1
|
Zheng S, Zhang X, Yang F, Chang Z, Han J, Zhang H, Liu H, Sun T. Glycated ECM Derived Carbon Dots Inhibit Tumor Vasculogenic Mimicry by Disrupting RAGE Nuclear Translocation and Its Interaction With HMGB1. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419540. [PMID: 40159891 DOI: 10.1002/adma.202419540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Indexed: 04/02/2025]
Abstract
This study investigates the role of advanced glycation end-products (AGEs) in tumor vasculogenic mimicry (VM). Using high-sugar diet animal models and glycated extracellular matrix (ECM) ex vivo models, AGEs derived is demonstrated from glycated ECM significantly enhanced tumor growth and VM formation. However, carbon dots (egCDs) derived from glycated ECM effectively inhibit tumor growth and VM formation in this glycated microenvironment. Mechanistic studies show that AGEs from glycated ECM bind to the Receptor of Advanced Glycation Endproducts (RAGE) receptors on tumor cells, promoting RAGE nuclear translocation and binding with high mobility group box 1 (HMGB1), which increases the transcription of Snail family transcriptional repressor 2 (SNAI2), thereby driving VM formation. However, egCDs competitively bind to RAGE, promoting its lysosomal degradation and blocking VM formation induced by the RAGE-HMGB1-SNAI2 axis. In conclusion, this study demonstrates that egCDs can target RAGE and promote its lysosomal degradation to block VM formation induced by glycated ECM. This finding not only reveals the transformation of glycated ECM from a pro-VM factor to an anti-VM therapeutic agent after carbonization, but also provides a theoretical basis for the innovative strategy of "reconstructing pathogenic substances into carbon dots to reverse disease-driving factors into therapeutic targeting carriers".
Collapse
Affiliation(s)
- Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhi Chang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
- Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| |
Collapse
|
2
|
He H, Zhang Y, Chen G, Xie F, Zeng N, Han R, Wang Y, Wang Y, Wan Z. Dietary advanced glycation end products intake, genetic predisposition and risk of coronary heart disease: a prospective study. Eur J Nutr 2025; 64:114. [PMID: 40063212 DOI: 10.1007/s00394-025-03632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/22/2025] [Indexed: 04/17/2025]
Abstract
OBJECTIVE Dietary advanced glycation end products (AGEs) intake may be associated with coronary heart disease (CHD) risk. We aimed to investigate the association between dietary AGEs intake and CHD risk and to further investigate whether this association could be influenced by genetic risk. METHODS Data from UK Biobank were used. Dietary AGEs intake, including Nε-(carboxymethyl) lysine (CML), Nε-(1-Carboxyethyl)-L-lysine (CEL), and Nd-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were calculated by coupling the consumption of food items from 24-hour dietary recall with the dietary AGEs database. Baseline dietary information was first collected through Oxford WebQ 24 h food recall between April 2009 and September 2010. From February 2011 to June 2012, the Oxford WebQ survey was conducted online in four rounds. The association between dietary AGEs and CHD risk was estimated using multivariable-adjusted Cox proportional risk models. The association between dietary AGEs intake and genetic risk with CHD risk was further explored via the multiplicative interaction analyses. RESULTS During a median follow-up of 12.2 years, 4,348 participants developed CHD. In the fully adjusted model, a higher intake of dietary AGEs, CML and MG-H1 (highest tertile vs. lowest tertile) was associated with a higher risk of CHD [HR, (95% CI):1.12 (1.03,1.23), 1.15 (1.05,1.26) and 1.10 (1.00,1.20), respectively (all P trend < 0.05)]. Among participants with intermediate to high genetic risk, HRs (95% CI) were 1.63 (1.39, 1.91) and 2.45 (2.10, 2.85) for AGEs, 1.67 (1.42, 1.97) and 2.60 (2.23, 3.02) for CML, 1.48 (1.26 1.74) and 2.34 (2.01, 2.72) for CEL, and 1.64 (1.40, 1.92) and 2.31 (1.99, 2.69) for MG-H1, respectively. CONCLUSIONS Higher intakes of dietary AGEs, CML and MG-H1 were associated with an increased risk of coronary heart disease, and there was an interaction between dietary AGEs intake and genetic predisposition on the risk of CHD.
