1
|
Xu H, Wu T, Budhathoki M, Fang DS, Zhang W, Wang X. Consumption Patterns and Willingness to Pay for Sustainable Aquatic Food in China. Foods 2024; 13:2435. [PMID: 39123626 PMCID: PMC11312269 DOI: 10.3390/foods13152435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
China, as the world's largest producer, trader, and consumer of aquatic foods, lacks comprehensive research on consumption patterns and willingness to pay for sustainable aquatic food. This study addressed this gap through an online survey of 3403 participants across Chinese provinces. A majority of consumers (34.7% of the participants) consume aquatic food twice or more per week, mainly from traditional markets (26%). Most prefer fresh or live products (76%), with 42% seeing no difference between farmed and wild options. Consumption is higher among older, affluent, urban, and coastal residents. Crustaceans, especially shrimp, are frequently consumed species, with growing interest in luxury species like salmon and abalone. Taste and quality emerge as the primary factors motivating consumer choices in aquatic food purchases. Food safety is the primary concern, followed by environmental impact. Notably, 92.4% of participants would pay extra for certified products. Factors influencing a higher willingness to pay include higher income, inland residence, price sensitivity, origin consciousness, and concerns about food safety and the environment. The findings highlight that China's aquatic food industry and consumption can become more sustainable by aligning with consumer preferences for high-quality and diverse aquatic food through both production and import, while also addressing concerns related to food safety and environmental impact. This research provides valuable insights into China's rapidly transforming aquatic food market landscape, offering implications for industry innovation and the promotion of sustainable consumption patterns.
Collapse
Affiliation(s)
- Hao Xu
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (T.W.)
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Tianqi Wu
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (T.W.)
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Mausam Budhathoki
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK;
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Dingxi Safari Fang
- Emmett Interdisciplinary Program in Environment and Resource, Stanford University, Stanford, CA 94305, USA
| | - Wenbo Zhang
- China-ASEAN “The Belt and Road” Joint Laboratory of Mariculture Technology, Shanghai Ocean University, Shanghai 201306, China; (H.X.); (T.W.)
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Wang
- Best Aquaculture Practices (BAP), Global Seafood Alliance (GSA), Portsmouth, NH 03801, USA
| |
Collapse
|
2
|
Love DC, Asche F, Fry J, Nguyen L, Gephart J, Garlock TM, Jenkins LD, Anderson JL, Brown M, Viglia S, Nussbaumer EM, Neff R. Aquatic food loss and waste rate in the United States is half of earlier estimates. NATURE FOOD 2023; 4:1058-1069. [PMID: 38093119 PMCID: PMC10727981 DOI: 10.1038/s43016-023-00881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/27/2023] [Indexed: 12/20/2023]
Abstract
Food loss and waste (FLW) is a major challenge to food system sustainability, including aquatic foods. We investigated aquatic FLW in the food supply of the United States, the largest importer of aquatic food globally, using primary and secondary data and life cycle methodology. We show that there are significant differences in FLW among species, production technology, origin and stage of supply chain. We estimate total aquatic FLW was 22.7%, which is 43-55% lower than earlier estimates reported in the literature, illustrating the importance of applying a disaggregated approach. Production losses associated with imported food contribute over a quarter of total FLW, and addressing these losses requires multinational efforts to implement interventions along the supply chain. These findings inform prioritization of solutions-including areas of need for innovations, government incentives, policy change, infrastructure and equity.
Collapse
Affiliation(s)
- David C Love
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA.
