1
|
Zhou F, He Y, Xie X, Guo N, Chen W, Zhao Y. Homocysteine and Multiple Health Outcomes: An Outcome-Wide Umbrella Review of Meta-analyses and Mendelian Randomization Studies. Adv Nutr 2025; 16:100434. [PMID: 40288491 DOI: 10.1016/j.advnut.2025.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Elevated levels of homocysteine (Hcy) are associated with various health outcomes. We aimed to systematically assess the credibility and certainty of evidence of associations of Hcy and Hcy-lowering therapies with various health outcomes. We retrieved observational meta-analyses examining the associations between Hcy and health outcomes, interventional meta-analyses investigating health outcomes related to Hcy-lowering treatments, and Mendelian randomization (MR) studies exploring the causal associations of Hcy with health outcomes to perform an umbrella review. A total of 135 observational meta-analyses, 106 MR studies, and 26 interventional meta-analyses were included. Among observational studies, 10 associations of diseases/outcomes were classified as highly suggestive; only 1 outcome (digestive tract cancer) was supported by convincing evidence (class I; odd ratio = 1.27, 95% confidence interval = 1.16, 1.40; P = 6.79 × 10-7; I2 = 0, 95% prediction interval excluding null, >1000 cases; P > 0.1 for tests of both small-study effects and excess significance bias). In MR studies, 5 outcomes associated with Hcy presented robust evidence (P < 0.01, power >80%). Among 25 outcomes explored by both observational meta-analyses and MR studies, 7 had consistent results, indicating that elevated Hcy is causally associated with an increased risk of these outcomes. The 3 types of studies collectively suggested that the association of stroke with Hcy was supported by observational studies, causally by MR studies, and further validated by intervention meta-analyses showing that Hcy-lowering with folic acid significantly reduced risk of stroke. For dementia and colorectal cancer, Hcy was significantly associated in meta-analyses of observational studies and folic acid decreased disease risks in interventional meta-analyses. The current umbrella review indicates that convincing evidence for a definitive role of Hcy exposure solely exists in the context of digestive tract cancer excluding bias; however, Hcy may not be causal for this disease. All the 3 types of studies collectively support that Hcy is a key causal risk factor, and Hcy-lowering (specifically with folic acid) may serve as an effective intervention for stroke. This trial was registered at PROSPERO as CRD42024541335.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China.
| | - Yue He
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Xinhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Ning Guo
- Department of Dujiakan Outpatient, Jingnan Medical District of PLA General Hospital, Beijing, China
| | - Wanjiao Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
2
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Jahan I, Islam MA, Harun-Ur-Rashid M, Sultana GNN. Cancer prevention at the microscopic level with the potent power of micronutrients. Heliyon 2024; 10:e39680. [PMID: 39553634 PMCID: PMC11564030 DOI: 10.1016/j.heliyon.2024.e39680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, necessitating ongoing exploration of effective prevention strategies. Micronutrients, vital for maintaining cellular health, offer promising avenues for cancer prevention. This review delineates the critical roles of micronutrients in cancer prevention, elucidating their mechanisms at the cellular level. Focusing on essential vitamins and minerals like Vitamins A, C, D, E, selenium, and zinc, we explore their profound effects on fundamental cellular processes such as DNA repair, oxidative stress regulation, cellular proliferation, and immune surveillance. These nutrients, characterized by their antioxidative, anti-inflammatory, and immune-enhancing properties, have shown potential in reducing the risk of cancer. The article synthesizes outcomes from a broad spectrum of clinical trials, epidemiological studies, and systematic reviews to evaluate the efficacy of micronutrients in thwarting cancer development. This critical analysis explores significant trials, addresses controversies in nutrient efficacy, and highlights the implications for clinical practice and public health policy. The review underscores the importance of integrating nutritional strategies into comprehensive cancer prevention frameworks and suggests directions for future research to optimize the preventive potentials of micronutrients.
