1
|
R Muralitharan R, Marques FZ, O'Donnell JA. Recent advancements in targeting the immune system to treat hypertension. Eur J Pharmacol 2024; 983:177008. [PMID: 39304109 DOI: 10.1016/j.ejphar.2024.177008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hypertension is the key leading risk factor for death globally, affecting ∼1.3 billion adults, particularly in low- and middle-income countries. Most people living with hypertension have uncontrolled high blood pressure, increasing their likelihood of cardiovascular events. Significant issues preventing blood pressure control include lack of diagnosis, treatment, and response to existing therapy. For example, monotherapy and combination therapy are often unable to lower blood pressure to target levels. New therapies are urgently required to tackle this issue, particularly those that target the mechanisms behind hypertension instead of treating its symptoms. Acting via an increase in systemic and tissue-specific inflammation, the immune system is a critical contributor to blood pressure regulation and is considered an early mechanism leading to hypertension development. Here, we review the immune system's role in hypertension, evaluate clinical trials that target inflammation, and discuss knowledge gaps in pre-clinical and clinical data. We examine the effects of anti-inflammatory drugs colchicine and methotrexate on hypertension and evaluate the blockade of pro-inflammatory cytokines IL-1β and TNF-α on blood pressure in clinical trials. Lastly, we highlight how we can move forward to target specific components of the immune system to lower blood pressure. This includes targeting isolevuglandins, which accumulate in dendritic cells to promote T cell activation and cytokine production in salt-induced hypertension. We discuss the potential of the dietary fibre-derived metabolites short-chain fatty acids, which have anti-inflammatory and blood pressure-lowering effects via the gut microbiome. This would limit adverse events, leading to improved medication adherence and better blood pressure control.
Collapse
Affiliation(s)
- Rikeish R Muralitharan
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Heart Failure Research Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Victorian Heart Institute, Monash University, Clayton, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Guzik TJ, Nosalski R, Maffia P, Drummond GR. Immune and inflammatory mechanisms in hypertension. Nat Rev Cardiol 2024; 21:396-416. [PMID: 38172242 DOI: 10.1038/s41569-023-00964-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Hypertension is a global health problem, with >1.3 billion individuals with high blood pressure worldwide. In this Review, we present an inflammatory paradigm for hypertension, emphasizing the crucial roles of immune cells, cytokines and chemokines in disease initiation and progression. T cells, monocytes, macrophages, dendritic cells, B cells and natural killer cells are all implicated in hypertension. Neoantigens, the NLRP3 inflammasome and increased sympathetic outflow, as well as cytokines (including IL-6, IL-7, IL-15, IL-18 and IL-21) and a high-salt environment, can contribute to immune activation in hypertension. The activated immune cells migrate to target organs such as arteries (especially the perivascular fat and adventitia), kidneys, the heart and the brain, where they release effector cytokines that elevate blood pressure and cause vascular remodelling, renal damage, cardiac hypertrophy, cognitive impairment and dementia. IL-17 secreted by CD4+ T helper 17 cells and γδ T cells, and interferon-γ and tumour necrosis factor secreted by immunosenescent CD8+ T cells, exert crucial effector roles in hypertension, whereas IL-10 and regulatory T cells are protective. Effector mediators impair nitric oxide bioavailability, leading to endothelial dysfunction and increased vascular contractility. Inflammatory effector mediators also alter renal sodium and water balance and promote renal fibrosis. These mechanisms link hypertension with obesity, autoimmunity, periodontitis and COVID-19. A comprehensive understanding of the immune and inflammatory mechanisms of hypertension is crucial for safely and effectively translating the findings to clinical practice.
Collapse
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK.
- Department of Medicine and Omicron Medical Genomics Laboratory, Jagiellonian University, Collegium Medicum, Kraków, Poland.
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK.