Collapse
Affiliation(s)
- Huanying He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Ying Zhang
- Xiangcheng District Center for Disease Control and Prevention, 55 Middle Road of Yangcheng Hu, Suzhou, Jiangsu, 215131, China
| | - Guochong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Fangfei Xie
- Physical Examination Center, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, China
| | - Nimei Zeng
- Physical Examination Center, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, China
| | - Renfang Han
- Physical Examination Center, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, China
| | - Yi Wang
- Physical Examination Center, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, China
| | - Yun Wang
- Physical Examination Center, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
3
|
Tong L, Zhang X, Chen J, He H, Zhang W, Wan Z, Zhang H. The associations between dietary advanced glycation-end products intake and self-reported infertility in U.S. women: data from the NHANES 2013-2018. Sci Rep 2025; 15:1158. [PMID: 39774374 PMCID: PMC11706955 DOI: 10.1038/s41598-025-85361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Evidence suggest that dietary advanced glycation end products (AGEs) might exert harmful effects on female reproductive function. However, population-based studies exploring the associations between dietary AGEs intake and female infertility remain lacking. This studyaimed to determine the relationship between dietary AGEs intake and female infertility based on National Health and Nutrition Examination Survey (NHANES). A cross-sectional analysis of 2863 participants in the NHANES 2013-2018 were included. The dietary AGEs, i.e. Nε-(carboxymethyl)lysine(CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated using the combination of ultra-performance LC-tandem MS dietary AGEs database and two 24-h dietary recall interviews. Multivariate Logistic regression analyses were adopted to explore the relationships between dietary AGEs intake and self-reported infertility risk. Compared to the lowest tertile, total dietary AGEs (P-trend = 0.089) and CML (P-trend = 0.032) in the upper tertile were positively correlated with female infertility, and the corresponding odds radios (ORs) (95% confidence interval (CI)) were 1.44 (1.01, 2.06) and 1.64 (1.10, 2.45) respectively. Subgroups analysis found that in participants with overweight and obese, each 1-SD increment in dietary AGEs, CML and MG-H1 level was associated with 18% (95% CI: 1-38%), 21% (95% CI: 1-46%), and 16% (95% CI: 0-36%) elevated risk of infertility. Elevated dietary AGEs intake was associated with the higher risk of infertility for female subjects, this positive association was more pronounced in women with excess body weight.
Collapse
Affiliation(s)
- Lingxia Tong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, PR China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Jingsi Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Huanying He
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Wenzhuo Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, PR China.
| |
Collapse
|
4
|
Yu G, He J, Gao Z, Fu L, Zhang Q. Protein-bound AGEs derived from methylglyoxal induce pro-inflammatory response and barrier integrity damage in epithelial cells by disrupting the retinol metabolism. Food Funct 2024; 15:11650-11666. [PMID: 39523841 DOI: 10.1039/d4fo00364k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advanced glycation end-products (AGEs) are complex and heterogeneous compounds widely present in processed foods. Previous studies evidenced the adverse effects of AGEs on gut homeostasis, but the precise pathological mechanisms and molecular pathways responsible for the disruption of intestinal barrier integrity by AGEs remain incompletely elucidated. In this study, protein-bound AGEs (BSA-MGO), the most common type of dietary AGE, were prepared by methylglyoxal-mediated glycation, and an in vitro human epithelial colorectal adenocarcinoma (Caco-2) cell model was employed to evaluate the impact of protein-bound AGEs on gut epithelial function. Results showed that exposure to BSA-MGO significantly increased the permeability of Caco-2 cell monolayers as evidenced by the decreased transepithelial electrical resistance value, increased paracellular transport of FITC-dextran, and down-regulated tight-junction proteins. In parallel, BSA-MGO induced pro-inflammatory responses and oxidative stress in the monolayers. Transcriptomic profiling further revealed that BSA-MGO disrupted the retinol metabolism, thereby contributing to the barrier integrity damage in epithelial cells. Overall, these results provide valuable insights into the disrupting effects of dietary AGEs on intestinal barrier function, and the perturbed pathways present potential targets for further exploration of the molecular mechanisms underlying the detrimental effect of processed foods on gut health.