Collapse
Affiliation(s)
- Israt Jahan
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Aminul Islam
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Dhaka, 1230, Bangladesh
| | - Gazi Nurun Nahar Sultana
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
4
|
La Vecchia M, Sala G, Sculco M, Aspesi A, Dianzani I. Genetics, diet, microbiota, and metabolome: partners in crime for colon carcinogenesis. Clin Exp Med 2024; 24:248. [PMID: 39470880 PMCID: PMC11522171 DOI: 10.1007/s10238-024-01505-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/01/2024]
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant tumors worldwide, with a multifactorial etiology encompassing genetic, environmental, and life-style factors, as well as the intestinal microbiota and its metabolome. These risk factors often work together in specific groups of patients, influencing how CRC develops and progresses. Importantly, alterations in the gut microbiota act as a critical nexus in this interplay, significantly affecting susceptibility to CRC. This review highlights recent insights into unmodifiable and modifiable risk factors for CRC and how they might interact with the gut microbiota and its metabolome. Understanding the mechanisms of these interactions will help us develop targeted, precision-medicine strategies that can adjust the composition of the gut microbiota to meet individual health needs, preventing or treating CRC more effectively.
Collapse
Affiliation(s)
- Marta La Vecchia
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Gloria Sala
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
5
|
Sobral AF, Cunha A, Silva V, Gil-Martins E, Silva R, Barbosa DJ. Unveiling the Therapeutic Potential of Folate-Dependent One-Carbon Metabolism in Cancer and Neurodegeneration. Int J Mol Sci 2024; 25:9339. [PMID: 39273288 PMCID: PMC11395277 DOI: 10.3390/ijms25179339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Andrea Cunha
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
6
|
Khalighi Sikaroudi M, Soltani S, Kolahdouz-Mohammadi R, Imanifard R, Abdollahi S, Shahinfar H, Mohammadi Farsani G. The association between dietary folate intake and risk of colorectal cancer incidence: A systematic review and dose‒response meta-analysis of cohort studies. Heliyon 2024; 10:e33564. [PMID: 39071590 PMCID: PMC11279277 DOI: 10.1016/j.heliyon.2024.e33564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Background Dietary components can influence the incidence of colorectal cancer (CRC). Folate is one of the compounds that plays an essential role in the formation of DNA structures, which can lead to or prevent tumorigenesis. The present study is the first systematic review and dose-response meta-analysis of cohort studies evaluating the association between dietary folate intake and the risk of CRC. Methods The PubMed/Medline, Scopus, and ISI Web of Science databases were systematically searched for cohort studies that assessed the association between folate intake and CRC up to January 2024. Summary relative risks (RRs) and 95 % confidence intervals (CIs) were calculated using a random effects model. Also, linear and nonlinear dose-response analyses were conducted for the dose-response associations between folate intake and risk of CRC. Results Eighteen prospective cohort studies with 931,469 participants, 14,860 CRC patients, 3536 colon cancer (CC) patients, and 1075 rectal cancer (RC) patients were included in the analysis. The summary RR of CRC for each 100-μg increase in dietary folate intake was 0.97 (95 % CI: 0.95-0.99, I2: 0.0 %, P-heterogeneity: 0.616), which can be related to BMI (0.97 (95 % CI: 0.95-0.99)); a more protective effect was also observed in subjects who drank alcohol (0.97 (95 % CI: 0.95-0.99)) and those who smoked (0.97 (95 % CI: 0.95-0.99)). Additionally, it was positively related to a 7 % lower risk of CC (0.93 (95 % CI: 0.87-0.99, I2: 33.7 %, P-heterogeneity: 0.159)), and the null relation for RC was 0.98 (95 % CI: 0.90-1.08), I2: 16.6 %, P-heterogeneity: 0.309). There was evidence of nonlinearity in which up to 500 μg/day dietary folate intake was inversely associated with CC (P nonlinearity = 0.04). Conclusion The findings showed an inverse association between dietary folate intake and the risk of CRC, especially in high-risk persons, those who have a higher BMI, alcohol drinkers, and smokers.
