1
|
Alfaifi A, Bahashwan S, Alsaadi M, Ageel AH, Ahmed HH, Fatima K, Malhan H, Qadri I, Almehdar H. Advancements in B-Cell Non-Hodgkin's Lymphoma: From Signaling Pathways to Targeted Therapies. Adv Hematol 2024; 2024:5948170. [PMID: 39563886 PMCID: PMC11576080 DOI: 10.1155/2024/5948170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Lymphoma is the sixth most prevalent cancer globally. Non-Hodgkin's lymphomas are the majority group of lymphomas, with B cells accounting for approximately 95% of these lymphomas. A key feature of B-cell lymphoma is the functional perturbations of essential biological pathways caused by genetic aberrations. These lead to atypical gene expression, providing cells with a selective growth advantage. Molecular analysis reveals that each lymphoma subtype has unique molecular mutations, which pose challenges in disease management and treatment. Substantial efforts over the last decade have led to the integration of this information into clinical applications, resulting in crucial insights into clinical diagnosis and targeted therapies. However, with the growing need for more effective medication development, we anticipate a deeper understanding of signaling pathways and their interactions to emerge. This review aims to demonstrate how the BCR, specific signaling pathways like PI3K/AKT/mTOR, NF-kB, and JAK/STAT are diverse in common types of B-cell lymphoma. Furthermore, it offers a detailed examination of each pathway and a synopsis of the approved or in-development targeted therapies. In conclusion, finding the activated signaling pathways is crucial for developing effective treatment plans to improve the prognosis of patients with relapsed or refractory lymphoma. Trial Registration: ClinicalTrials.gov identifier: NCT02180724, NCT02029443, NCT02477696, NCT03836261, NCT02343120, NCT04440059, NCT01882803, NCT01258998, NCT01742988, NCT02055820, NCT02285062, NCT01855750, NCT03422679, NCT01897571.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Ageel
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Hamzah H Ahmed
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Wang X, Ding L, Fang Y, Yan J, Gao J, Yang L, Liu A, Lu J, Wang J, Zhang A, Gao Y, Ju X. The Prognostic and Risk Factors for Children With High-Risk Mature B-Cell Non-Hodgkin's Lymphoma: A Retrospective Multicenter Study. Cancer Med 2024; 13:e70309. [PMID: 39513286 PMCID: PMC11544326 DOI: 10.1002/cam4.70309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDS AND AIMS Our previous study (CCCG-BNHL-2015) reported the treatment strategies and outcomes of pediatric B-cell non-Hodgkin's lymphoma (B-NHL) in China which showed that children in low-risk groups already have a dramatically favorable prognosis. However, for high-risk groups, the prognosis still needs to be improved. In this study, we aimed to identify the factors influencing prognosis in high-risk groups (stage III and stage IV). RESULTS Our results revealed that gender, lactate dehydrogenase (LDH) level, stage at the time of diagnosis, and early complete remission (CR) achievement were significant factors influencing prognosis (p < 0.05). The 3-year EFS rate for R4 group patients without rituximab treatment was only 25.0% ± 20.4%. Among all patients in stage IV, the 5-year EFS rates for those with involvement of only bone marrow (BM) or central nervous system (CNS) were 83.0% ± 4.5%, 81.8% ± 8.2%, but the 5-year EFS rates for those with both BM and CNS involved were only 37.5% ± 15.3% (p = 0.002). For stage III patients with LDH ≥ 4N, the 5-year EFS rates for those achieving CR and those not achieving CR after 2 treatment cycle were 88.9% ± 5.2% and 67.9% ± 7.3%(p = 0.036). CONCLUSIONS Therefore, R4 group patients benefited from rituximab treatment. However, children at stage III, LDH ≥ 4N not achieving CR after the 2nd treatment cycle, and those with both BM and CNS involved are still at a very high risk of treatment failure. This study serves as a crucial reference for optimizing risk stratification, refining treatment categorizations, and optimizing treatment protocols.