Collapse
Affiliation(s)
- Gang Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Jianxin He
- Zhejiang Li Zi Yuan Food Co., Ltd, Jinhua, 321031, China
| | - Zhongshan Gao
- Allergy Research Center, Zhejiang University, Hangzhou, 310018, China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| | - Qiaozhi Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xue Zheng Street, Hangzhou, 310018, Zhejiang Province, China.
| |
Collapse
|
5
|
Nogueira Silva Lima MT, Delayre-Orthez C, Howsam M, Jacolot P, Niquet-Léridon C, Okwieka A, Anton PM, Perot M, Barbezier N, Mathieu H, Ghinet A, Fradin C, Boulanger E, Jaisson S, Gillery P, Tessier FJ. Early- and life-long intake of dietary advanced glycation end-products (dAGEs) leads to transient tissue accumulation, increased gut sensitivity to inflammation, and slight changes in gut microbial diversity, without causing overt disease. Food Res Int 2024; 195:114967. [PMID: 39277266 DOI: 10.1016/j.foodres.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.
Collapse
Affiliation(s)
- M T Nogueira Silva Lima
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - C Delayre-Orthez
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Howsam
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - P Jacolot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - C Niquet-Léridon
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Okwieka
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France
| | - P M Anton
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - M Perot
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - N Barbezier
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - H Mathieu
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, Equipe PETALES, 60000 Beauvais, France
| | - A Ghinet
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France; Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, 59000 Lille, France
| | - C Fradin
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - E Boulanger
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France
| | - S Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - P Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR 7369 MEDyC, Faculté de Médecine, 51095 Reims, France; University Hospital of Reims, Laboratory of Biochemistry-Pharmacology-Toxicology, 51092 Reims, France
| | - F J Tessier
- U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Institut Pasteur de Lille, University Lille, Inserm, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
6
|
Jiang F, Yang W, Cao Y, Cao X, Zhang Y, Yao L, Cao Q. The contribution of dietary advanced glycation end-products and genetic risk in the development of inflammatory bowel disease: a prospective cohort study. Aliment Pharmacol Ther 2024; 60:1075-1086. [PMID: 39177057 DOI: 10.1111/apt.18218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Dietary advanced glycation end products (AGEs) may promote oxidative stress and inflammation in the gastrointestinal tract. AIMS The aim of this study is to investigate the association between dietary AGE intake and the risk of inflammatory bowel disease (IBD). METHODS We included 121,978 participants without IBD at baseline from the UK Biobank. We estimated consumption of three common AGEs (Nε-(carboxymethyl)-lysine (CML), Nε-(1-carboxyethyl)-lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)) by matching 24-h dietary questionnaires to a validated dietary AGE database. We used Cox proportional hazards regression models to calculate the hazard ratio (HR) and 95% CI of the association between dietary AGEs and IBD risk. RESULTS During a median follow-up of 13.72 years, 671 participants developed IBD (192 with Crohn's disease (CD) and 478 with ulcerative colitis (UC)). Among the assessed dietary AGEs, only CEL was associated with an increased risk of IBD (HR = 1.09, 95% CI: 1.01-1.18, p = 0.020) and CD (HR = 1.18, 95% CI: 1.03-1.36, p = 0.014), particularly for participants who were overweight, physically inactive, and non-smokers. Among participants at a high genetic risk of CD, HRs (95% CI) of CD were 1.26 (1.00-1.57) for CML, 1.41 (1.12-1.77) for CEL, and 1.28 (1.01-1.62) for MG-H1 (p < 0.05 for each). However, none of the dietary AGEs was significantly associated with UC risk, irrespective of genetic predisposition. CONCLUSIONS Dietary CEL was associated with an increased risk of IBD and CD, but not UC. Further interventional studies are required to support the potential benefit of AGE restriction, especially for individuals at a high genetic risk of CD.