Collapse
Affiliation(s)
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Noncommunicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Imanifard
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Shahinfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Ye J, Bao X, Wei J, Zhang Y, Liu Y, Xin L. Role of dietary nutrients and metabolism in colorectal cancer. Asia Pac J Clin Nutr 2024; 33:153-161. [PMID: 38794975 PMCID: PMC11170022 DOI: 10.6133/apjcn.202406_33(2).0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 01/23/2024] [Indexed: 05/27/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and the leading causes of cancer related deaths worldwide. The development of CRC is driven by a combination of genetic and environmental factors. There is growing evidence that changes in dietary nutrition may modulate the CRC risk, and protective effects on the risk of developing CRC have been advocated for specific nutrients such as glucose, amino acids, lipid, vitamins, micronutrients and prebiotics. Metabolic crosstalk between tumor cells, tumor microenvironment components and intestinal flora further promote proliferation, invasion and metastasis of CRC cells and leads to treatment resistance. This review summarizes the research progress on CRC prevention, pathogenesis, and treatment by dietary supplementation or deficiency of glucose, amino acids, lipids, vitamins, micronutri-ents, and prebiotics, respectively. The roles played by different nutrients and dietary crosstalk in the tumor microenvironment and metabolism are discussed, and nutritional modulation is inspired to be beneficial in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Jiufeng Wei
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yuanpeng Zhang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yu Liu
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Arif R, Bukhari SA, Mustafa G, Ahmed S, Albeshr MF. Network Pharmacology and Experimental Validation to Explore the Potential Mechanism of Nigella sativa for the Treatment of Breast Cancer. Pharmaceuticals (Basel) 2024; 17:617. [PMID: 38794187 PMCID: PMC11124279 DOI: 10.3390/ph17050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Breast cancer is a prevalent and potentially life-threatening disease that affects women worldwide. Natural products have gained attention as potential anticancer agents due to their fewer side effects, low toxicity, and cost effectiveness compared to traditional chemotherapy drugs. In the current study, the network pharmacology approach was used following a molecular docking study to evaluate the therapeutic potential of N. sativa-derived phytochemicals against breast cancer. Specifically, the study aimed to identify potential anticancer agents targeting key proteins implicated in breast cancer progression. Five proteins (i.e., EGFR, MAPK3, ESR1, MAPK1, and PTGS2) associated with breast cancer were selected as receptor proteins. Fourteen phytochemicals from N. sativa were prioritized based on drug-likeness (DL) and oral bioavailability (OB) parameters (with criteria set at DL > 0.18 and OB > 30%, respectively). Subsequent analysis of gene targets identified 283 overlapping genes primarily related to breast cancer pathogenesis. Ten hub genes were identified through topological analysis based on their significance in the KEGG pathway and GO annotations. Molecular docking revealed strong binding affinities between folic acid, betulinic acid, stigmasterol, and selected receptor proteins. These phytochemicals also demonstrated druggability potential. In vitro experiments in the MDA-MB-231 breast cancer cell line revealed that betulinic acid and stigmasterol significantly reduced cell viability after 24 h of treatment, confirming their anticancer activity. Furthermore, in vivo evaluation using a DMBA-induced rat model showed that betulinic acid and stigmasterol contributed to the significant recovery of cancer markers. This study aimed to explore the mechanisms underlying the anticancer potential of N. sativa phytochemicals against breast cancer, with the ultimate goal of identifying novel therapeutic candidates for future drug development. Overall, these results highlight betulinic acid and stigmasterol as promising candidates to develop novel anticancer agents against breast cancer. The comprehensive approach of this study, which integrates network pharmacology and molecular docking study and its experimental validation, strengthens the evidence supporting the therapeutic benefits of N. sativa-derived phytochemicals in breast cancer treatment, making them promising candidates for the development of novel anticancer agents against breast cancer.
