrit/nuad013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
CONTEXT Nutritional interventions may benefit cognition in people with mild cognitive impairment (MCI). However, evidence is yet to be synthesized in a way that can inform recommendations for clinical and public health settings. OBJECTIVE To systematically review evidence on the effect of dietary patterns, foods, and nutritional supplements on cognitive decline in individuals with MCI. DATA SOURCES Guided by the Preferred Reporting items for Systematic Review and Meta-Analysis Protocols 2015 statement, the Medline, EMBASE, and CINAHL databases, the JBI Database of Systematic Reviews and Implementation Reports, Cochrane Database of Systematic Reviews, and Database of Abstracts of Reviews of Effects were searched (publication years 2005 to 2020). Included studies were English-language systematic reviews and meta-analyses of randomized controlled trials and cohort studies reporting on the effectiveness of nutritional interventions on cognition of individuals with MCI. DATA EXTRACTION Two reviewers independently selected studies and extracted data on cognitive outcomes and adverse events. Review quality was assessed using AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews-2). Primary study overlap was managed following Cochrane Handbook guidelines. DATA ANALYSIS Of the 6677 records retrieved, 20 reviews were included, which, in turn, reported on 43 randomized controlled trials and 1 cohort study that, together, addressed 18 nutritional interventions. Most reviews were limited by quality and the small number of primary studies with small sample sizes. Reviews were mostly positive for B vitamins, omega-3 fatty acids, and probiotics (including 12, 11 and 4 primary studies, respectively). Souvenaid and the Mediterranean diet reduced cognitive decline or Alzheimer's disease progression in single trials with <500 participants. Findings from studies with a small number of participants suggest vitamin D, a low-carbohydrate diet, medium-chain triglycerides, blueberries, grape juice, cocoa flavanols, and Brazil nuts may improve individual cognitive subdomains, but more studies are needed. CONCLUSIONS Few nutritional interventions were found to convincingly improve cognition of individuals with MCI. More high-quality research in MCI populations is required to determine if nutritional treatments improve cognition and/or reduce progression to dementia. SYSTEMATIC REVIEW REGISTRATION Open Science Framework protocol identifier DOI:10.17605/OSF.IO/BEP2S.
Collapse
Affiliation(s)
- Victoria Andrews
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Gabrielle Zammit
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Fiona O’Leary
- are with the Discipline of Nutrition and Dietetics, Susan Wakil School of Nursing and Midwifery, Faculty of Medicine and Health, and The Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
8
|
Gambardella J, Jankauskas SS, Kansakar U, Varzideh F, Avvisato R, Prevete N, Sidoli S, Mone P, Wang X, Lombardi A, Santulli G. Ketone Bodies Rescue Mitochondrial Dysfunction Via Epigenetic Remodeling. JACC Basic Transl Sci 2023; 8:1123-1137. [PMID: 37791311 PMCID: PMC10543927 DOI: 10.1016/j.jacbts.2023.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 10/05/2023]
Abstract
Ischemic cardiac disease is a major cause of mortality worldwide. However, the exact molecular processes underlying this disorder are not fully known. This study includes a comprehensive and coordinated set of in vivo and in vitro experiments using human cardiac specimens from patients with postischemic heart failure (HF) and healthy control subjects, a murine model of HF, and cellular systems. These approaches identified for the first time a specific pattern of maladaptive chromatin remodeling, namely a double methylation of histone 3 at lysine 27 and a single methylation at lysine 36 (H3_K27me2K36me1) consistently induced by ischemic injury in all these settings: human HF; murine HF; and in vitro models. Mechanistically, this work demonstrates that this histone modification mediates the ischemia-induced transcriptional repression of PPARG coactivator 1α (PGC1α), master regulator of mitochondrial function and biogenesis. Intriguingly, both the augmented H3_K27me2K36me1 and the mitochondrial dysfunction ensued by PGC1α down-regulation were significantly attenuated by the treatment with β-hydroxybutyrate, the most abundant ketone body in humans, revealing a novel pathway coupling metabolism to gene expression. Taken together, these findings establish maladaptive chromatin remodeling as a key mechanism in postischemic heart injury, functionally modulated by ketone bodies.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Nella Prevete
- Department of Translational Medical Sciences, “Federico II” University, Naples, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, New York, New York, USA
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Xujun Wang
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
| | - Angela Lombardi
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, USA
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
9
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
10
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
11
|
Sujith Pavan, Prabhu AN, Gorthi SP, Shetty V, Rajesh V, Hegde A, Ballal M. Dietary interventions in Parkinson’s disease: An update. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i3.1639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder mostly affecting the elderly population. Nutritional status, dietary habits, and physical activity are closely associated with PD clinical symptoms. Based on scientific evidence, lifestyle adjustments are being considered as therapy approaches in various chronic diseases. Dietary modifications are an additional treatment strategy for managing motor and non-motor symptoms in PD. This review focuses on the latest nutritional interventions with protein restriction, Mediterranean and ketogenic dietary modification, probiotic utilisation, and their impact on PD.