Collapse
Affiliation(s)
- Fangyuan Jiang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Big Data in Health Science, The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Yang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianghan Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lingya Yao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Inflammatory Bowel Disease Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Peterson LL, Ligibel JA. Dietary and serum advanced glycation end-products and clinical outcomes in breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:188995. [PMID: 37806640 DOI: 10.1016/j.bbcan.2023.188995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
One in five women with breast cancer will relapse despite ideal treatment. Body weight and physical activity are strongly associated with recurrence risk, thus lifestyle modification is an attractive strategy to improve prognosis. Trials of dietary modification in breast cancer are promising but the role of specific diets is unclear, as is whether high-quality diet without weight loss can impact prognosis. Advanced glycation end-products (AGEs) are compounds produced in the body during sugar metabolism. Exogenous AGEs, such as those found in food, combined with endogenous AGEs, make up the total body AGE load. AGEs deposit in tissues over time impacting cell signaling pathways and altering protein functions. AGEs can be measured or estimated in the diet and measured in blood through their metabolites. Studies demonstrate an association between AGEs and breast cancer risk and prognosis. Here, we review the clinical data on dietary and serum AGEs in breast cancer.
Collapse
Affiliation(s)
- Lindsay L Peterson
- Washington University School of Medicine, Division of Medical Oncology, Siteman Cancer Center, 660 S. Euclid Avenue, Campus Box 8056, St. Louis, MO 63110, United States of America.
| | - Jennifer A Ligibel
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
9
|
Zhang Y, Jiang F, Liu D, Li X, Ma Z, Zhang Y, Ma A, Qin LQ, Chen GC, Wan Z. Higher dietary advanced glycation products intake is associated with increased risk of dementia, independent from genetic predisposition. Clin Nutr 2023; 42:1788-1797. [PMID: 37586315 DOI: 10.1016/j.clnu.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Dietary advanced glycation end products (AGEs) might exert adverse effects on cognition. The associations between dietary AGEs and long-term risk of dementia are yet to be assessed in large population studies. We aimed to explore whether elevated dietary AGEs intake is associated with increased risk of dementia, and whether this association might be affected by genetic risk. METHODS A prospective cohort study, which included a total of 93,830 participants (aged≥ 50 years) free from dementia at baseline of the UK Biobank study (2006-2010) and had at least two 24-h dietary assessments and were followed up until 2021. Dietary AGEs, including Nε-(1-Carboxyethyl)-l-lysine (CEL), Nε-(carboxymethyl) lysine (CML), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated via averaged data from the multiple 24-h food assessments according to the ultra-performance LC-tandem MS based dAGEs database. Incidence of all-cause dementia was ascertained through hospital inpatient and mortality records. Multivariable Cox regression models were utilized to estimate hazards ratios (HRs) and 95% confidence interval (CI) of dementia risk associated with dietary AGEs. RESULTS During a median follow-up of 11.9 years, 728 participants developed dementia. In multivariable adjusted model, when comparing the highest with the lowest tertile of intake level, HRs (95% CI) of dementia were 1.43 (1.16, 1.76) for total AGEs Z score, 1.53 (1.25, 1.89) for CEL, 1.27 (1.03, 1.56) for CML and 1.24 (1.02, 1.52) for MG-H1 (all P trend<0.01). There was no significant interaction between dietary AGEs intake, genetic risk and APOE ε4 carrier status for dementia. CONCLUSIONS Higher intakes of dietary AGEs including CEL, CML and MG-H1 were associated with a higher risk of dementia, independent from genetic risk, highlighting the significance of dietary AGEs restriction for dementia prevention.