Collapse
Affiliation(s)
- Rawaba Arif
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shazia Anwer Bukhari
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sibtain Ahmed
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mohammed Fahad Albeshr
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Fardous AM, Heydari AR. Uncovering the Hidden Dangers and Molecular Mechanisms of Excess Folate: A Narrative Review. Nutrients 2023; 15:4699. [PMID: 37960352 PMCID: PMC10648405 DOI: 10.3390/nu15214699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
This review delves into the intricate relationship between excess folate (vitamin B9) intake, especially its synthetic form, namely, folic acid, and its implications on health and disease. While folate plays a pivotal role in the one-carbon cycle, which is essential for DNA synthesis, repair, and methylation, concerns arise about its excessive intake. The literature underscores potential deleterious effects, such as an increased risk of carcinogenesis; disruption in DNA methylation; and impacts on embryogenesis, pregnancy outcomes, neurodevelopment, and disease risk. Notably, these consequences stretch beyond the immediate effects, potentially influencing future generations through epigenetic reprogramming. The molecular mechanisms underlying these effects were examined, including altered one-carbon metabolism, the accumulation of unmetabolized folic acid, vitamin-B12-dependent mechanisms, altered methylation patterns, and interactions with critical receptors and signaling pathways. Furthermore, differences in the effects and mechanisms mediated by folic acid compared with natural folate are highlighted. Given the widespread folic acid supplementation, it is imperative to further research its optimal intake levels and the molecular pathways impacted by its excessive intake, ensuring the health and well-being of the global population.
Collapse
Affiliation(s)
- Ali M. Fardous
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Ahmad R. Heydari
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Bouras E, Kim AE, Lin Y, Morrison J, Du M, Albanes D, Barry EL, Baurley JW, Berndt SI, Bien SA, Bishop TD, Brenner H, Budiarto A, Burnett-Hartman A, Campbell PT, Carreras-Torres R, Casey G, Cenggoro TW, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, Devall M, Diez-Obrero V, Dimou N, Drew DA, Figueiredo JC, Giles GG, Gruber SB, Gunter MJ, Harrison TA, Hidaka A, Hoffmeister M, Huyghe JR, Joshi AD, Kawaguchi ES, Keku TO, Kundaje A, Le Marchand L, Lewinger JP, Li L, Lynch BM, Mahesworo B, Männistö S, Moreno V, Murphy N, Newcomb PA, Obón-Santacana M, Ose J, Palmer JR, Papadimitriou N, Pardamean B, Pellatt AJ, Peoples AR, Platz EA, Potter JD, Qi L, Qu C, Rennert G, Ruiz-Narvaez E, Sakoda LC, Schmit SL, Shcherbina A, Stern MC, Su YR, Tangen CM, Thomas DC, Tian Y, Um CY, van Duijnhoven FJ, Van Guelpen B, Visvanathan K, Wang J, White E, Wolk A, Woods MO, Ulrich CM, Hsu L, Gauderman WJ, Peters U, Tsilidis KK. Genome-wide interaction analysis of folate for colorectal cancer risk. Am J Clin Nutr 2023; 118:881-891. [PMID: 37640106 PMCID: PMC10636229 DOI: 10.1016/j.ajcnut.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Epidemiological and experimental evidence suggests that higher folate intake is associated with decreased colorectal cancer (CRC) risk; however, the mechanisms underlying this relationship are not fully understood. Genetic variation that may have a direct or indirect impact on folate metabolism can provide insights into folate's role in CRC. OBJECTIVES Our aim was to perform a genome-wide interaction analysis to identify genetic variants that may modify the association of folate on CRC risk. METHODS We applied traditional case-control logistic regression, joint 3-degree of freedom, and a 2-step weighted hypothesis approach to test the interactions of common variants (allele frequency >1%) across the genome and dietary folate, folic acid supplement use, and total folate in relation to risk of CRC in 30,550 cases and 42,336 controls from 51 studies from 3 genetic consortia (CCFR, CORECT, GECCO). RESULTS Inverse associations of dietary, total folate, and folic acid supplement with CRC were found (odds ratio [OR]: 0.93; 95% confidence interval [CI]: 0.90, 0.96; and 0.91; 95% CI: 0.89, 0.94 per quartile higher intake, and 0.82 (95% CI: 0.78, 0.88) for users compared with nonusers, respectively). Interactions (P-interaction < 5×10-8) of folic acid supplement and variants in the 3p25.2 locus (in the region of Synapsin II [SYN2]/tissue inhibitor of metalloproteinase 4 [TIMP4]) were found using traditional interaction analysis, with variant rs150924902 (located upstream to SYN2) showing the strongest interaction. In stratified analyses by rs150924902 genotypes, folate supplementation was associated with decreased CRC risk among those carrying the TT genotype (OR: 0.82; 95% CI: 0.79, 0.86) but increased CRC risk among those carrying the TA genotype (OR: 1.63; 95% CI: 1.29, 2.05), suggesting a qualitative interaction (P-interaction = 1.4×10-8). No interactions were observed for dietary and total folate. CONCLUSIONS Variation in 3p25.2 locus may modify the association of folate supplement with CRC risk. Experimental studies and studies incorporating other relevant omics data are warranted to validate this finding.
