1
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
2
|
Dong Z, Zhao H, DeWan AT. A mediation analysis framework based on variance component to remove genetic confounding effect. J Hum Genet 2024; 69:301-309. [PMID: 38528049 DOI: 10.1038/s10038-024-01232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/27/2024]
Abstract
Identification of pleiotropy at the single nucleotide polymorphism (SNP) level provides valuable insights into shared genetic signals among phenotypes. One approach to study these signals is through mediation analysis, which dissects the total effect of a SNP on the outcome into a direct effect and an indirect effect through a mediator. However, estimated effects from mediation analysis can be confounded by the genetic correlation between phenotypes, leading to inaccurate results. To address this confounding effect in the context of genetic mediation analysis, we propose a restricted-maximum-likelihood (REML)-based mediation analysis framework called REML-mediation, which can be applied to either individual-level or summary statistics data. Simulations demonstrated that REML-mediation provides unbiased estimates of the true cross-trait causal effect, assuming certain assumptions, albeit with a slightly inflated standard error compared to traditional linear regression. To validate the effectiveness of REML-mediation, we applied it to UK Biobank data and analyzed several mediator-outcome trait pairs along with their corresponding sets of pleiotropic SNPs. REML-mediation successfully identified and corrected for genetic confounding effects in these trait pairs, with correction magnitudes ranging from 7% to 39%. These findings highlight the presence of genetic confounding effects in cross-trait epidemiological studies and underscore the importance of accounting for them in data analysis.
Collapse
Affiliation(s)
- Zihan Dong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
| | - Andrew T DeWan
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, USA.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
3
|
Li J, Hong X, Jiang M, Kho AT, Tiwari A, Wang AL, Chase RP, Celedón JC, Weiss ST, McGeachie MJ, Tantisira KG. A novel piwi-interacting RNA associates with type 2-high asthma phenotypes. J Allergy Clin Immunol 2024; 153:695-704. [PMID: 38056635 DOI: 10.1016/j.jaci.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.
Collapse
Affiliation(s)
- Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Computational Health Informatics Program, Boston Children's Hospital, Boston, Mass
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Robert P Chase
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pa
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Partners Personalized Medicine, Partners Healthcare, Boston, Mass
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Department of Pediatrics, Division of Respiratory Medicine, University of California-San Diego, La Jolla, Calif.
| |
Collapse
|
4
|
Guerrero SC, Panettieri RA, Rastogi D. Mechanistic Links Between Obesity and Airway Pathobiology Inform Therapies for Obesity-Related Asthma. Paediatr Drugs 2023; 25:283-299. [PMID: 36656428 PMCID: PMC11071627 DOI: 10.1007/s40272-022-00554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2022] [Indexed: 01/20/2023]
Abstract
Obesity-related asthma is associated with a high disease burden and a poor response to existent asthma therapies, suggesting that it is a distinct asthma phenotype. The proposed mechanisms that contribute to obesity-related asthma include the effects of the mechanical load of obesity, adipokine perturbations, and immune dysregulation. Each of these influences airway smooth muscle function. Mechanical fat load alters airway smooth muscle stretch affecting airway wall geometry, airway smooth muscle contractility, and agonist delivery; weight loss strategies, including medically induced weight loss, counter these effects. Among the metabolic disturbances, insulin resistance and free fatty acid receptor activation influence distinct signaling pathways in the airway smooth muscle downstream of both the M2 muscarinic receptor and the β2 adrenergic receptor, such as phospholipase C and the extracellular signal-regulated kinase signaling cascade. Medications that decrease insulin resistance and dyslipidemia are associated with a lower asthma disease burden. Leptin resistance is best understood to modulate muscarinic receptors via the neural pathways but there are no specific therapies for leptin resistance. From the immune perspective, monocytes and T helper cells are involved in systemic pro-inflammatory profiles driven by obesity, notably associated with elevated levels of interleukin-6. Clinical trials on tocilizumab, an anti-interleukin antibody, are ongoing for obesity-related asthma. This armamentarium of therapies is distinct from standard asthma medications, and once investigated for its efficacy and safety among children, will serve as a novel therapeutic intervention for pediatric obesity-related asthma. Irrespective of the directionality of the association between asthma and obesity, airway-specific mechanistic studies are needed to identify additional novel therapeutic targets for obesity-related asthma.