| | - Ryszard Nosalski
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Pasquale Maffia
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance ARUA & The Guild, Glasgow, UK
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
The Effect of Renal Denervation on T Cells in Patients with Resistant Hypertension. Int J Mol Sci 2023; 24:ijms24032493. [PMID: 36768814 PMCID: PMC9917284 DOI: 10.3390/ijms24032493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
(1) Background: Sympathetic overactivity is a major contributor to resistant hypertension (RH). According to animal studies, sympathetic overactivity increases immune responses, thereby aggravating hypertension and cardiovascular outcomes. Renal denervation (RDN) reduces sympathetic nerve activity in RH. Here, we investigate the effect of RDN on T-cell signatures in RH. (2) Methods: Systemic inflammation and T-cell subsets were analyzed in 17 healthy individuals and 30 patients with RH at baseline and 6 months after RDN. (3) Results: The patients with RH demonstrated higher levels of pro-inflammatory cytokines and higher frequencies of CD4+ effector memory (TEM), CD4+ effector memory residential (TEMRA) and CD8+ central memory (TCM) cells than the controls. After RDN, systolic automated office blood pressure (BP) decreased by -17.6 ± 18.9 mmHg. Greater BP reductions were associated with higher CD4+ TEM (r -0.421, p = 0.02) and CD8+ TCM (r -0.424, p = 0.02) frequencies at baseline. The RDN responders, that is, the patients with ≥10mmHg systolic BP reduction, showed reduced pro-inflammatory cytokine levels, whereas the non-responders had unchanged inflammatory activity and higher CD8+ TEMRA frequencies with increased cellular cytokine production. (4) Conclusions: The pro-inflammatory state of patients with RH is characterized by altered T-cell signatures, especially in non-responders. A detailed analysis of T cells might be useful in selecting patients for RDN.
Collapse
|
4
|
Li B, Yang C, Jia G, Liu Y, Wang N, Yang F, Su R, Shang Y, Han Y. Comprehensive evaluation of the effects of long-term cryopreservation on peripheral blood mononuclear cells using flow cytometry. BMC Immunol 2022; 23:30. [PMID: 35672664 PMCID: PMC9175382 DOI: 10.1186/s12865-022-00505-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) originate from hematopoietic stem cells in the bone marrow, which mainly includes lymphocytes (T cells, B cells, and natural killer cells) and monocytes. Cryopreserved PBMCs providing biobank resources are crucial for clinical application or scientific research. Here, we used flow cytometry to explore the influence of long-term cryopreservation on the quality of PBMCs with the aim of providing important evidence for the effective utilization of biobank resources. The PBMCs were isolated from the peripheral blood, which was collected from volunteers in the hospital. After long-term cryopreservation in liquid nitrogen, we analyzed the changes in cell numbers, viability, and multiple subtypes of PBMCs and studied the apoptosis, proliferation, activation, function, and status of T cells in comparison with freshly isolated PBMCs by flow cytometry, and then further tracked the effects of long-term cryopreservation on the same sample. Although the different cell types in the PBMCs dynamically changed compared with those in the freshly isolated samples, PBMC recovery and viability remained stable after long-term cryopreservation, and the number of most innate immune cells (e.g., monocytes and B cells) was significantly reduced compared to that of the freshly isolated PBMCs or long-term cryopreserved PBMCs; more importantly, the proportion of T cell subtypes, apoptosis, proliferation, and functional T cells, except for Tregs, were not affected by long-term cryopreservation. However, the proportions of activated T, naïve T, central memory T, effector T, and effector memory T cells dynamically changed after long-term cryopreservation. This article provides important evidence for the effective utilization of biobank resources. Long-term cryopreserved PBMCs can be partly used as biological resources for clinical research or basic studies, but the effect of cryopreservation on PBMCs should be considered when selecting cell samples, especially in research relating to activating or inhibiting function.
Collapse
Affiliation(s)
- Bo Li
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Chunmei Yang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Gui Jia
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yansheng Liu
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Na Wang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Fangfang Yang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Rui Su
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China
| | - Yulong Shang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| | - Ying Han
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Rizzoni D, De Ciuceis C, Szczepaniak P, Paradis P, Schiffrin EL, Guzik TJ. Immune System and Microvascular Remodeling in Humans. Hypertension 2022; 79:691-705. [PMID: 35098718 DOI: 10.1161/hypertensionaha.121.17955] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-grade inflammatory processes and related oxidative stress may have a key role in the pathogenesis of hypertension and hypertension-mediated organ damage. Innate immune cells, such as neutrophils, dendritic cells, monocytes/macrophages, as well as unconventional T lymphocytes like γδ T cells contribute to hypertension and may trigger vascular inflammation. Adaptive immunity has been demonstrated to participate in elevation of blood pressure and in vascular and kidney injury. In particular, effector T lymphocytes (Th1, Th2, and Th17) may play a relevant role in promoting hypertension and microvascular remodeling, whereas T-regulatory lymphocytes may have a protective role. Effector cytokines produced by these immune cells lead to increased oxidative stress, endothelial dysfunction and contribute to target organ damage in hypertension. A possible role of immune cell subpopulations in the development and regression of microvascular remodeling has also been proposed in humans with hypertension. The present review summarizes the key immune mechanisms that may participate in the pathophysiology of hypertension-mediated inflammation and vascular remodeling; advances in this field may provide the basis for novel therapeutics for hypertension.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.).,Division of Medicine, Spedali Civili di Brescia, Montichiari, Italy (D.R.)
