1
|
Son M, Laury ML, Stephenson KB, May T, Hendrixson DT, Koroma AS, Ngegbai AS, Song JH, Naskidashvili N, Goo YA, Manary MJ. The Impact of Milk on Gut Permeability, Fecal 16S rRNA Gene Microbiota Profiling, and Fecal Metabolomics in Children with Moderate Malnutrition in Sierra Leone: A Double-Blind, Randomized Controlled Trial. Am J Clin Nutr 2024; 120:1114-1124. [PMID: 39307188 PMCID: PMC11600093 DOI: 10.1016/j.ajcnut.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Bovine milk is a beneficial ingredient in teh treatment of malnutrition. OBJECTIVES Our objectives were to determine the effect of dietary milk protein and milk carbohydrate on the intestinal permeability, fecal 16S rRNA gene configuration, and fecal metabolomics of children with moderate malnutrition. METHODS This was a randomized, double-blind, controlled trial among 413 children with wasting in rural Sierra Leone who received 1 of the following 4 supplementary foods, which differed in sources of protein and carbohydrate: milk protein and milk carbohydrate (MPMC), milk protein and vegetable carbohydrate (MPVC), vegetable protein and milk carbohydrate (VPMC), or a control group consuming entirely vegetable-based food (VPVC). After 4 wk, urine and stool were collected from participants enrolled with mid-upper arm circumference of <12.1 cm. Urine was analyzed for lactulose excretion (%L). Stool samples were subjected to both 16S rRNA gene analysis to assess β-diversity and untargeted metabolomic abundance. RESULTS Among the 386 children who completed permeability testing, the mean difference (95% CI) in %L excretion as compared with VPVC was 0.01 (-0.05, 0.07) for MPMC, 0.05 (-0.01, 0.11) for MPVC, and 0.01 (-0.05, 0.07) for VPMC. Of the 374 children who provided a stool sample that was analyzed, the β-diversity among bacterial taxa was similar between dietary groups (P > 0.05 for all comparisons). No significant differences between dietary groups were seen among the 20 most abundant bacterial taxa. Among the 5769 unique metabolomic features identified, greater flavonoid levels in VPVC were seen. CONCLUSIONS Abnormal intestinal permeability do not improve with 4 wk of supplementary feeding. Fecal rRNA do not differ with consumption of different diets. This trial was registered at clinicaltrials.gov as NCT04216043.
Collapse
Affiliation(s)
- Minsoo Son
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University, St. Louis, MO, United States
| | - Marie L Laury
- Genome Technology Access Center, McDonnell Genome Institute, Washington University, St. Louis, MO, United States
| | - Kevin B Stephenson
- Department of Internal Medicine, Washington University, St. Louis, MO, United States
| | - Thaddaeus May
- Department of Internal Medicine, Baylor College of Medicine, Houston, TX, United States
| | - D Taylor Hendrixson
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | | | | | - Jong Hee Song
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University, St. Louis, MO, United States
| | | | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University, St. Louis, MO, United States
| | - Mark J Manary
- Department of Pediatrics, Washington University School of Medicine, One Children's Place, Saint Louis, MO, United States; Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
2
|
McVey Neufeld SF, Ahn M, Kunze WA, McVey Neufeld KA. Adolescence, the Microbiota-Gut-Brain Axis, and the Emergence of Psychiatric Disorders. Biol Psychiatry 2024; 95:310-318. [PMID: 37839790 DOI: 10.1016/j.biopsych.2023.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Second only to early life, adolescence is a period of dramatic change and growth. For the developing young adult, this occurs against a backdrop of distinct environmental challenges and stressors. A significant body of work has identified an important role for the microbiota-gut-brain (MGB) axis in the development and function of the brain. Given that the MGB axis is both highly plastic during the teenage years and vulnerable to environmental stressors, more attention needs to be drawn to its potential role in the emergence of psychiatric illnesses, many of which first manifest during adolescence. Here, we review the current literature surrounding the developing microbiome, enteric nervous system, vagus nerve, and brain during the adolescent period. We also examine preclinical and clinical research involving the MGB axis during this dynamic developmental window and argue that more research is needed to further understand the role of the MGB in the pathogenesis of brain disorders. Greater understanding of the adolescent MGB axis will open up the exciting potential for new microbial-based therapeutics for the treatment of these often-refractory psychiatric illnesses.