Collapse
|
12
|
To J, Shao ZY, Gandawidjaja M, Tabibi T, Grysman N, Grossberg GT. Comparison of the Impact of the Mediterranean Diet, Anti-Inflammatory Diet, Seventh-Day Adventist Diet, and Ketogenic Diet Relative to Cognition and Cognitive Decline. Curr Nutr Rep 2022; 11:161-171. [PMID: 35347664 DOI: 10.1007/s13668-022-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Increasing evidence points toward the importance of diet and its impact on cognitive decline. This review seeks to clarify the impact of four diets on cognition: the Mediterranean diet, the anti-inflammatory diet, the Seventh Day Adventist diet, and the Ketogenic diet. RECENT FINDINGS Of the diets reviewed, the Mediterranean diet provides the strongest evidence for efficacy. Studies regarding the anti-inflammatory diet and Seventh Day Adventist diet are sparse, heterogeneous in quality and outcome measurements, providing limited reliable data. There is also minimal research confirming the cognitive benefits of the Ketogenic diet. Increasing evidence supports the use of the Mediterranean diet to reduce cognitive decline. The MIND-diet, a combination of the Mediterranean and DASH diets, seems especially promising, likely due to its anti-inflammatory properties. The Ketogenic diet may also have potential efficacy; however, adherence in older populations may be difficult given frequent adverse effects. Future research should focus on long-term, well-controlled studies confirming the impact of various diets, as well as the combination of diets and lifestyle modification.
Collapse
Affiliation(s)
- Jennifer To
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Zi Yi Shao
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Monique Gandawidjaja
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Tara Tabibi
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA.
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University School of Medicine, 1438 South Grand Blvd, St. Louis, MO, 63104, USA
| |
Collapse
|
13
|
Tidman MM, White D, White T. Effects of an low carbohydrate/healthy fat/ketogenic diet on biomarkers of health and symptoms, anxiety and depression in Parkinson's disease: a pilot study. Neurodegener Dis Manag 2022; 12:57-66. [PMID: 35179078 DOI: 10.2217/nmt-2021-0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: To evaluate a low carbohydrate/healthy fat/ketogenic diet (LCHF/KD) on symptoms, depression, anxiety and biomarkers in adults with Parkinson's disease (PD). Patients & methods: 16 adults ages 36-80 with PD participated in the intervention for 12 weeks. The study provided pre-post-study comparisons of biomarkers, weight, waist measurement, united Parkinson's Disease Rating Scale (UPDRS), Parkinson's Anxiety Scale (PAS) and Center for Epidemiologic Studies Depression Scale Revised-20 (CESD-R-20) Depression Scale. Results: Although LCHF/KD improves blood glucose in diabetes and seizure control in epilepsy, research gaps exist in this dietary intervention in PD. Statistically, significant improvements occurred in several measurements, PAS scores and Part I of the UPDRS. Conclusion: The LCHF/KD shows positive trends with improvements in biomarkers and anxiety symptoms. Further research is needed to evaluate dietary interventions for PD.