Collapse
Affiliation(s)
- Silvia Cabrera Guerrero
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Deepa Rastogi
- Division of Pediatric Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
5
|
Reyes-Angel J, Kaviany P, Rastogi D, Forno E. Obesity-related asthma in children and adolescents. THE LANCET. CHILD & ADOLESCENT HEALTH 2022; 6:713-724. [PMID: 35988550 DOI: 10.1016/s2352-4642(22)00185-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/23/2023]
Abstract
There is substantial epidemiological and experimental evidence of an obesity-related asthma phenotype. Compared to children of healthy weight, children with obesity are at higher risk of asthma. Children with obesity who have asthma have greater severity and poorer control of their asthma symptoms, more frequent asthma exacerbations, and overall lower asthma-related quality of life than children with asthma who have a healthy weight. In this Review, we examine some of the latest evidence on the characteristics of this phenotype and its main underlying mechanisms, including genetics and genomics, changes in airway mechanics and lung function, sex hormone differences, alterations in immune responses, systemic and airway inflammation, metabolic dysregulation, and modifications in the microbiome. We also review current recommendations for the treatment of these children, including in the management of their asthma, and current evidence for weight loss interventions. We then discuss initial evidence for potential novel therapeutic approaches, such as dietary modifications and supplements, antidiabetic medications, and statins. Finally, we identify knowledge gaps and future directions to improve our understanding of asthma in children with obesity, and to improve outcomes in these susceptible children. We highlight important needs, such as designing paediatric-specific studies, implementing large multicentric trials with standardised interventions and outcomes, and including racial and ethnic groups along with other under-represented populations that are particularly affected by obesity and asthma.
Collapse
Affiliation(s)
- Jessica Reyes-Angel
- Division of Pulmonary Medicine and Pediatric Asthma Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Parisa Kaviany
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Erick Forno
- Division of Pulmonary Medicine and Pediatric Asthma Center, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Hao D, Wu Y, Li P, Li C, Jiang T, Zhang Q, Liu S, Shi L. An Integrated Analysis of Inflammatory Endotypes and Clinical Characteristics in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2022; 15:5557-5565. [PMID: 36185639 PMCID: PMC9518682 DOI: 10.2147/jir.s377301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Chronic rhinosinusitis with nasal polyps (CRSwNP) is mainly characterised by type 1 (T1), type 2 (T2) and type 3 (T3) inflammatory endotypes. However, correlations between inflammatory endotypes and clinical features in CRSwNP have not been demonstrated sufficiently. This study aimed to determine the endotype-phenotype associations in CRSwNP. Methods Clinical data of 31 control subjects and 106 CRSwNP patients were analysed. Interferon (IFN)-γ (T1), Charcot-Leyden crystal galectin (CLC) (T2) and Interleukin (IL)-17A (T3) were used as biomarkers to identify the inflammatory endotypes. Results The mRNA expression level of IFN-γ was positively correlated with IL-17A (r = 0.817; P < 0.0001). Headache/facial pain (P = 0.039) was associated with T1 endotype. Smell loss (P = 0.025) was associated with T2 endotype. Purulent rhinorrhea (P = 0.001) was associated with T3 endotype. Atopy (P = 0.030), asthma (P = 0.005) and recurrence (P = 0.022) were more frequent in T2 endotype. Total Symptom Scores (TSS) of T2 (P < 0.001) and T3 (P = 0.009) endotype were higher than non-T2 and non-T3, respectively. Sino Nasal Outcome Test-22 (SNOT-22) total scores of T3 (P = 0.054) endotype were higher than non-T3. Conclusion Identifications of endotype-phenotype associations are useful in clinical diagnoses and targeted therapies for patients with CRSwNP.