Collapse
Affiliation(s)
- Xiaoming Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Luping Ding
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ju Gao
- Department of Pediatrics, West China University Second Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Liangchun Yang
- Department of Pediatric Hematology/Oncology, Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Aiguo Liu
- Department of Pediatric Hematology/Oncology, Tongji Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Lu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Soochow, Jiangsu Province, China
| | - Jingfu Wang
- Department of Pediatric Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yijin Gao
- Department of Hematology/Oncology, School of Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University, Shanghai, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Wu X, Sun X, Deng W, Xu R, Zhao Q. Combination therapy of targeting CD20 antibody and immune checkpoint inhibitor may be a breakthrough in the treatment of B-cell lymphoma. Heliyon 2024; 10:e34068. [PMID: 39130438 PMCID: PMC11315150 DOI: 10.1016/j.heliyon.2024.e34068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/20/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Background CD20 is a membrane protein extensively expressed on the surface of B cells at various stages of development and differentiation. Herein, we conducted a bibliometrics analysis of the literature on CD20-targeting antibody therapy in lymphoma. Methods A total of 6663 articles were downloaded from the web of science core collection (WOSCC) from 1999 to July 23, 2022. Bibliometric.com was used for citation and annual publications analysis. VOSviewer was used to map countries/institutions/authors/journals nodes and links, extract hotspot keywords, and analyze the time trend of keywords. Citespace was employed to recognize the turning points based on the centrality value of countries, define the topic distribution of academics according to the map of dual-map overlay of journals, and characterize the emerging topics or landmark articles in a field based on references citation bursts. Results All articles were cited 225,032 times, averaging 33.77. The number of articles increased from 1999 to 2002, while the growth rate entered the platform after 2002. The USA was the most publication country, and China was the largest emerging country. Hotspots in this field still focus on the efficacy of rituximab in treating non-Hodgkin's lymphoma and the pathogenesis of lymphoma Application of generation CD-20 antibodies or molecule inhibitors in clinical research and cellular therapy/immunotherapy, such as CAR-T and PDL1/PD1 were the emerging research topics. Conclusion This study provides essential information and the tendency of the CD20-targeting antibody therapy in lymphoma by using bibliometric and visual methods, which would provide helpful references for clinical experiments and basic scientific research.
Collapse
Affiliation(s)
- Xin Wu
- Department of Spine Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoying Sun
- School of Nursing, Sun Yat-sen University, Guangzhou, 528406, China
- The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Woding Deng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Rong Xu
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University(The First People's Hospital of Changde City), Changde, 415003, Hunan, China
| | - Qiangqiang Zhao
- Department of Hematology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, 545026, China
- Department of Hematology, The Qinghai Provincial People's Hospital, Xining, 810007, China
| |
Collapse
|
4
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
5
|
Sun Y, Gong J, Li Z, Han L, Sun D. Gallbladder cancer: surgical treatment, immunotherapy, and targeted therapy. Postgrad Med 2024; 136:278-291. [PMID: 38635593 DOI: 10.1080/00325481.2024.2345585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Gallbladder cancer is a common type of biliary tract tumor. Optimal management for early stage cases typically involves radical excision as the primary treatment modality. Various surgical techniques, including laparoscopic, robotic, and navigational surgery, have demonstrated favorable clinical outcomes in radical gallbladder excision. Unfortunately, most patients are ineligible for surgical intervention because of the advanced stage of the disease upon diagnosis. Consequently, non-surgical interventions, such as chemotherapy, radiotherapy, immunotherapy, and targeted therapy, have become the mainstay of treatment for patients in advanced stages. This review focuses on elucidating various surgical techniques as well as advancements in immunotherapy and targeted therapy in the context of recent advancements in gallbladder cancer research.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Junfeng Gong