Collapse
Affiliation(s)
- Emmanouil Bouras
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Andre E Kim
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - John Morrison
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - James W Baurley
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; BioRealm LLC, Walnut, CA, United States
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Timothy D Bishop
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Arif Budiarto
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | | | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Robert Carreras-Torres
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Digestive Diseases and Microbiota Group, Girona Biomedical Research Institute (IDIBGI), Salt, Girona, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Tjeng Wawan Cenggoro
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia; Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
| | - David V Conti
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States; Department of Public Health Sciences, Center for Public Health Genomics, Charlottesville, VA, United States
| | - Virginia Diez-Obrero
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Eric S Kawaguchi
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, United States
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | | | - Juan Pablo Lewinger
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, United States
| | - Brigid M Lynch
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia; Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Bharuno Mahesworo
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Victor Moreno
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; School of Public Health, University of Washington, Seattle, WA, United States
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Suceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jennifer Ose
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA, United States
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Bens Pardamean
- Bioinformatics and Data Science Research Center, Bina Nusantara University, Jakarta, Indonesia
| | - Andrew J Pellatt
- Department of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anita R Peoples
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Lihong Qi
- Department of Public Health Sciences, University of California Davis, Davis, CA, United States
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Clalit National Cancer Control Center, Haifa, Israel
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, United States; Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, United States; Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Mariana C Stern
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu-Ru Su
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Catherine M Tangen
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Duncan C Thomas
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yu Tian
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; School of Public Health, Capital Medical University, Beijing, China
| | - Caroline Y Um
- Department of Population Science, American Cancer Society, Atlanta, GA, United States
| | - Franzel Jb van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jun Wang
- Department of Population and Public Health Sciences and Norris Comprehensive Cancer Center, Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, United States
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St John's, Canada
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; Department of Population Health Sciences, University of Utah, Salt Lake City, UT, United States
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - W James Gauderman
- Division of Biostatistics, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States.
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, United Kingdom.
| |
Collapse
|
11
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Crous‐Bou M, Molloy A, Ciccolallo L, de Sesmaisons Lecarré A, Fabiani L, Horvath Z, Karavasiloglou N, Naska A. Scientific opinion on the tolerable upper intake level for folate. EFSA J 2023; 21:e08353. [PMID: 37965303 PMCID: PMC10641704 DOI: 10.2903/j.efsa.2023.8353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for folic acid/folate. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of folate (including folic acid and the other authorised forms, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts), namely risk of cobalamin-dependent neuropathy, cognitive decline among people with low cobalamin status, and colorectal cancer and prostate cancer. The evidence is insufficient to conclude on a positive and causal relationship between the dietary intake of folate and impaired cognitive function, risk of colorectal and prostate cancer. The risk of progression of neurological symptoms in cobalamin-deficient patients is considered as the critical effect to establish an UL for folic acid. No new evidence has been published that could improve the characterisation of the dose-response between folic acid intake and resolution of megaloblastic anaemia in cobalamin-deficient individuals. The ULs for folic acid previously established by the Scientific Committee on Food are retained for all population groups, i.e. 1000 μg/day for adults, including pregnant and lactating women, 200 μg/day for children aged 1-3 years, 300 μg/day for 4-6 years, 400 μg/day for 7-10 years, 600 μg/day for 11-14 years and 800 μg/day for 15-17 years. A UL of 200 μg/day is established for infants aged 4-11 months. The ULs apply to the combined intake of folic acid, (6S)-5-methyltetrahydrofolic acid glucosamine and l-5-methyltetrahydrofolic acid calcium salts, under their authorised conditions of use. It is unlikely that the ULs for supplemental folate are exceeded in European populations, except for regular users of food supplements containing high doses of folic acid/5-methyl-tetrahydrofolic acid salts.