Collapse
Affiliation(s)
- Yebing Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road No.388, Hangzhou, Zhejiang Province, China
| | - Di Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Yuhangtang Road No.388, Hangzhou, Zhejiang Province, China
| | - Zhengfeei Ma
- Center for Public Health, School of Health and Social Wellbeing, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK
| | - Yao Zhang
- Soochow College, Soochow University, Suzhou, 215006, China
| | - Aiguo Ma
- Institute of Nutrition and Health, Qingdao University, 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
10
|
Vasilj M, Goni L, Gayoso L, Razquin C, Sesma MT, Etxeberria U, Ruiz-Canela M. Correlation between serum advanced glycation end products and dietary intake of advanced glycation end products estimated from home cooking and food frequency questionnaires. Nutr Metab Cardiovasc Dis 2023; 33:1768-1777. [PMID: 37414659 DOI: 10.1016/j.numecd.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND & AIMS To our knowledge the association between dietary advanced glycation end-products (dAGEs) and cardiometabolic disease is limited. Our aim was to examine the association between dAGEs and serum concentration of carboxymethyl-lysine (CML) or soluble receptor advanced glycation end-products (sRAGEs), and to assess the difference on dAGEs and circulating AGEs according to lifestyle and biochemical measures. METHODS AND RESULTS 52 overweight or obese adults diagnosed with type 2 diabetes were included in this cross-sectional analysis. dAGEs were estimated from a Food Frequency Questionnaire (FFQ) or from a FFQ + Home Cooking Frequency Questionnaire (HCFQ). Serum concentrations of CML and sRAGEs were measured by ELISA. Correlation tests were used to analyze the association between dAGEs derived from the FFQ or FFQ + HCFQ and concentrations of CML or sRAGEs. Demographic characteristics, lifestyle factors and biochemical measures were analyzed according to sRAGEs and dAGEs using student t-test and ANCOVA. A significant inverse association was found between serum sRAGEs and dAGEs estimated using the FFQ + HCFQ (r = -0.36, p = 0.010), whereas no association was found for dAGEs derived from the FFQ alone. No association was observed between CML and dAGEs. dAGEs intake estimated from the FFQ + HCFQ was significantly higher among younger and male participants, and in those with higher BMI, higher Hb1Ac levels, longer time with type 2 diabetes, lower adherence to Mediterranean diet, and higher use of culinary techniques that generate more AGEs (all p values p < 0.05). CONCLUSIONS These results show knowledge on culinary techniques is relevant to derive the association between dAGEs intake and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Maria Vasilj
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
| | - Leticia Goni
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Gayoso
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Cristina Razquin
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Sesma
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Usune Etxeberria
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
12
|
Geng Y, Mou Y, Xie Y, Ji J, Chen F, Liao X, Hu X, Ma L. Dietary Advanced Glycation End Products: An Emerging Concern for Processed Foods. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| |
Collapse
|
13
|
de Graaf MCG, Scheijen JLJM, Spooren CEGM, Mujagic Z, Pierik MJ, Feskens EJM, Keszthelyi D, Schalkwijk CG, Jonkers DMAE. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2022; 15:nu15010083. [PMID: 36615740 PMCID: PMC9824683 DOI: 10.3390/nu15010083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A Western diet comprises high levels of dicarbonyls and advanced glycation endproducts (AGEs), which may contribute to flares and symptoms in inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). We therefore investigated the intake of dietary dicarbonyls and AGEs in IBD and IBS patients as part of the habitual diet, and their association with intestinal inflammation. Food frequency questionnaires from 238 IBD, 261 IBS as well as 195 healthy control (HC) subjects were used to calculate the intake of dicarbonyls methylglyoxal, glyoxal, and 3-deoxyglucosone, and of the AGEs Nε-(carboxymethyl)lysine, Nε-(1-carboxyethyl)lysine and methylglyoxal-derived hydroimidazolone-1. Intestinal inflammation was assessed using faecal calprotectin. The absolute dietary intake of all dicarbonyls and AGEs was higher in IBD and HC as compared to IBS (all p < 0.05). However, after energy-adjustment, only glyoxal was lower in IBD versus IBS and HC (p < 0.05). Faecal calprotectin was not significantly associated with dietary dicarbonyls and AGEs in either of the subgroups. The absolute intake of methylglyoxal was significantly higher in patients with low (<15 μg/g) compared to moderate calprotectin levels (15−<50 μg/g, p = 0.031). The concentrations of dietary dicarbonyls and AGEs generally present in the diet of Dutch patients with IBD or IBS are not associated with intestinal inflammation, although potential harmful effects might be counteracted by anti-inflammatory components in the food matrix.