Collapse
Affiliation(s)
| | - Matthew Ahn
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Wolfgang A Kunze
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada
| | - Karen-Anne McVey Neufeld
- McMaster Brain-Body Institute at St Joseph's Healthcare, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Nie G, Zhang H, Xie D, Yan J, Li X. Liver cirrhosis and complications from the perspective of dysbiosis. Front Med (Lausanne) 2024; 10:1320015. [PMID: 38293307 PMCID: PMC10824916 DOI: 10.3389/fmed.2023.1320015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
The gut-liver axis refers to the intimate relationship and rigorous interaction between the gut and the liver. The intestinal barrier's integrity is critical for maintaining liver homeostasis. The liver operates as a second firewall in this interaction, limiting the movement of potentially dangerous compounds from the gut and, as a result, contributing in barrier management. An increasing amount of evidence shows that increased intestinal permeability and subsequent bacterial translocation play a role in liver damage development. The major pathogenic causes in cirrhotic individuals include poor intestinal permeability, nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal permeability and bacterial translocation in advanced liver disease, increasing liver damage. Bacterial dysbiosis is closely related to the development of cirrhosis and its related complications. This article describes the potential mechanisms of dysbiosis in liver cirrhosis and related complications, such as spontaneous bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal flora as an entry point.
Collapse
Affiliation(s)
- Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Cancer Prevention and Control Center of Lanzhou University Medical School, Lanzhou, China
- Gansu Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- Gansu Clinical Medical Research Center of General Surgery, Lanzhou, China
| |
Collapse
|
4
|
Wang D, Tang G, Wang Y, Yu J, Chen L, Chen J, Wu Y, Zhang Y, Cao Y, Yao J. Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:34-44. [PMID: 37771855 PMCID: PMC10522951 DOI: 10.1016/j.aninu.2023.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 09/30/2023]
Abstract
Enterotypes, which are defined as bacterial clusters in the gut microbiome, have been found to have a close relationship to host metabolism and health. However, this concept has never been used in the rumen, and little is known about the complex biological relationships between ruminants and their rumen bacterial clusters. In this study, we used young goats (n = 99) as a model, fed them the same diet, and analyzed their rumen microbiome and corresponding bacterial clusters. The relationships between the bacterial clusters and rumen fermentation and growth performance in the goats were further investigated. Two bacterial clusters were identified in all goats: the P-cluster (dominated by genus Prevotella, n = 38) and R-cluster (dominated by Ruminococcus, n = 61). Compared with P-cluster goats, R-cluster goats had greater growth rates, concentrations of propionate, butyrate, and 18 free amino acids¸ and proportion of unsaturated fatty acids, but lower acetate molar percentage, acetate to propionate ratio, and several odd and branched chain and saturated fatty acids in rumen fluid (P < 0.05). Several members of Firmicutes, including Ruminococcus, Oscillospiraceae NK4A214 group, and Christensenellaceae R-7 group were significantly higher in the R-cluster, whereas Prevotellaceae members, such as Prevotella and Prevotellaceae UCG-003, were significantly higher in P-cluster (P < 0.01). Co-occurrence networks showed that R-cluster enriched bacteria had significant negative correlations with P-cluster enriched bacteria (P < 0.05). Moreover, we found the concentrations of propionate, butyrate and free amino acids, and the proportions of unsaturated fatty acids were positively correlated with R-cluster enriched bacteria (P < 0.05). The concentrations of acetate, acetate to propionate ratio, and the proportion of odd and branched chain and saturated fatty acids were positively correlated with P-cluster enriched bacteria (P < 0.05). Overall, our results indicated that rumen bacterial clusters can influence rumen fermentation and growth performance of young goats, which may shed light on modulating the rumen microbiome in early life to improve the growth performance of ruminant animals.
Collapse
Affiliation(s)
- Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guangfu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yannan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Luyu Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jie Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanbo Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanjie Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Lakshmanan AP, Deola S, Terranegra A. The Promise of Precision Nutrition for Modulation of the Gut Microbiota as a Novel Therapeutic Approach to Acute Graft-versus-host Disease. Transplantation 2023; 107:2497-2509. [PMID: 37189240 PMCID: PMC10664798 DOI: 10.1097/tp.0000000000004629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 05/17/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a severe side effect of allogeneic hematopoietic stem cell transplantation (aHSCT) that has complex phenotypes and often unpredictable outcomes. The current management is not always able to prevent aGVHD. A neglected actor in the management of aGVHD is the gut microbiota. Gut microbiota dysbiosis after aHSCT is caused by many factors and may contribute to the development of aGVHD. Diet and nutritional status modify the gut microbiota and a wide range of products are now available to manipulate the gut microbiota (pro-, pre-, and postbiotics). New investigations are testing the effect of probiotics and nutritional supplements in both animal models and human studies, with encouraging results. In this review, we summarize the most recent literature about the probiotics and nutritional factors able to modulate the gut microbiota and we discuss the future perspective in developing new integrative therapeutic approaches to reducing the risk of graft-versus-host disease in patients undergoing aHSCT.