Collapse
|
12
|
Wei Y, Xu B, He Q, Chen P, Zhang Q, Zhang X, Yuan H, Duan Y, Wang Z, Zhou Z, Liu L, Song Y, Mao G, Qin X, Tang G, Wang B, Zhang H, Guo H, Shi H. Serum total folate, 5-methyltetrahydrofolate and vitamin B12 concentrations on incident risk of lung cancer. Int J Cancer 2023; 152:1095-1106. [PMID: 36184907 DOI: 10.1002/ijc.34307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023]
Abstract
Tobacco smoking is a major known risk factor for lung cancer. While micronutrients, especially those involved in maintaining DNA integrity and regulating gene expression, may be protective, research on this association is limited. This report aimed to investigate associations of total folate, 5-methyltetrahydrofolate (5-mTHF) and vitamin B12 with incident risk of lung cancer, and whether the associations vary by smoking status. A nested case-control study with 490 incident lung cancer cases and 490 controls matched by age (±1 year), sex, residence, and center, drawn from a community-based prospective study in China, was conducted from 2016 to 2019. 5-mTHF accounted for the majority of total folate. Only 4.4% had detectable unmetabolized folic acid. Lung cancer cases had lower levels of 5-mTHF compared to controls. There was an inverse, nonlinear association between 5-mTHF and lung cancer, which persisted after adjustment for covariables (P for trend = .001). Compared to the lowest 5-mTHF quartile, those in higher quartiles had lower risks of lung cancer: second quartile OR = 0.65; 95% CI: 0.45-0.93; third quartile OR = 0.50; 95% CI: 0.34-0.74; fourth quartile OR = 0.56; 95% CI: 0.38-0.83. This inverse association was more pronounced among ever smokers; consistently, the highest risk of lung cancer (OR = 3.21, 95% CI: 1.97-5.24) was observed among ever smokers with low 5-mTHF levels compared to participants who never smoked and had higher 5-mTHF levels. Vitamin B12 was not associated with lung cancer risk. In this sample of Chinese adults without confounding by unmetabolized folic acid, higher levels of 5-mTHF were associated with lower risk of incident lung cancer.