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | | | - Lin Han
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| | - Dengqun Sun
- Department of General Surgery, The Armed Police Corps Hospital of Anhui, Hefei, China
| |
Collapse
|
6
|
Omer MH, Shafqat A, Ahmad O, Alkattan K, Yaqinuddin A, Damlaj M. Bispecific Antibodies in Hematological Malignancies: A Scoping Review. Cancers (Basel) 2023; 15:4550. [PMID: 37760519 PMCID: PMC10526328 DOI: 10.3390/cancers15184550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Bispecific T-cell engagers (BiTEs) and bispecific antibodies (BiAbs) have revolutionized the treatment landscape of hematological malignancies. By directing T cells towards specific tumor antigens, BiTEs and BiAbs facilitate the T-cell-mediated lysis of neoplastic cells. The success of blinatumomab, a CD19xCD3 BiTE, in acute lymphoblastic leukemia spearheaded the expansive development of BiTEs/BiAbs in the context of hematological neoplasms. Nearly a decade later, numerous BiTEs/BiAbs targeting a range of tumor-associated antigens have transpired in the treatment of multiple myeloma, non-Hodgkin's lymphoma, acute myelogenous leukemia, and acute lymphoblastic leukemia. However, despite their generally favorable safety profiles, particular toxicities such as infections, cytokine release syndrome, myelosuppression, and neurotoxicity after BiAb/BiTE therapy raise valid concerns. Moreover, target antigen loss and the immunosuppressive microenvironment of hematological neoplasms facilitate resistance towards BiTEs/BiAbs. This review aims to highlight the most recent evidence from clinical trials evaluating the safety and efficacy of BiAbs/BiTEs. Additionally, the review will provide mechanistic insights into the limitations of BiAbs whilst outlining practical applications and strategies to overcome these limitations.
Collapse
Affiliation(s)
- Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff CF14 4YS, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.S.); (O.A.); (K.A.); (A.Y.)
| | - Moussab Damlaj
- Department of Hematology & Oncology, Sheikh Shakhbout Medical City, Abu Dhabi P.O. Box 11001, United Arab Emirates;
- College of Medicine, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
7
|
Chung C, Umoru G, Abboud K, Hobaugh E. Sequencing and combination of current small-molecule inhibitors for chronic lymphocytic leukemia: Where is the evidence? Eur J Haematol 2023. [PMID: 37037657 DOI: 10.1111/ejh.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
Small-molecule inhibitors have revolutionized the treatment of chronic lymphocytic leukemia (CLL), a landscape once dominated by chemoimmunotherapy (i.e., an anti-CD20 monoclonal antibody in combination with systemic chemotherapy) in fit and unfit individuals. Key challenges include the management of refractory disease as well as the optimization of the therapy sequence. Decreased responsiveness has been observed with prolonged treatment, especially with Bruton tyrosine kinase (BTK) and phosphatidylinositol 3-kinase (PI3K) inhibitors which are given continuously, while venetoclax, an agent that targets dysregulations in intrinsic apoptosis signaling, has a fixed duration when combined with anti-CD20 monoclonal antibodies or BTK inhibitors. Combination therapy aims to synergistically target different oncogenic signaling pathways to abrogate the proliferation of resistant clones and thereby allows for fixed-duration treatments. An advantage of fixed-duration therapy is the potential to decrease financial and drug-induced toxicities. Sequencing of therapies is important to individualize treatment decisions based on factors such as age, comorbidities, tolerability, and patient preferences. However, to date, there are limited data to guide the rational sequencing or combination of these therapies, since conventional chemoimmunotherapy or chemotherapy regimens were used as comparators against these small-molecule inhibitors in trials that led to their regulatory approvals. In this article, we examined and evaluated the current evidence for sequencing versus the combination of small-molecule inhibitors for CLL by conducting comprehensive searches of the United States National Library of Medicine PubMed database, key meeting abstracts, and clinical practice guidelines. We also summarized findings from expert opinions to elucidate best practices for clinical scenarios with limited evidence to guide treatment selection.