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Frank Asche
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA
- Department of Safety, Economics and Planning, University of Stavanger, Stavanger, Norway
| | - Jillian Fry
- Department of Health Sciences, College of Health Professions, Towson University, Towson, MD, USA
| | - Ly Nguyen
- Food and Resource Economics Department, University of Florida, Gainesville, FL, USA
| | - Jessica Gephart
- Department of Environmental Science, American University, Washington, DC, USA
| | - Taryn M Garlock
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, FL, USA
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Lekelia D Jenkins
- School for the Future of Innovation in Society, Arizona State University, Tempe, AZ, USA
| | - James L Anderson
- Center for Environmental Policy, University of Florida, Gainesville, FL, USA
| | - Mark Brown
- Center for Environmental Policy, University of Florida, Gainesville, FL, USA
| | - Silvio Viglia
- Center for Environmental Policy, University of Florida, Gainesville, FL, USA
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Casaccia Research Centre, Rome, Italy
| | - Elizabeth M Nussbaumer
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Roni Neff
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
3
|
Love DC, Thorne-Lyman AL, Conrad Z, Gephart JA, Asche F, Godo-Solo D, McDowell A, Nussbaumer EM, Bloem MW. Affordability influences nutritional quality of seafood consumption among income and race/ethnicity groups in the United States. Am J Clin Nutr 2022; 116:415-425. [PMID: 35691612 PMCID: PMC9348982 DOI: 10.1093/ajcn/nqac099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The 2020 US Dietary Guidelines for Americans recommend that the US population consume more seafood. Most analyses of seafood consumption ignore heterogeneity in consumption patterns by species, nutritional content, production methods, and price, which have implications for applying recommendations. OBJECTIVES We assessed seafood intake among adults by socioeconomic and demographic groups, as well as the cost of seafood at retail to identify affordable and nutritious options. METHODS NHANES 2011-2018 dietary data (n = 17,559 total, n = 3285 eating seafood) were used to assess adult (≥20 y) intake of seafood in relation to income and race/ethnicity. Multivariable linear regression assessed the association between seafood consumption and income, adjusted for age, sex, and race/ethnicity, and the association between nutrients and seafood price, using Nielsen 2017-2019 retail sales data, adjusted for sales volume. RESULTS Low-income groups consume slightly less seafood than high-income groups [low income: mean 120.2 (95% CI: 103.5, 137.2) g/wk; high income: 141.8 (119.1, 164.1) g/wk] but substantially less seafood that is high in long-chain n-3 (ω-3) PUFAs [lower income: 21.3 (17.3, 25.5) g/wk; higher income: 46.8 (35.4, 57.8) g/wk]. Intake rates, species, and production method choices varied by race/ethnicity groups and within race/ethnicity groups by income. Retail seafood as a whole costs more than other protein foods (e.g., meat, poultry, eggs, beans), and fresh seafood high in n-3 PUFAs costs more (P < 0.002) than fresh seafood low in n-3 PUFAs. Retail seafood is available in a wide range of price points and product forms, and some lower-cost fish and shellfish were high in n-3 PUFAs, calcium, iron, selenium, and vitamins B-12 and D. CONCLUSIONS New insights into the relation between seafood affordability and consumption patterns among income and ethnicity groups suggest that specific policies and interventions may be needed to enhance the consumption of seafood by different groups.
Collapse
Affiliation(s)
| | - Andrew L Thorne-Lyman
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA,Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zach Conrad
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA,Global Research Institute, William & Mary, Williamsburg, VA, USA
| | - Jessica A Gephart
- Department of Environmental Science, American University, Washington, DC, USA
| | - Frank Asche
- School of Forest, Fisheries and Geomatics Sciences and Food Systems Institute, University of Florida, Gainesville, FL, USA,Department of Safety, Economics and Planning, University of Stavanger, Stavanger, Norway
| | - Dakoury Godo-Solo
- Department of Environmental Science, American University, Washington, DC, USA
| | - Acree McDowell
- Department of Kinesiology, William & Mary, Williamsburg, VA, USA,Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Elizabeth M Nussbaumer
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Martin W Bloem
- Johns Hopkins Center for a Livable Future, Johns Hopkins University, Baltimore, MD, USA,Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Tlusty MF. Food-Based Dietary Guidelines for Seafood Do Not Translate into Increased Long-Chain Omega-3 Levels in the Diet for U.S. Consumers. Foods 2021; 10:foods10081816. [PMID: 34441593 PMCID: PMC8392505 DOI: 10.3390/foods10081816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Humans under-consume fish, especially species high in long-chain omega-3 fatty acids. Food-based dietary guidelines are one means for nations to encourage the consumption of healthy, nutritious food. Here, associations between dietary omega-3 consumption and food-based dietary guidelines, gross domestic product, the ranked price of fish, and the proportions of marine fish available at a national level were assessed. Minor associations were found between consumption and variables, except for food-based dietary guidelines, where calling out seafood in FBDGs did not associate with greater consumption. This relationship was explored for consumers in the United States, and it was observed that the predominant seafood they ate, shrimp, resulted in little benefit for dietary omega-3 consumption. Seafood is listed under the protein category in the U.S. Dietary Guidelines, and aggregating seafood under this category may limit a more complete understanding of its nutrient benefits beyond protein.
Collapse
Affiliation(s)
- Michael F Tlusty
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|