Collapse
Affiliation(s)
- Yaping Wei
- College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Benjamin Xu
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Xi Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Hui Yuan
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Duan
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhuo Wang
- College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, China.,Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Guangyun Mao
- Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangzhou, China
| | - Genfu Tang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Binyan Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Hao Zhang
- College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China.,Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| |
Collapse
|
13
|
Fu H, He J, Li C, Deng Z, Chang H. Folate intake and risk of colorectal cancer: a systematic review and up-to-date meta-analysis of prospective studies. Eur J Cancer Prev 2023; 32:103-112. [PMID: 35579178 DOI: 10.1097/cej.0000000000000744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Colorectal cancer is one of the most commonly diagnosed and deadly cancers worldwide. Epidemiological studies on the relationship between folate intake and the risk of colorectal cancer have reported inconsistent findings since folate fortification in the USA. For this situation, we conducted a large number of data analyses to study the relationship between folate intake and colorectal cancer risk. METHODS PubMed and EMBASE databases were used to search the literature systematically. Eligible studies were reviewed and meta-analyzed to assess the relationship. RESULTS A total of 24 cohort studies involving 37 280 patients and 6 165 894 individuals were included. The results showed that high folate intake was associated with a reduced risk of colorectal cancer. The combined relative risk (RR) for the highest intake compared with the lowest was 0.88 [95% confidence interval (CI), 0.83-0.92, P = 10 -4 ). Further studies indicated that the increase of folate intake may decrease the risk of colorectal cancer in people with medium or high alcohol consumption (RR = 0.97, 95% CI: 0.96-0.99, P = 0.008; RR = 0.95, 95% CI: 0.92-0.98, P = 0.003), but not in non-drinkers (RR = 1.00, 95% CI: 0.98-1.02, P = 0.827). Next, high folate intake may decrease the risk of colon cancer (RR = 0.86, 95% CI: 0.81-0.92, P = 10 -4 ) but not rectal cancer (RR = 0.92, 95% CI: 0.84-1.02, P = 0.112). Additionally, the result that high folate intake may decrease the risk of colorectal cancer was observed in the USA and Europe but not in other regions. CONCLUSION High folate intake may be protective against colon cancer, particularly in people with middle or high alcohol consumption, but it still needs to be further confirmed.
Collapse
Affiliation(s)
- Hongjuan Fu
- College of Food Science, Southwest University, Chongqing, China
| | | | | | | | | |
Collapse
|
14
|
Linnell A, Murphy N, Godwin J, Cremona A. An evaluation of adherence to folic acid supplementation in pregnant women during early gestation for the prevention of neural tube defects. Public Health Nutr 2022; 25:3025-3035. [PMID: 35875925 PMCID: PMC9991708 DOI: 10.1017/s1368980022001574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 03/03/2022] [Accepted: 06/23/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neural tube defects (NTD) are potentially preventable by periconceptual folic acid supplementation. Women with obesity are at higher risk of NTD, therefore, are recommended a higher dose of 5 mg folic acid to mitigate this risk. The aim of this study was to evaluate maternal practice of folic acid supplementation amongst the antenatal population in relation to maternal obesity status. DESIGN Prospective observational study. SETTING Women ≤18 weeks' gestation at their first antenatal appointment attending University Maternity Hospital Limerick (Ireland) were recruited. Maternal height and weight were measured. Obesity was defined at a threshold of ≥30·0 kg/m2 and ≥27·5 kg/m2 when adjusting for ethnicity. A two-part questionnaire captured maternal characteristics and assessed supplementation compliance, commencement and dosage. Fisher's exact test for independence analysed differences in variables. A P value of <0·05 was considered significant. PARTICIPANTS A total of 328 women participated over a duration of 6 weeks. RESULTS Mean gestational age was 12·4 ± 1·4 weeks and mean BMI 26·7 kg/m2 ± 5·2 kg/m2. 23·8 % (n 78) were classified as obese. 96·5 % (n 315) were taking folic acid and 95·7 % (n 314) supplemented daily. 30·2 % (n 99) commenced supplementation 12 weeks prior to conception. Overall, 57·9 % (n 190) of women met folic acid supplementation dose requirements. 89·1 % (n 55) of women with obesity did not. Women with obesity were less likely to meet the higher folic acid supplementation dose requirements (P =< 0·001). CONCLUSION Folic acid supplementation practices within this cohort were suboptimal to prevent their risk of NTD. This study showed inadequate compliance of folic acid supplementation, and inadequate dosage for women with obesity. Increased patient education and awareness are needed within the antenatal period of pregnancy to bring folic acid supplementation practices in line with best practice guidelines.