Collapse
Affiliation(s)
| | - Sara Deola
- Advanced Cell Therapy Core, Research Branch, Sidra Medicine, Qatar
| | | |
Collapse
|
6
|
Kalnina I, Gudra D, Silamikelis I, Viksne K, Roga A, Skinderskis E, Fridmanis D, Klovins J. Variations in the Relative Abundance of Gut Bacteria Correlate with Lipid Profiles in Healthy Adults. Microorganisms 2023; 11:2656. [PMID: 38004667 PMCID: PMC10673050 DOI: 10.3390/microorganisms11112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The gut microbiome is a versatile system regulating numerous aspects of host metabolism. Among other traits, variations in the composition of gut microbial communities are related to blood lipid patterns and hyperlipidaemia, yet inconsistent association patterns exist. This study aims to assess the relationships between the composition of the gut microbiome and variations in lipid profiles among healthy adults. This study used data and samples from 23 adult participants of a previously conducted dietary intervention study. Circulating lipid measurements and whole-metagenome sequences of the gut microbiome were derived from 180 blood and faecal samples collected from eight visits distributed across an 11-week study. Lipid-related variables explained approximately 4.5% of the variation in gut microbiome compositions, with higher effects observed for total cholesterol and high-density lipoproteins. Species from the genera Odoribacter, Anaerostipes, and Parabacteroides correlated with increased serum lipid levels, whereas probiotic species like Akkermansia muciniphila were more abundant among participants with healthier blood lipid profiles. An inverse correlation with serum cholesterol was also observed for Massilistercora timonensis, a player in regulating lipid turnover. The observed correlation patterns add to the growing evidence supporting the role of the gut microbiome as an essential regulator of host lipid metabolism.
Collapse
Affiliation(s)
- Ineta Kalnina
- Latvian Biomedical Research and Study Centre 1, LV-1067 Riga, Latvia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
McMath AL, Aguilar-Lopez M, Cannavale CN, Khan NA, Donovan SM. A systematic review on the impact of gastrointestinal microbiota composition and function on cognition in healthy infants and children. Front Neurosci 2023; 17:1171970. [PMID: 37389363 PMCID: PMC10306408 DOI: 10.3389/fnins.2023.1171970] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Evidence from animal models or children with neurodevelopmental disorders has implicated the gut microbiome (GM) in neurocognitive development. However, even subclinical impairement of cognition can have negative consequences, as cognition serves as the foundation for skills necessary to succeed in school, vocation and socially. The present study aims to identify gut microbiome characteristics or changes in gut microbiome characteristics that consistently associate with cognitive outcomes in healthy, neurotypical infants and children. Of the 1,520 articles identified in the search, 23 were included in qualitative synthesis after applying exclusion criteria. Most studies were cross-sectional and focused on behavior or motor and language skills. Bifidobacterium, Bacteroides, Clostridia, Prevotella, and Roseburia were related to these aspects of cognition across several studies. While these results support the role of GM in cognitive development, higher quality studies focused on more complex cognition are needed to understand the extent to which the GM contributes to cognitive development.
Collapse
Affiliation(s)
- Arden L. McMath
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Miriam Aguilar-Lopez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Corinne N. Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A. Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Aasmets O, Krigul KL, Org E. Evaluating the clinical relevance of the enterotypes in the Estonian microbiome cohort. Front Genet 2022; 13:917926. [PMID: 36061192 PMCID: PMC9428584 DOI: 10.3389/fgene.2022.917926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Human gut microbiome is subject to high inter-individual and temporal variability, which complicates building microbiome-based applications, including applications that can be used to improve public health. Categorizing the microbiome profiles into a small number of distinct clusters, such as enterotyping, has been proposed as a solution that can ameliorate these shortcomings. However, the clinical relevance of the enterotypes is poorly characterized despite a few studies marking the potential for using the enterotypes for disease diagnostics and personalized nutrition. To gain a further understanding of the clinical relevance of the enterotypes, we used the Estonian microbiome cohort dataset (n = 2,506) supplemented with diagnoses and drug usage information from electronic health records to assess the possibility of using enterotypes for disease diagnostics, detecting disease subtypes, and evaluating the susceptibility for developing a condition. In addition to the previously established 3-cluster enterotype model, we propose a 5-cluster community type model based on our data, which further separates the samples with extremely high Bacteroides and Prevotella abundances. Collectively, our systematic analysis including 231 phenotypic factors, 62 prevalent diseases, and 33 incident diseases greatly expands the knowledge about the enterotype-specific characteristics; however, the evidence suggesting the practical use of enterotypes in clinical practice remains scarce.
Collapse
|