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R., C.D.C.)
| | - Piotr Szczepaniak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.)
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada (P.P., E.L.S.).,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada (E.L.S.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (P.S., T.J.G.).,Department of Medicine, Jagiellonian University Medical College, Krakow, Poland (P.S., T.J.G.)
| |
Collapse
|
6
|
Mengozzi A, Pugliese NR, Chiriacò M, Masi S, Virdis A, Taddei S. Microvascular Ageing Links Metabolic Disease to Age-Related Disorders: The Role of Oxidative Stress and Inflammation in Promoting Microvascular Dysfunction. J Cardiovasc Pharmacol 2021; 78:S78-S87. [PMID: 34840260 DOI: 10.1097/fjc.0000000000001109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/26/2021] [Indexed: 01/09/2023]
Abstract
ABSTRACT Longer life span and increased prevalence of chronic, noncommunicable, inflammatory diseases fuel cardiovascular mortality. The microcirculation is central in the cross talk between ageing, inflammation, cardiovascular, and metabolic diseases. Microvascular dysfunction, characterized by alteration in the microvascular endothelial function and wall structure, is described in an increasing number of chronic age-associated diseases, suggesting that it might be a marker of ageing superior to chronological age. The aim of this review is to thoroughly explore the connections between microvascular dysfunction, ageing, and metabolic disorders by detailing the major role played by inflammation and oxidative stress in their evolution. Older age, hypertension, nutrient abundance, and hyperglycemia concur in the induction of a persistent low-grade inflammatory response, defined as meta-inflammation or inflammageing. This increases the local generation of reactive oxygen species that further impairs endothelial function and amplifies the local inflammatory response. Mitochondrial dysfunction is a hallmark of many age-related diseases. The alterations of mitochondrial function promote irreversible modification in microvascular structure. The interest in the hypothesis of chronic inflammation at the center of the ageing process lies in its therapeutic implications. Inhibition of specific inflammatory pathways has been shown to lower the risk of many age-related diseases, including cardiovascular disease. However, the whole architecture of the inflammatory response underpinning the ageing process and its impact on the burden of age-related diseases remain to be fully elucidated. Additional studies are needed to unravel the connection between these biological pathways and to address their therapeutic power in terms of cardiovascular prevention.
Collapse
Affiliation(s)
- Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy ; and
| | | | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens 2021; 38:1682-1698. [PMID: 32649623 DOI: 10.1097/hjh.0000000000002508] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a well recognized cardiovascular risk factor independent of blood pressure levels and an intermediate endpoint for cardiovascular events. In the present review, we discuss immune-mediated mechanisms by which inflammation can influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction which is proportional to the severity of inflammation. Current findings suggest that treatment of inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these treatments will improve outcomes for patients.
Collapse
|
8
|
Ahmari N, Hayward LF, Zubcevic J. The importance of bone marrow and the immune system in driving increases in blood pressure and sympathetic nerve activity in hypertension. Exp Physiol 2020; 105:1815-1826. [PMID: 32964557 DOI: 10.1113/ep088247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the topic of this review? This manuscript provides a review of the current understanding of the role of the sympathetic nervous system in regulation of bone marrow-derived immune cells and the effect that the infiltrating bone marrow cells may have on perpetuation of the sympathetic over-activation in hypertension. What advances does it highlight? We highlight the recent advances in understanding of the neuroimmune interactions both peripherally and centrally as they relate to blood pressure control. ABSTRACT The sympathetic nervous system (SNS) plays a crucial role in maintaining physiological homeostasis, in part by regulating, integrating and orchestrating processes between many physiological systems, including the immune system. Sympathetic nerves innervate all primary and secondary immune organs, and all cells of the immune system express β-adrenoreceptors. In turn, immune cells can produce cytokines, chemokines and neurotransmitters capable of modulating neuronal activity and, ultimately, SNS activity. Thus, the essential role of the SNS in the regulation of innate and adaptive immune functions is mediated, in part, via β-adrenoreceptor-induced activation of bone marrow cells by noradrenaline. Interestingly, both central and systemic inflammation are well-established hallmarks of hypertension and its co-morbidities, including an inflammatory process involving the transmigration and infiltration of immune cells into tissues. We propose that physiological states that prolong β-adrenoreceptor activation in bone marrow can disrupt neuroimmune homeostasis and impair communication between the immune system and SNS, leading to immune dysregulation, which, in turn, is sustained via a central mechanism involving neuroinflammation.