Collapse
Affiliation(s)
- Marlijne C. G. de Graaf
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-38-84-237
| | - Jean L. J. M. Scheijen
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Corinne E. G. M. Spooren
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Zlatan Mujagic
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marieke J. Pierik
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Edith J. M. Feskens
- Division of Human Nutrition and Health, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Daniel Keszthelyi
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Daisy M. A. E. Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
14
|
A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int J Mol Sci 2022; 23:ijms23105328. [PMID: 35628138 PMCID: PMC9141283 DOI: 10.3390/ijms23105328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Dietary advanced glycation endproducts (AGEs), abundantly present in Westernized diets, are linked to negative health outcomes, but their impact on the gut microbiota has not yet been well investigated in humans. We investigated the effects of a 4-week isocaloric and macronutrient-matched diet low or high in AGEs on the gut microbial composition of 70 abdominally obese individuals in a double-blind parallel-design randomized controlled trial (NCT03866343). Additionally, we investigated the cross-sectional associations between the habitual intake of dietary dicarbonyls, reactive precursors to AGEs, and the gut microbial composition, as assessed by 16S rRNA amplicon-based sequencing. Despite a marked percentage difference in AGE intake, we observed no differences in microbial richness and the general community structure. Only the Anaerostipes spp. had a relative abundance >0.5% and showed differential abundance (0.5 versus 1.11%; p = 0.028, after low- or high-AGE diet, respectively). While the habitual intake of dicarbonyls was not associated with microbial richness or a general community structure, the intake of 3-deoxyglucosone was especially associated with an abundance of several genera. Thus, a 4-week diet low or high in AGEs has a limited impact on the gut microbial composition of abdominally obese humans, paralleling its previously observed limited biological consequences. The effects of dietary dicarbonyls on the gut microbiota composition deserve further investigation.
Collapse
|
15
|
Linkens AMA, Houben AJ, Niessen PM, Wijckmans N, de Goei E, Van den Eynde MD, Scheijen JLJM, Waarenburg M, Mari A, Berendschot TT, Streese L, Hanssen H, van Dongen MC, van Gool C, Stehouwer CDA, Eussen SJ, Schalkwijk C. A 4-week high-AGE diet does not impair glucose metabolism and vascular function in obese individuals. JCI Insight 2022; 7:156950. [PMID: 35133989 PMCID: PMC8986074 DOI: 10.1172/jci.insight.156950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulation of advanced glycation endproducts (AGEs) may contribute to the pathophysiology of type 2 diabetes and its vascular complications. AGEs are widely present in food, but whether restricting AGE intake improves risk factors for type 2 diabetes and vascular dysfunction is controversial. METHODS Abdominally obese but otherwise healthy individuals were randomly assigned to a specifically designed 4-week diet low or high in AGEs in a double-blind, parallel design. Insulin sensitivity, secretion, and clearance were assessed by a combined hyperinsulinemic-euglycemic and hyperglycemic clamp. Micro- and macrovascular function, inflammation, and lipid profiles were assessed by state-of-the-art in vivo measurements and biomarkers. Specific urinary and plasma AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were assessed by mass spectrometry. RESULTS In 73 individuals (22 males, mean ± SD age and BMI 52 ± 14 years, 30.6 ± 4.0 kg/m2), intake of CML, CEL, and MG-H1 differed 2.7-, 5.3-, and 3.7-fold between the low- and high-AGE diets, leading to corresponding changes of these AGEs in urine and plasma. Despite this, there was no difference in insulin sensitivity, secretion, or clearance; micro- and macrovascular function; overall inflammation; or lipid profile between the low and high dietary AGE groups (for all treatment effects, P > 0.05). CONCLUSION This comprehensive RCT demonstrates very limited biological consequences of a 4-week diet low or high in AGEs in abdominally obese individuals. TRIAL REGISTRATION Clinicaltrials.gov, NCT03866343; trialregister.nl, NTR7594. FUNDING Diabetesfonds and ZonMw.
Collapse
Affiliation(s)
- Armand M A Linkens
- Cardiovascular Research Center, Maastricht (CARIM), Maastricht, Netherlands
| | - Alfons J Houben
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Petra M Niessen
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nicole Wijckmans
- Department of Epidemiology, Maastricht University, Maastricht, the Netherla, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Erica de Goei
- CARIM School for Cardiovascular Diseases, Maastricht University, the Nether, Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Mathias Dg Van den Eynde
- Department of Internal Medicine, Maastricht University Medical Center, the , CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands, Maastricht, Netherlands
| | - Jean L J M Scheijen
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marjo Waarenburg
- Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andrea Mari
- Institute of Biomedical Engineering, National Research Council, Padova, Italy
| | - Tos Tjm Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, the Netherlands., Maastricht, Netherlands
| | - Lukas Streese
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Martien Cjm van Dongen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Christel van Gool
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Coen DA Stehouwer
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands, Maastricht, Netherlands
| | - Casper Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastric, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|