Collapse
Affiliation(s)
- Clement Chung
- Houston Methodist West Hospital, Houston, Texas, USA
| | | | | | | |
Collapse
|
8
|
Fan L, Liao W, Chen Z, Li S, Yang A, Chen MM, Liu H, Liu F. In vitro and in vivo anti-lymphoma effects of Ophiorrhiza pumila extract. Aging (Albany NY) 2022; 14:3801-3812. [PMID: 35504024 PMCID: PMC9134945 DOI: 10.18632/aging.204041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
Background: Current therapeutic strategies on patients with lymphomas remains limited. Previously we found the suppressive effect of Ophiorrhiza pumila (OPE) on hepatocarcinoma. In present study, the effect of OPE on lymphoma in vitro and in vivo were investigated. Methods: CCK-8 assay was applied to detect the effect of OPE on cell proliferation. Flow cytometry was used to analyze the effect of OPE on cell cycle distribution and apoptosis. Xenograft mouse model was conducted to determine the anti-tumor activity of OPE. TNUEL assay was performed to detect the apoptosis in tumor tissues. Western blot and immuno-histochemistry were used to determine protein expression. Results: In vitro tests indicate that OPE suppressed A20 cell proliferation in a dose- and time-dependent manner. OPE treatment induced cell cycle arrest at S phase and elevated apoptosis in A20 cells. OPE displayed a significant inhibition in tumor growth in a mouse xenograft model. OPE promoted apoptosis of tumor cell in the mouse model Cleaved caspase 3 expression and Bax/Bcl2 ratio were also enhanced. In addition, OPE suppressed A20 cell viability partially by reducing phosphorylation of EGFR. Conclusions: Our data showed that OPE suppressed the proliferation of lymphoma cells and promoted apoptosis in vitro and in vivo, which might be partially mediated by inactivating EGFR signaling.
Collapse
Affiliation(s)
- Lixia Fan
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Wanqin Liao
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Zezhen Chen
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Shaojing Li
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Anping Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Min-Min Chen
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Hui Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| | - Fang Liu
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
9
|
Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073478. [PMID: 35408839 PMCID: PMC8998533 DOI: 10.3390/ijms23073478] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Non-melanoma skin cancers are cutaneous malignancies representing the most common form of cancer in the United States. They are comprised predominantly of basal cell carcinomas and squamous cell carcinomas (cSCC). The incidence of cSCC is increasing, resulting in substantial morbidity and ever higher treatment costs; currently in excess of one billion dollars, per annum. Here, we review research defining the molecular basis and development of cSCC that aims to provide new insights into pathogenesis and drive the development of novel, cost and morbidity saving therapies.
Collapse
|
10
|
Gooch CR, Jain MK, Petranovic M, Chow DZ, Muse VV, Gagne SM, Wu CC, Stowell JT. Thoracic Imaging Manifestations of Treated Lymphomas: Response Evaluation, Posttherapeutic Sequelae, and Complications. J Thorac Imaging 2022; 37:67-79. [PMID: 35191861 DOI: 10.1097/rti.0000000000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lymphoma is the most common hematologic malignancy comprising a diverse group of neoplasms arising from multiple blood cell lineages. Any structure of the thorax may be involved at any stage of disease. Imaging has a central role in the initial staging, response assessment, and surveillance of lymphoma, and updated standardized assessment criteria are available to assist with imaging interpretation and reporting. Radiologists should be aware of the modern approaches to lymphoma treatment, the role of imaging in posttherapeutic surveillance, and manifestations of therapy-related complications.