Collapse
Affiliation(s)
- Niousha Ahmari
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Linda F Hayward
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Jasenka Zubcevic
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Masi S, Georgiopoulos G, Chiriacò M, Grassi G, Seravalle G, Savoia C, Volpe M, Taddei S, Rizzoni D, Virdis A. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovasc Res 2020; 116:429-437. [PMID: 31220219 DOI: 10.1093/cvr/cvz096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The relationship between resistance artery remodelling and endothelial function remains unknown. In this study, we assessed (i) the capacity of endothelial function and nitric oxide (NO) availability to provide more information on the severity of resistance artery remodelling than common cardiovascular risk factors in subjects at low or high cardiovascular risk; and (ii) differences between patterns of resistance artery remodelling associated with deficit of NO availability and with exposure to cardiovascular risk factors. METHODS AND RESULTS All analyses were conducted on the microvascular data set of the Italian Society for Arterial Hypertension (SIIA) that includes 356 patients with measures of small resistance arteries remodelling acquired with pressure or wire myography. Information on endothelial function and NO availability were also available in 116 patients. The European Heart Score (HS) was used to define the total cardiovascular risk of each patient. Endothelial function was inversely related with the severity of the resistance artery remodelling, and this association remained significant after adjustment for the HS. By contrast, the HS lost its significant association with the media-to-lumen (M/L) ratio and the media cross-sectional area after adjustment for endothelial function. The strength of these associations was similar in subjects at high and low cardiovascular risk. The addition of endothelial function and NO availability to the HS significantly improved the identification of subjects at more and less severe resistance artery remodelling. A severe deficit of NO availability was associated with hypertrophic remodelling, while a higher HS was more clearly associated with eutrophic remodelling. CONCLUSION Resistance artery endothelial function and NO availability might represent important factors involved in resistance artery remodelling, independently from cardiovascular risk factor exposure.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy.,National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Science, University College London, London, UK.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Georgios Georgiopoulos
- First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Italy.,Unit of Cardiology and Cardiovascular Science, IRCCS Multimedica, Sesto san Giovanni, Milan, Italy
| | - Gino Seravalle
- Cardiology Unit, Fondazione Istituto Auxologico Italiano, Ospedale S. Luca, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carmine Savoia
- Cardiology Division, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Massimo Volpe
- Cardiology Division, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy.,Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
10
|
Siedlinski M, Jozefczuk E, Xu X, Teumer A, Evangelou E, Schnabel RB, Welsh P, Maffia P, Erdmann J, Tomaszewski M, Caulfield MJ, Sattar N, Holmes MV, Guzik TJ. White Blood Cells and Blood Pressure: A Mendelian Randomization Study. Circulation 2020; 141:1307-1317. [PMID: 32148083 PMCID: PMC7176352 DOI: 10.1161/circulationaha.119.045102] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND High blood pressure (BP) is a risk factor for cardiovascular morbidity and mortality. While BP is regulated by the function of kidney, vasculature, and sympathetic nervous system, recent experimental data suggest that immune cells may play a role in hypertension. METHODS We studied the relationship between major white blood cell types and blood pressure in the UK Biobank population and used Mendelian randomization (MR) analyses using the ≈750 000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies to examine which leukocyte populations may be causally linked to BP. RESULTS A positive association between quintiles of lymphocyte, monocyte, and neutrophil counts, and increased systolic BP, diastolic BP, and pulse pressure was observed (eg, adjusted systolic BP mean±SE for 1st versus 5th quintile respectively: 140.13±0.08 versus 141.62±0.07 mm Hg for lymphocyte, 139.51±0.08 versus 141.84±0.07 mm Hg for monocyte, and 137.96±0.08 versus 142.71±0.07 mm Hg for neutrophil counts; all P<10-50). Using 121 single nucleotide polymorphisms in MR, implemented through the inverse-variance weighted approach, we identified a potential causal relationship of lymphocyte count with systolic BP and diastolic BP (causal estimates: 0.69 [95% CI, 0.19-1.20] and 0.56 [95% CI, 0.23-0.90] of mm Hg per 1 SD genetically elevated lymphocyte count, respectively), which was directionally concordant to the observational findings. These inverse-variance weighted estimates were consistent with other robust MR methods. The exclusion of rs3184504 SNP in the SH2B3 locus attenuated the magnitude of the signal in some of the MR analyses. MR in the reverse direction found evidence of positive effects of BP indices on counts of monocytes, neutrophils, and eosinophils but not lymphocytes or basophils. Subsequent MR testing of lymphocyte count in the context of genetic correlation with renal function or resting and postexercise heart rate demonstrated a positive association of lymphocyte count with urine albumin-to-creatinine ratio. CONCLUSIONS Observational and genetic analyses demonstrate a concordant, positive and potentially causal relationship of lymphocyte count with systolic BP and diastolic BP.