Collapse
Affiliation(s)
- Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yisha Wu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chunhao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Qian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People’s Republic of China
- Correspondence: Li Shi; Shengyang Liu, Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250000, People’s Republic of China, Email ;
| |
Collapse
|
7
|
Liu Y, Qu HQ, Qu J, Chang X, Mentch FD, Nguyen K, Tian L, Glessner J, Sleiman PMA, Hakonarson H. Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population. Respir Res 2022; 23:116. [PMID: 35524249 PMCID: PMC9078008 DOI: 10.1186/s12931-022-02039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background Asthma is a complex condition largely attributed to the interactions among genes and environments as a heterogeneous phenotype. Obesity is significantly associated with asthma development, and genetic studies on obese vs. non-obese asthma are warranted. Methods To investigate asthma in the minority African American (AA) population with or without obesity, we performed a whole genome sequencing (WGS) study on blood-derived DNA of 4289 AA individuals, included 2226 asthma patients (1364 with obesity and 862 without obesity) and 2006 controls without asthma. The burden analysis of functional rare coding variants was performed by comparing asthma vs. controls and by stratified analysis of obese vs. non-obese asthma, respectively. Results Among the top 66 genes with P < 0.01 in the asthma vs. control analysis, stratified analysis by obesity showed inverse correlation of natural logarithm (LN) of P value between obese and non-obese asthma (r = − 0.757, P = 1.90E−13). Five genes previously reported in a genome-wide association study (GWAS) on asthma, including TSLP, SLC9A4, PSMB8, IGSF5, and IKZF4 were demonstrated association in the asthma vs. control analysis. The associations of IKZF4 and IGSF5 are only associated with obese asthma; and the association of SLC9A4 is only observed in non-obese asthma. In addition, the association of RSPH3 (the gene is related to primary ciliary dyskinesia) is observed in non-obese asthma. Conclusions These findings highlight genetic heterogeneity between obese and non-obese asthma in patients of AA ancestry. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02039-0.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hui-Qi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jingchun Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Lifeng Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|
8
|
Kwon JH, Wi CI, Seol HY, Park M, King K, Ryu E, Sohn S, Liu H, Juhn YJ. Risk, Mechanisms and Implications of Asthma-Associated Infectious and Inflammatory Multimorbidities (AIMs) among Individuals With Asthma: a Systematic Review and a Case Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:697-718. [PMID: 34486256 PMCID: PMC8419637 DOI: 10.4168/aair.2021.13.5.697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/15/2021] [Indexed: 11/25/2022]
Abstract
Our prior work and the work of others have demonstrated that asthma increases the risk of a broad range of both respiratory (e.g., pneumonia and pertussis) and non-respiratory (e.g., zoster and appendicitis) infectious diseases as well as inflammatory diseases (e.g., celiac disease and myocardial infarction [MI]), suggesting the systemic disease nature of asthma and its impact beyond the airways. We call these conditions asthma-associated infectious and inflammatory multimorbidities (AIMs). At present, little is known about why some people with asthma are at high-risk of AIMs, and others are not, to the extent to which controlling asthma reduces the risk of AIMs and which specific therapies mitigate the risk of AIMs. These questions represent a significant knowledge gap in asthma research and unmet needs in asthma care, because there are no guidelines addressing the identification and management of AIMs. This is a systematic review on the association of asthma with the risk of AIMs and a case study to highlight that 1) AIMs are relatively under-recognized conditions, but pose major health threats to people with asthma; 2) AIMs provide insights into immunological and clinical features of asthma as a systemic inflammatory disease beyond a solely chronic airway disease; and 3) it is time to recognize AIMs as a distinctive asthma phenotype in order to advance asthma research and improve asthma care. An improved understanding of AIMs and their underlying mechanisms will bring valuable and new perspectives improving the practice, research, and public health related to asthma.
Collapse
Affiliation(s)
- Jung Hyun Kwon
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Chung-Il Wi
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hee Yun Seol
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Miguel Park
- Division of Allergy and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Katherine King
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Euijung Ryu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Sunghwan Sohn
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Hongfang Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Young J Juhn
- Precision Population Science Lab, Department of Pediatrics and Adolescence Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|