Collapse
Affiliation(s)
- Cory R Gooch
- Department of Radiology, Mayo Clinic, Jacksonville, FL
| | - Manoj K Jain
- Department of Radiology, Mayo Clinic, Jacksonville, FL
| | | | - David Z Chow
- Department of Radiology, Massachusetts General Hospital
| | | | - Staci M Gagne
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Carol C Wu
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
11
|
Chen PJ, Zhang YT. Protein Tyrosine Phosphatase 1B (PTP1B): Insights into Its New Implications in Tumorigenesis. Curr Cancer Drug Targets 2022; 22:181-194. [PMID: 35088671 DOI: 10.2174/1568009622666220128113400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022]
Abstract
In vivo, tyrosine phosphorylation is a reversible and dynamic process governed by the opposing activities of protein tyrosine kinases and phosphatases. Defective or inappropriate operation of these proteins leads to aberrant tyrosine phosphorylation, which contributes to the development of many human diseases, including cancers. PTP1B, a non-transmembrane phosphatase, is generally considered a negative regulator of the metabolic signaling pathways and a promising drug target for type Ⅱ diabetes and obesity. Recently, PTP1B is also attracting considerable interest due to its important function and therapeutic potential in other diseases. An increasing number of studies have indicated that PTP1B plays a vital role in the initiation and progression of cancers and could be a target for new cancer therapies. Following recent advances in the aspects mentioned above, this review is focused on the major functions of PTP1B in different types of cancer and the underlying mechanisms behind these functions, as well as the potential pharmacological effects of PTP1B inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Pei-Jie Chen
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230012, China
| | - Yun-Tian Zhang
- Hefei Visionnox Technology Co., Lid, Hefei 230012, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
12
|
Czegle I, Gray AL, Wang M, Liu Y, Wang J, Wappler-Guzzetta EA. Mitochondria and Their Relationship with Common Genetic Abnormalities in Hematologic Malignancies. Life (Basel) 2021; 11:1351. [PMID: 34947882 PMCID: PMC8707674 DOI: 10.3390/life11121351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hematologic malignancies are known to be associated with numerous cytogenetic and molecular genetic changes. In addition to morphology, immunophenotype, cytochemistry and clinical characteristics, these genetic alterations are typically required to diagnose myeloid, lymphoid, and plasma cell neoplasms. According to the current World Health Organization (WHO) Classification of Tumors of Hematopoietic and Lymphoid Tissues, numerous genetic changes are highlighted, often defining a distinct subtype of a disease, or providing prognostic information. This review highlights how these molecular changes can alter mitochondrial bioenergetics, cell death pathways, mitochondrial dynamics and potentially be related to mitochondrial genetic changes. A better understanding of these processes emphasizes potential novel therapies.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary;
| | - Austin L. Gray
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Minjing Wang
- Independent Researcher, Diamond Bar, CA 91765, USA;
| | - Yan Liu
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Jun Wang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| | - Edina A. Wappler-Guzzetta
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA; (A.L.G.); (Y.L.); (J.W.)
| |
Collapse
|
13
|
Willenbacher E, Brunner A, Zelger B, Unterberger SH, Stalder R, Huck CW, Willenbacher W, Pallua JD. Application of mid-infrared microscopic imaging for the diagnosis and classification of human lymphomas. JOURNAL OF BIOPHOTONICS 2021; 14:e202100079. [PMID: 34159739 DOI: 10.1002/jbio.202100079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Mid-infrared (MIR) microscopic imaging of indolent and aggressive lymphomas was performed including formalin-fixed and paraffin-embedded samples of six follicular lymphomas and 12 diffuse large B-cell-lymphomas as well as reactive lymph nodes to investigate benefits and challenges for lymphoma diagnosis. MIR images were compared to defined pathological characteristics such as indolent versus aggressive versus reactive, germinal centre versus activated cell-of-origin (COO) subtypes, or a low versus a high proliferative index and level of PD-L1 expression. We demonstrated that MIR microscopic imaging can differentiate between reactive lymph nodes, indolent and aggressive lymphoma samples. Also, it has potential to be used in the subtyping of lymphomas, as shown with the differentiation between COO subtypes, the level of proliferation and PD-L1 expression. MIR microscopic imaging is a promising tool for diagnosis and subtyping of lymphoma and further evaluation is needed to fully explore the advantages and disadvantages of this method for pathological diagnosis.