Collapse
Affiliation(s)
- Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.).,Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Ewelina Jozefczuk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.)
| | - Xiaoguang Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (X.X., M.T.)
| | - Alexander Teumer
- Department SHIP/Clinical-Epidemiological Research, Institute for Community Medicine, University Medicine Greifswald, Germany (A.T.).,German Centre for Cardiovascular Research partner site Greifswald, Germany (A.T.)
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (E.E.)
| | - Renate B Schnabel
- University Heart Center Hamburg Eppendorf, German Center for Cardiovascular Research partner site Hamburg/Kiel/Lübeck, Germany (R.B.S.)
| | - Paul Welsh
- Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity, and Inflammation (P.M.), University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Italy (P.M.)
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Germany (J.E.)
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (X.X., M.T.)
| | - Mark J Caulfield
- William Harvey Research Institute, National Institute for Health Research Biomedical Research Centre at Barts, Queen Mary University of London, United Kingdom (M.J.C.)
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| | - Michael V Holmes
- Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom (M.V.H.)
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland (M.S., E.J., T.J.G.).,Institute of Cardiovascular and Medical Sciences (M.S., P.W., N.S., T.J.G.), University of Glasgow, United Kingdom
| |
Collapse
|
11
|
Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part I: General mechanisms: a joint consensus statement from the European Society of Hypertension Working Group on Endothelin and Endothelial Factors and The Japanese Society of Hypertension. J Hypertens 2019; 36:451-461. [PMID: 29120962 DOI: 10.1097/hjh.0000000000001599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
: Kidney damage is a common consequence of arterial hypertension, but is also a cause of atherogenesis. Dysfunction and/or harm of the endothelium in glomeruli and tubular interstitium damage the function of these structures and translates into dynamic changes of filtration fraction, with progressive reduction in glomerular filtration rate, expansion of extracellular fluid volume, abnormal ion balance, and hypoxia, ultimately leading to chronic kidney disease. Considering the key role played by endothelial dysfunction in chronic kidney disease, the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension and the Japanese Society of Hypertension have critically reviewed available knowledge on the mechanisms underlying endothelial cell injury. This resulted into two articles: in the first, we herein examine the mechanisms by which endothelial factors induce vascular remodeling and the role of different players, including endothelin-1, the renin-angiotensin-aldosterone system and their interactions, and of oxidative stress; in the second, we discuss the role of endothelial dysfunction in the major disease conditions that affect the kidney.
Collapse
|
12
|
Caillon A, Paradis P, Schiffrin EL. Role of immune cells in hypertension. Br J Pharmacol 2018; 176:1818-1828. [PMID: 29952002 DOI: 10.1111/bph.14427] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
Inflammatory processes have been shown to play an important role in the mechanisms involved in the pathogenesis of hypertension. Innate and adaptive immune responses participate in BP elevation and end-organ damage. Here, we discuss recent studies focusing on novel inflammatory and immune mechanisms that play roles in BP elevation. Different subpopulations of cells involved in innate and adaptive immune responses, such as dendritic cells, monocytes/macrophages and NK cells, on the one hand, and B and T lymphocytes, on the other, contribute to the vascular and kidney injury in hypertension. Unconventional innate-like T cells such as γδ T cells also participate in hypertensive mechanisms by priming both innate and adaptive immune cells, contributing to trigger vascular inflammation and BP elevation. These cells exert their effects in part via production of various cytokines including pro-inflammatory IFN-γ and IL-17 and anti-inflammatory IL-10. The present review summarizes some of these immune mechanisms that participate in the pathophysiology of hypertension. LINKED ARTICLES: This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc.