Collapse
Affiliation(s)
- Anna Linnell
- School of Allied Health (SAH), University of Limerick, Limerick, Ireland
- Irish Nutrition and Dietetic Institute (INDI), Dublin, Ireland
| | - Niamh Murphy
- Irish Nutrition and Dietetic Institute (INDI), Dublin, Ireland
- Department of Dietetics, University Maternity Hospital Limerick, Limerick, Ireland
- Maternity Dietetics Ireland (MDI), Dublin, Ireland
| | - Jon Godwin
- Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, England, UK
| | - Alexandra Cremona
- School of Allied Health (SAH), University of Limerick, Limerick, Ireland
- Irish Nutrition and Dietetic Institute (INDI), Dublin, Ireland
- Health Research Institute, School of Allied Health, Faculty of Education and Health Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Giovannucci E. Molecular Biologic and Epidemiologic Insights for Preventability of Colorectal Cancer. J Natl Cancer Inst 2022; 114:645-650. [PMID: 34978574 PMCID: PMC9086743 DOI: 10.1093/jnci/djab229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022] Open
Abstract
The etiology of colorectal cancer (CRC) has been informed from both a molecular biology perspective, which concerns the study of the nature, timing, and consequences of mutations in driver genes, and epidemiology, which focuses on identifying risk factors for cancer. For the most part, these fields have developed independently, and it is thus important to consider them in a more integrated manner. The molecular mutational perspective has stressed the importance of mutations due to replication of adult stem cells, and the molecular fingerprint of most CRCs does not suggest the importance of direct carcinogens. Epidemiology has identified numerous modifiable risk factors that account for most CRCs, most of which are not direct mutagens. The distribution of CRCs across the large bowel is not uniform, which is possibly caused by regional differences in the microbiota. Some risk factors are likely to act through or interact with the microbiota. The mutational perspective informs when risk factors may begin to operate in life and when they may cease to operate. Evidence from the mutational model and epidemiology supports that CRC risk factors begin early in life and may contribute to the risk of early-onset CRC. Later in carcinogenesis, there may be a "point of no return" when sufficient mutations have accumulated, and some risk factors do not affect cancer risk. This period may be at least 5-15 years for some risk factors. A more precise knowledge of timing of risk factor to cancer is required to inform preventive efforts.
Collapse
Affiliation(s)
- Edward Giovannucci
- Correspondence to: Edward Giovannucci, ScD, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA (e-mail: )
| |
Collapse
|
16
|
Jain RB. Impact of the increasing concentrations of selected perfluoroalkyl acids on the observed concentrations of red blood cell folate among US adults aged ≥20 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52357-52369. [PMID: 34009570 DOI: 10.1007/s11356-021-14454-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
For the first time (N = 6291), a study was undertaken to estimate associations between the concentratio ns of red blood cell folate (RBCF) and concentration of six perfluoroalkyl acids (PFAAs), namely, perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluoroundecanoic acid (PFUnDA) for US adults aged ≥20 years by fitting regression models for the data from National Health and Nutrition Examination Survey for 2007-2014. In almost consistent fashion, increasing concentrations of PFAAs were associated with decreasing concentrations of RBCF. For the total population, for a 10% increase in the concentrations of PFOA, PFOS, PFDA, PFHxS, PFNA, and PFUnDA, percent decreases in RBCF concentrations were found to be 0.33%, 0.66%, 0.83%, 0.16%, 0.89%, and 0.43%, respectively. RBCF concentrations of PFAAs were found to be 1104, 1042, 100, and 936 nmol/L across the four quartiles of PFOS; 112, 1068, 1009, and 948 nmol/L across the four quartiles of PFDA; 1125, 1054, 1005, and 967 nmol/L across the four quartiles of PFNA; and 1099, 1094, 989, and 952 nmol/L across the four quartiles of PFUnDA. Perfluorinated carboxylic acids with carbon chain length > 8 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 8. Perfluorinated chemicals with a sulfonic group with carbon chain length > 6 decreased concentrations of RBCF to a greater degree than those carbon chain length ≤ 6. The degree to which concentrations of RBCF decrease varied by age, gender, and race/ethnicity. Non-Hispanic blacks as compared to non-Hispanic whites and Hispanics had the lowest decreases in RBCF concentrations. Mechanisms responsible for negative associations between RBCF and PFAA concentrations are not known and will need to be researched further.
Collapse
|