Collapse
Affiliation(s)
- Ella Willenbacher
- Internal Medicine V: Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Brunner
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Roland Stalder
- Institute of Mineralogy and Petrography, Leopold-Franzens University Innsbruck, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Innsbruck, Austria
| | - Wolfgang Willenbacher
- Internal Medicine V: Hematology & Oncology, Medical University of Innsbruck, Innsbruck, Austria
- Oncotyrol, Center for personalized Cancer Medicine, Innsbruck, Austria
| | - Johannes D Pallua
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- University Hospital for Orthopedics and Traumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. NANOPHOTONICS 2021; 10:3135-3151. [PMID: 36405499 PMCID: PMC9646249 DOI: 10.1515/nanoph-2021-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 05/07/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that uses an antibody-photo-absorber conjugate (APC) composed of a targeting monoclonal antibody conjugated with a photoactivatable phthalocyanine-derivative dye, IRDye700DX (IR700). APCs injected into the body can bind to cancer cells where they are activated by local exposure to NIR light typically delivered by a NIR laser. NIR light alters the APC chemical conformation inducing damage to cancer cell membranes, resulting in necrotic cell death within minutes of light exposure. NIR-PIT selectivity kills cancer cells by immunogenic cell death (ICD) with minimal damage to adjacent normal cells thus, leading to rapid recovery by the patient. Moreover, since NIR-PIT induces ICD only on cancer cells, NIR-PIT initiates and activates antitumor host immunity that could be further enhanced when combined with immune checkpoint inhibition. NIR-PIT induces dramatic changes in the tumor vascularity causing the super-enhanced permeability and retention (SUPR) effect that dramatically enhances nanodrug delivery to the tumor bed. Currently, a worldwide Phase 3 study of NIR-PIT for recurrent or inoperable head and neck cancer patients is underway. In September 2020, the first APC and accompanying laser system were conditionally approved for clinical use in Japan. In this review, we introduce NIR-PIT and the SUPR effect and summarize possible applications of NIR-PIT in a variety of cancers.
Collapse
Affiliation(s)
- Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Abstract
Despite progress in the treatment of systemic lupus erythematosus (SLE), remission rates and health-related quality of life remain disappointingly low. The paucity of successful SLE clinical trials reminds us that we still have a long way to go. Nevertheless, there are clear signs of hope. We highlight results from recent studies of novel therapeutic strategies based on emerging insights into our understanding of SLE disease mechanisms. We also highlight several studies that inform optimal use of existing treatments to improve efficacy and/or limit toxicity. These developments suggest we may yet unlock the key toward more satisfactory treatment outcomes in SLE.
Collapse
Affiliation(s)
- Yashaar Chaichian
- Division of Immunology and Rheumatology, Stanford University, 1000 Welch Road, Suite 203, Palo Alto, CA 94304, USA.
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA, 8750 Wilshire Boulevard Suite 350, Beverly Hills, CA 90211
| |
Collapse
|
16
|
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near Infrared Photoimmunotherapy; A Review of Targets for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13112535. [PMID: 34064074 PMCID: PMC8196790 DOI: 10.3390/cancers13112535] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies. Abstract Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses an antibody-photoabsorber (IRDye700DX) conjugate (APC) that is activated by NIR light irradiation. In September 2020, the first APC and laser system were conditionally approved for clinical use in Japan. A major benefit of NIR-PIT is that only APC-bound cancer cells that are exposed to NIR light are killed by NIR-PIT; thus, minimal damage occurs in adjacent normal cells. These early trials have demonstrated that in addition to direct cell killing, there is a significant therapeutic host immune response that greatly contributes to the success of the therapy. Although the first clinical use of NIR-PIT targeted epidermal growth factor receptor (EGFR), many other targets are suitable for NIR-PIT. NIR-PIT has now been applied to many cancers expressing various cell-surface target proteins using monoclonal antibodies designed to bind to them. Moreover, NIR-PIT is not limited to tumor antigens but can also be used to kill specific host cells that create immune-permissive environments in which tumors grow. Moreover, multiple targets can be treated simultaneously with NIR-PIT using a cocktail of APCs. NIR-PIT can be used in combination with other therapies, such as immune checkpoint inhibitors, to enhance the therapeutic effect. Thus, NIR-PIT has great potential to treat a wide variety of cancers by targeting appropriate tumor cells, immune cells, or both, and can be augmented by other immunotherapies.