Collapse
Affiliation(s)
- Antoine Caillon
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada.,Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Agabiti-Rosei C, Trapletti V, Piantoni S, Airò P, Tincani A, De Ciuceis C, Rossini C, Mittempergher F, Titi A, Portolani N, Caletti S, Coschignano MA, Porteri E, Tiberio GAM, Pileri P, Solaini L, Kumar R, Ministrini S, Agabiti Rosei E, Rizzoni D. Decreased circulating T regulatory lymphocytes in obese patients undergoing bariatric surgery. PLoS One 2018; 13:e0197178. [PMID: 29758052 PMCID: PMC5951588 DOI: 10.1371/journal.pone.0197178] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE It has been previously demonstrated that T lymphocytes may be involved in the development of hypertension and microvascular remodeling, and that circulating T effector lymphocytes may be increased in hypertension. In particular, Th1 and Th 17 lymphocytes may contribute to the progression of hypertension and microvascular damage while T-regulatory (Treg) lymphocytes seem to be protective in this regard. However, no data is available about patients with severe obesity, in which pronounced microvascular alterations were observed. DESIGN AND METHODS We have investigated 32 severely obese patients undergoing bariatric surgery, as well as 24 normotensive lean subjects and 12 hypertensive lean subjects undergoing an elective surgical intervention. A peripheral blood sample was obtained before surgery for assessment of CD4+ T lymphocyte subpopulations. Lymphocyte phenotype was evaluated by flow cytometry in order to assess T-effector and Treg lymphocytes. RESULTS A marked reduction of several Treg subpopulations was observed in obese patients compared with controls, together with an increased in CD4+ effector memory T-effector cells. CONCLUSION In severely obese patients, Treg lymphocytes are clearly reduced and CD4+ effector memory cells are increased. It may be hypothesized that they might contribute to the development of marked microvascular alterations previously observed in these patients.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Valentina Trapletti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Chair of Rheumatology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paolo Airò
- Chair of Rheumatology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Angela Tincani
- Chair of Rheumatology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudia Rossini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesco Mittempergher
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Amin Titi
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Nazario Portolani
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Stefano Caletti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Enzo Porteri
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Guido A. M. Tiberio
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Paola Pileri
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Leonardo Solaini
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rajesh Kumar
- Chair of Rheumatology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Ministrini
- Clinica Chirurgica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Enrico Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy
| |
Collapse
|
14
|
De Ciuceis C, Salvetti M, Paini A, Rossini C, Muiesan ML, Duse S, Caletti S, Coschignano MA, Semeraro F, Trapletti V, Bertacchini F, Brami V, Petelca A, Agabiti Rosei E, Rizzoni D, Agabiti Rosei C. Comparison of lercanidipine plus hydrochlorothiazide vs. lercanidipine plus enalapril on micro and macrocirculation in patients with mild essential hypertension. Intern Emerg Med 2017. [PMID: 28647890 DOI: 10.1007/s11739-017-1696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dihydropyridine calcium channel blockers may possess antioxidant properties, and might improve micro and macrovascular structure and function. Combination treatment with an ACE inhibitor may have additional advantages, compared with a thiazide diuretic. The aim of the present study is to investigate the effects of a short-term treatment with lercanidipine, and to compare two combination treatments: lercanidipine + enalapril vs. lercanidipine + hydrochlorothiazide on structural alterations in retinal arterioles, on skin capillary density and on large artery distensibility. Thirty essential hypertension patients are included in the study, and treated for 4 weeks with lercanidipine 20 mg per day orally. Then, they were treated for 6 months with lercanidipine + enalapril (n = 15) or lercanidipine + hydrochlorothiazide (n = 15) combinations. Investigations were performed on basal condition, after appropriate wash out of previous treatments, after 4 weeks of lercanidipine monotherapy treatment, and at the end of the combination treatment. Non-invasive measurements of wall-to-lumen ratio (WLR) and other morphological parameters of retinal arterioles were performed using either scanning laser Doppler flowmetry or adaptive optics. Capillary density was evaluated by capillaroscopy, while pulse wave velocity was measured, and central blood pressures were assessed by pressure waveform analysis. A significant improvement of WLR and other indices of retinal artery structure is observed with both technical approaches after treatment with lercanidipine alone, with a further improvement after treatment with lercanidipine + enalapril, while after treatment with lercanidipine + hydrochlorothiazide, the improvement is partially blunted. Central systolic and diastolic blood pressures are similarly reduced by both therapeutic strategies. Capillary density is increased only after treatment with lercanidipine + enalapril. In conclusion, lercanidipine both in monotherapy and in combination with enalapril but not with hydrochlorothiazide is able to improve microvascular structure; on the other hand, a decrease in central blood pressure is observed with both therapeutic combinations.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Massimo Salvetti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Anna Paini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Claudia Rossini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Maria Lorenza Muiesan
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Sarah Duse
- Chair of Ophthalmology, University of Brescia, Brescia, Italy
| | - Stefano Caletti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Maria Antonietta Coschignano
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | | | - Valentina Trapletti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Fabio Bertacchini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Valeria Brami
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Alina Petelca
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Enrico Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy.
- Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy.
| | - Claudia Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, c/o 2ª Medicina, Spedali Civili, 25100, Brescia, Italy
| |
Collapse
|
15
|
De Ciuceis C, Agabiti-Rosei C, Rossini C, Airò P, Scarsi M, Tincani A, Tiberio GAM, Piantoni S, Porteri E, Solaini L, Duse S, Semeraro F, Petroboni B, Mori L, Castellano M, Gavazzi A, Agabiti-Rosei E, Rizzoni D. Relationship between different subpopulations of circulating CD4+ T lymphocytes and microvascular or systemic oxidative stress in humans. Blood Press 2017; 26:237-245. [PMID: 28276721 DOI: 10.1080/08037051.2017.1292395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/04/2017] [Accepted: 02/04/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Different components of the immune system, including innate and adaptive immunity (T effector lymphocytes and T regulatory lymphocytes - TREGs) may be involved in the development of hypertension, vascular injury and inflammation. However, no data are presently available in humans about possible relationships between T-lymphocyte subtypes and microvascular oxidative stress. Our objective was to investigate possible relationships between T-lymphocyte subtypes and systemic and microvascular oxidative stress in a population of normotensive subjects and hypertensive patients. PATIENTS AND METHODS In the present study we enrolled 24 normotensive subjects and 12 hypertensive patients undergoing an elective surgical intervention. No sign of local or systemic inflammation was present. All patients underwent a biopsy of subcutaneous fat during surgery. A peripheral blood sample was obtained before surgery for assessment of T lymphocyte subpopulations by flow cytometry and circulating indices of oxidative stress. RESULTS A significant direct correlation was observed between Th1 lymphocytes and reactive oxygen species (ROS) production (mainly in microvessels). Additionally, significant inverse correlations were observed between ROS and total TREGs, or TREGs subtypes. Significant correlations were detected between circulating indices of oxidative stress/inflammation and indices of microvascular morphology/Th1 and Th17 lymphocytes. In addition, a significant inverse correlation was detected between TREGs in subcutaneous small vessels and C reactive protein. CONCLUSIONS Our data suggest that TREG lymphocytes may be protective against microvascular damage, probably because of their anti-oxidant properties, while Th1-Th17 lymphocytes seem to exert an opposite effect, confirming an involvement of adaptive immune system in microvascular damage.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Claudia Agabiti-Rosei
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Claudia Rossini
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Paolo Airò
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Mirko Scarsi
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Angela Tincani
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Silvia Piantoni
- b Chair of Rheumatology, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- c Department of Clinical and Experimental Sciences, Clinica Chirurgica, University of Brescia , Brescia , Italy
| | - Sarah Duse
- d Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, Chair of Ophthalmology , University of Brescia , Brescia , Italy
| | - Francesco Semeraro
- d Department of Medical and Surgical Specialties, Radiological Specialties and Public Health, Chair of Ophthalmology , University of Brescia , Brescia , Italy
| | - Beatrice Petroboni
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Luigi Mori
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Maurizio Castellano
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Alice Gavazzi
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Enrico Agabiti-Rosei
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- a Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia , Brescia , Italy
- e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| |
Collapse
|
16
|
Kumar S, Lal S, Bhatnagar A. Regulatory T cell subsets in peripheral blood of celiac disease patients and TLR2 expression: correlation with oxidative stress. APMIS 2017; 125:888-901. [DOI: 10.1111/apm.12735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Sanjay Kumar
- Department of Biochemistry; Panjab University; Chandigarh India
| | - Sadhna Lal
- Department of Gastroenterology; Postgraduate Institute of Medical Education & Research; Chandigarh India
| | | |
Collapse
|
17
|
Bartoloni E, Alunno A, Valentini V, Luccioli F, Valentini E, La Paglia G, Bistoni O, Gerli R. Role of Inflammatory Diseases in Hypertension. High Blood Press Cardiovasc Prev 2017; 24:353-361. [PMID: 28597352 DOI: 10.1007/s40292-017-0214-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammatory diseases (CID) are characterized by an increased risk of cardiovascular (CV) morbidity and mortality. Several mechanisms, including early acceleration of subclinical atherosclerotic damage, inflammatory markers and immune system deregulation factors, have been demonstrated to strictly interplay for development and progression of atherosclerosis. Moreover, traditional CV risk factors are likely to explain at least some of the excess of CV risk in these patients. Among traditional CV risk factors, compelling evidence suggests a higher incidence and prevalence of hypertension in patients with CID in comparison to the general population. Moreover, hypertension represents an important predictor of CV events in these patients. Pathogenic mechanisms underlying the rise of blood pressure in CID are multifactorial and still poorly investigated. Indeed, multiple disease-related factors may affect blood pressure control in these patients and hypertension may affect disease prognosis and increase CV risk. Better knowledge of the complex interplay between hypertension and CID will be important to elucidate pathogenic mechanisms and to improve CV outcome in these patients. Aim of this review is to highlight available evidence on the relationship between hypertension and CID and to elucidate the multiple factors that may affect blood pressure control in these disorders.