Collapse
Affiliation(s)
- Melanie M Tidman
- College of Graduate Health Studies AT Still University Mesa, AZ 85206, USA
| | - Dawn White
- College of Graduate Health Studies AT Still University Mesa, AZ 85206, USA
| | - Timothy White
- College of Graduate Health Studies AT Still University Mesa, AZ 85206, USA
| |
Collapse
|
14
|
Altayyar M, Nasser JA, Thomopoulos D, Bruneau M. The Implication of Physiological Ketosis on The Cognitive Brain: A Narrative Review. Nutrients 2022; 14:nu14030513. [PMID: 35276871 PMCID: PMC8840718 DOI: 10.3390/nu14030513] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/27/2023] Open
Abstract
Optimal cognitive functions are necessary for activities of daily living and self-independence. Cognitive abilities are acquired during early childhood as part of progressive neurodevelopmental milestones; unfortunately, regressive changes can occur as part of physiological aging, or more ominously, pathological diseases, such as Alzheimer’s disease (AD). Cases of AD and its milder subset, mild cognitive impairment (MCI), are rising and would impose a burdensome impact beyond the individual level. Various dietary and nutritional approaches have potential for promising results in managing cognitive deterioration. Glucose is the core source of bioenergy in the body; however, glucose brain metabolism could be affected in aging cells or due to disease development. Ketone bodies are an efficient alternate fuel source that could compensate for the deficient glycolytic metabolism upon their supra-physiologic availability in the blood (ketosis), which, in turn, could promote cognitive benefits and tackle disease progression. In this review, we describe the potential of ketogenic approaches to produce cognitive benefits in healthy individuals, as well as those with MCI and AD. Neurophysiological changes of the cognitive brain in response to ketosis through neuroimaging modalities are also described in this review to provide insight into the ketogenic effect on the brain outside the framework of purely molecular explanations.
Collapse
Affiliation(s)
- Mansour Altayyar
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
- Correspondence:
| | - Jennifer A. Nasser
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
| | - Dimitra Thomopoulos
- Department of Nutrition Sciences, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA; (J.A.N.); (D.T.)
| | - Michael Bruneau
- Department of Health Science, Drexel University, 1601 Cherry Street, Philadelphia, PA 19102, USA;
| |
Collapse
|
15
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
16
|
Obrador E, Salvador-Palmer R, López-Blanch R, Dellinger RW, Estrela JM. NAD + Precursors and Antioxidants for the Treatment of Amyotrophic Lateral Sclerosis. Biomedicines 2021; 9:1000. [PMID: 34440204 PMCID: PMC8394119 DOI: 10.3390/biomedicines9081000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Charcot first described amyotrophic lateral sclerosis (ALS) between 1865 and 1874 as a sporadic adult disease resulting from the idiopathic progressive degeneration of the motor neuronal system, resulting in rapid, progressive, and generalized muscle weakness and atrophy. There is no cure for ALS and no proven therapy to prevent it or reverse its course. There are two drugs specifically approved for the treatment of ALS, riluzol and edaravone, and many others have already been tested or are following clinical trials. However, at the present moment, we still cannot glimpse a true breakthrough in the treatment of this devastating disease. Nevertheless, our understanding of the pathophysiology of ALS is constantly growing. Based on this background, we know that oxidative stress, alterations in the NAD+-dependent metabolism and redox status, and abnormal mitochondrial dynamics and function in the motor neurons are at the core of the problem. Thus, different antioxidant molecules or NAD+ generators have been proposed for the therapy of ALS. This review analyzes these options not only in light of their use as individual molecules, but with special emphasis on their potential association, and even as part of broader combined multi-therapies.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| | | | - José M. Estrela
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (E.O.); (R.S.-P.); (R.L.-B.)
| |
Collapse
|
17
|
Obrador E, Salvador-Palmer R, López-Blanch R, Jihad-Jebbar A, Vallés SL, Estrela JM. The Link between Oxidative Stress, Redox Status, Bioenergetics and Mitochondria in the Pathophysiology of ALS. Int J Mol Sci 2021; 22:ijms22126352. [PMID: 34198557 PMCID: PMC8231819 DOI: 10.3390/ijms22126352] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease of the motor system. It is characterized by the degeneration of both upper and lower motor neurons, which leads to muscle weakness and paralysis. ALS is incurable and has a bleak prognosis, with median survival of 3-5 years after the initial symptomatology. In ALS, motor neurons gradually degenerate and die. Many features of mitochondrial dysfunction are manifested in neurodegenerative diseases, including ALS. Mitochondria have shown to be an early target in ALS pathophysiology and contribute to disease progression. Disruption of their axonal transport, excessive generation of reactive oxygen species, disruption of the mitochondrial structure, dynamics, mitophagy, energy production, calcium buffering and apoptotic triggering have all been directly involved in disease pathogenesis and extensively reported in ALS patients and animal model systems. Alterations in energy production by motor neurons, which severely limit their survival capacity, are tightly linked to the redox status and mitochondria. The present review focuses on this link. Placing oxidative stress as a main pathophysiological mechanism, the molecular interactions and metabolic flows involved are analyzed. This leads to discussing potential therapeutic approaches targeting mitochondrial biology to slow disease progression.
Collapse
Affiliation(s)
- Elena Obrador
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | | | | | | | | | - José M. Estrela
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
18
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|