Collapse
|
17
|
Vasileiou S, Lulla PD, Tzannou I, Watanabe A, Kuvalekar M, Callejas WL, Bilgi M, Wang T, Wu MJ, Kamble R, Ramos CA, Rouce RH, Zeng Z, Gee AP, Grilley BJ, Vera JF, Bollard CM, Brenner MK, Heslop HE, Rooney CM, Leen AM, Carrum G. T-Cell Therapy for Lymphoma Using Nonengineered Multiantigen-Targeted T Cells Is Safe and Produces Durable Clinical Effects. J Clin Oncol 2021; 39:1415-1425. [PMID: 33507803 DOI: 10.1200/jco.20.02224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Patients with relapsed lymphomas often fail salvage therapies including high-dose chemotherapy and mono-antigen-specific T-cell therapies, highlighting the need for nontoxic, novel treatments. To that end, we clinically tested an autologous T-cell product that targets multiple tumor-associated antigens (TAAs) expressed by lymphomas with the intent of treating disease and preventing immune escape. PATIENTS AND METHODS We expanded polyclonal T cells reactive to five TAAs: PRAME, SSX2, MAGEA4, SURVIVIN, and NY-ESO-1. Products were administered to 32 patients with Hodgkin lymphomas (n = 14) or non-Hodgkin lymphomas (n = 18) in a two-part phase I clinical trial, where the objective of the first phase was to establish the safety of targeting all five TAAs (fixed dose, 0.5 × 107 cells/m2) simultaneously and the second stage was to establish the maximum tolerated dose. Patients had received a median of three prior lines of therapy and either were at high risk for relapse (adjuvant arm, n = 17) or had chemorefractory disease (n = 15) at enrollment. RESULTS Infusions were safe with no dose-limiting toxicities observed in either the antigen- or dose-escalation phases. Although the maximum tolerated dose was not reached, the maximum tested dose at which efficacy was observed (two infusions, 2 × 107 cells/m2) was determined as the recommended phase II dose. Of the patients with chemorefractory lymphomas, two (of seven) with Hodgkin lymphomas and four (of eight) with non-Hodgkin lymphomas achieved durable complete remissions (> 3 years). CONCLUSION T cells targeting five TAAs and administered at doses of up to two infusions of 2 × 107 cells/m2 are well-tolerated by patients with lymphoma both as adjuvant and to treat chemorefractory lymphoma. Preliminary indicators of antilymphoma activity were seen in the chemorefractory cohort across both antigen- and dose-escalation phases.
Collapse
Affiliation(s)
- Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Premal D Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ayumi Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Manik Kuvalekar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Wendy L Callejas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mrinalini Bilgi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Tao Wang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Mengfen J Wu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rammurti Kamble
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Rayne H Rouce
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Zihua Zeng
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Adrian P Gee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Bambi J Grilley
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Catherine M Bollard
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| | - George Carrum
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX
| |
Collapse
|
18
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
19
|
Song X, Hu Y, Li Y, Shao R, Liu F, Liu Y. Overview of current targeted therapy in gallbladder cancer. Signal Transduct Target Ther 2020; 5:230. [PMID: 33028805 PMCID: PMC7542154 DOI: 10.1038/s41392-020-00324-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/08/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC) is rare, but is the most malignant type of biliary tract tumor. Unfortunately, only a small population of cancer patients is acceptable for the surgical resection, the current effective regimen; thus, the high mortality rate has been static for decades. To substantially circumvent the stagnant scenario, a number of therapeutic approaches owing to the creation of advanced technologic measures (e.g., next-generation sequencing, transcriptomics, proteomics) have been intensively innovated, which include targeted therapy, immunotherapy, and nanoparticle-based delivery systems. In the current review, we primarily focus on the targeted therapy capable of specifically inhibiting individual key molecules that govern aberrant signaling cascades in GBC. Global clinical trials of targeted therapy in GBC are updated and may offer great value for novel pathologic and therapeutic insights of this deadly disease, ultimately improving the efficacy of treatment.
Collapse
Affiliation(s)
- Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rong Shao
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Fatao Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, 1665 Kongjiang Road, 200092, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|