Collapse
Affiliation(s)
- E Bartoloni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - A Alunno
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - V Valentini
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - F Luccioli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - E Valentini
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - G La Paglia
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - O Bistoni
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberto Gerli
- Rheumatology Unit, Department of Medicine, University of Perugia, Perugia, Italy.
| |
Collapse
|
18
|
Caillon A, Mian MOR, Fraulob-Aquino JC, Huo KG, Barhoumi T, Ouerd S, Sinnaeve PR, Paradis P, Schiffrin EL. γδ T Cells Mediate Angiotensin II-Induced Hypertension and Vascular Injury. Circulation 2017; 135:2155-2162. [PMID: 28330983 DOI: 10.1161/circulationaha.116.027058] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 11/16/2022]
Abstract
Background:
Innate antigen-presenting cells and adaptive immune T cells have been implicated in the development of hypertension. However, the T-lymphocyte subsets involved in the pathophysiology of hypertension remain unclear. A small subset of innate-like T cells expressing the γδ T cell receptor (TCR) rather than the αβ TCR could play a role in the initiation of the immune response in hypertension. We aimed to determine whether angiotensin (Ang) II caused kinetic changes in γδ T cells; deficiency in γδ T cells blunted Ang II-induced hypertension, vascular injury, and T-cell activation; and γδ T cells are associated with human hypertension.
Methods:
Male C57BL/6 wild-type and
Tcrδ
−/−
mice, which are devoid of γδ T cells, or wild-type mice injected IP with control isotype IgG or γδ T cell-depleting antibodies, were infused or not with Ang II for 3, 7, or 14 days. T-cell profiling was determined by flow cytometry, systolic blood pressure (SBP) by telemetry, and mesentery artery endothelial function by pressurized myography. TCR γ constant region gene expression levels and clinical data of a whole blood gene expression microarray study, including normotensive and hypertensive subjects, were used to demonstrate an association between γδ T cells and SBP.
Results:
Seven- and 14-day Ang II infusion increased γδ T-cell numbers and activation in the spleen of wild-type mice (
P
<0.05). Fourteen days of Ang II infusion increased SBP (
P
<0.01) and decreased mesenteric artery endothelial function (
P
<0.01) in wild-type mice, both of which were abrogated in
Tcrδ
−/−
mice (
P
<0.01). Anti-TCRγδ antibody-induced γδ T-cell depletion blunted Ang II-induced SBP rise and endothelial dysfunction (
P
<0.05), compared with isotype antibody-treated Ang II-infused mice. Ang II-induced T-cell activation in the spleen and perivascular adipose tissue was blunted in
Tcrδ
−/−
mice (
P
<0.01). In humans, the association between SBP and γδ T cells was demonstrated by a multiple linear regression model integrating whole blood TCR γ constant region gene expression levels and age and sex (
R
2
=0.12,
P
<1×10
-6
).
Conclusions:
γδ T cells mediate Ang II-induced SBP elevation, vascular injury, and T-cell activation in mice. γδ T cells might contribute to the development of hypertension in humans.
Collapse
Affiliation(s)
- Antoine Caillon
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Muhammad Oneeb Rehman Mian
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Julio C. Fraulob-Aquino
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Ku-Geng Huo
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Tlili Barhoumi
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Sofiane Ouerd
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Peter R. Sinnaeve
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Pierre Paradis
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| | - Ernesto L. Schiffrin
- From Lady Davis Institute for Medical Research (A.C., M.O.R.M., J.C.F.-A., K.-G.H., T.B., S.O., P.P., E.L.S.), Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital (E.L.S.), McGill University, Montréal, Québec, Canada; and Universitaire Ziekenhuizen Leuven Gasthuisberg, University of Leuven, Belgium (P.R.S.)
| |
Collapse
|
19
|
Savoia C. Immune Cells in Cardiovascular Disease: Has the Time Arrived for New Targets in Human Hypertension? Am J Hypertens 2017; 30:21-23. [PMID: 27661098 DOI: 10.1093/ajh/hpw120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Carmine Savoia
- Clinical and Molecular Medicine Department, Cardiology Unit Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|