1
|
Karimian-Jazi K, Enbergs N, Golubtsov E, Schregel K, Ungermann J, Fels-Palesandro H, Schwarz D, Sturm V, Kernbach JM, Batra D, Ippen FM, Pflüger I, von Knebel Doeberitz N, Heiland S, Bunse L, Platten M, Winkler F, Wick W, Paech D, Bendszus M, Breckwoldt MO. Differentiating Glioma Recurrence and Pseudoprogression by APTw CEST MRI. Invest Radiol 2025; 60:414-422. [PMID: 39644107 DOI: 10.1097/rli.0000000000001145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
OBJECTIVES Recurrent glioma is highly treatment resistant due to its metabolic, cellular, and molecular heterogeneity and invasiveness. Tumor monitoring by conventional MRI has shortcomings to assess these key glioma characteristics. Recent studies introduced chemical exchange saturation transfer for metabolic imaging in oncology and assessed its diagnostic value for newly diagnosed glioma. This prospective study investigates amide proton transfer-weighted (APTw) MRI at 3 T as an imaging biomarker to elucidate the molecular heterogeneity and invasion patterns of recurrent glioma in comparison to pseudoprogression (PsPD). MATERIALS AND METHODS We performed a monocenter, prospective trial and screened 371 glioma patients who received tumor monitoring between August 2021 and March 2024 at our institution. The study included IDH wildtype astrocytoma and IDH mutant astrocytoma and oligodendroglioma, graded according to the WHO 2021 classification. Patients had received clinical standard of care treatment including surgical resection and radiochemotherapy prior to study inclusion. Patients were monitored by 3 monthly MRI follow-up imaging, and response assessment was performed according to the RANO criteria. Within this cohort, we identified 30 patients who presented with recurrent glioma and 12 patients with PsPD. In addition to standard anatomical sequences (FLAIR and T1-w Gd-enhanced sequences), MRI included APTw imaging. After sequence co-registration, semiautomated segmentation was performed of the FLAIR lesion, CE lesion, resection cavity, and the contralateral normal-appearing white matter, and APTw signals were quantified in these regions of interest. RESULTS APTw values were highest in solid, Gd-enhancing tumor parts as compared with the nonenhancing FLAIR lesion (APTw: 1.99% vs 1.36%, P = 0.001), whereas there were no detectable APTw alterations in the normal-appearing white matter (APTw: 0.005%, P < 0.001 compared with FLAIR). Patients with progressive disease had higher APTw levels compared with patients with PsPD (APTw: 1.99% vs 1.26%, P = 0.008). Chemical exchange saturation transfer identified heterogeneity within the FLAIR lesion that was not detectable by conventional sequences. There were also focal APTw signal peaks within contrast enhancing lesions as putative metabolic hotspots within recurrent glioma. The resection cavity developed an APTw increase at recurrence that was not detectable prior to recurrence nor in patients with PsPD (APTw before recurrence: 0.6% vs 2.68% at recurrence, P = 0.03). CONCLUSIONS Our study shows that APTw imaging can differentiate PD and PsPD. We identify previously undetectable imaging patterns during glioma recurrence, which include alterations within resection cavity associated with disease progression. Our work highlights the clinical potential of APTw imaging for glioma monitoring and further establishes it as an imaging biomarker in neuro-oncology.
Collapse
Affiliation(s)
- Kianush Karimian-Jazi
- From the Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany (K.K.-J., N.E., E.G., K.S., J.U., H.F.-P., D.S., V.S., J.M.K., I.P., S.H., M.B., M.O.B.); Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany (K.K.-J., F.W., W.W.); Department of Neurology, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany (D.B., F.M.I., F.W., W.W.); DKTK, DKFZ, Clinical Cooperation Unit Neuropathology, Heidelberg, Germany (F.M.I.); Division of Radiology, DKFZ, Heidelberg, Germany (N.V., D.P.); Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, DKTK, DKFZ, Heidelberg, Germany (L.B., M.P., M.O.B.); Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany (L.B., M.P.); Division of Neuroradiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (D.P.); and Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany (D.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Lee C, Lee J, Jeong M, Nam D, Rhee I. Emerging strategies for targeting tumor-associated macrophages in glioblastoma: A focus on chemotaxis blockade. Life Sci 2025; 376:123762. [PMID: 40419107 DOI: 10.1016/j.lfs.2025.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/14/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis for affected patients. A key player in the GBM tumor microenvironment is the tumor-associated macrophage (TAM), which promotes tumor progression, immune evasion, and therapeutic resistance. The recruitment of TAMs to the tumor site is driven by specific chemotactic signals, including CSF-1/CSF-1R, CXCR4/CXCL12, and HGF/MET pathways. This review explores the current understanding of these chemotaxis mechanisms and their role in GBM progression. It highlights the potential therapeutic benefits of targeting TAM chemotaxis pathways to disrupt TAM infiltration, reduce immunosuppression, and enhance the efficacy of conventional treatments. Additionally, we discuss the preclinical and clinical evidence surrounding key inhibitors, such as PLX3397, AMD3100, and Crizotinib, which have shown promise in reprogramming TAMs and improving treatment outcomes in GBM. While these strategies offer hope for overcoming some of the challenges of GBM therapy, the review also addresses the limitations and obstacles in clinical translation, emphasizing the need for further research and the development of combination therapies to achieve sustained therapeutic benefit.
Collapse
Affiliation(s)
- Chaelin Lee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Jaehyun Lee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Moongyu Jeong
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Dayoung Nam
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Inmoo Rhee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Chen Q, Zhuang S, Chen S, Wu B, Zhou Q, Wang W. Targeting the dual miRNA/BMP2 network: LncRNA H19-mediated temozolomide resistance unveils novel therapeutic strategies in glioblastoma. Front Oncol 2025; 15:1577221. [PMID: 40297808 PMCID: PMC12034693 DOI: 10.3389/fonc.2025.1577221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Background Long noncoding RNA (lncRNA) is known to not only be involved in various biological processes but also to play a crucial role in chemotherapy resistance. The development of resistance in glioblastoma (GBM) poses a significant challenge in clinical settings. Nonetheless, the mechanisms through which lncRNA contributes to acquired resistance to Temozolomide (TMZ) in GBM patients remain unclear. Methods We identified 265 upregulated and 396 downregulated lncRNAs associated with chemoresistance in GBM from the GEO database (GSE100736). Subsequently, we assessed the expression levels of lncRNA H19, hsa-miR-138-5p, hsa-miR-22-3p, and BMP2 mRNA through quantitative polymerase chain reaction (qPCR) in GBM cells and TMZ-resistant GBM cells. Cell viability and proliferation were evaluated using CCK-8 and cell colony formation assays, respectively. Apoptosis was determined through flow cytometry analysis. The impact of gene overexpression and knockdown on cell proliferation and apoptosis was examined via cell transfection experiments. Furthermore, we investigated the influence of lncRNA H19 on tumor development using an in vivo xenograft tumor model. Results The upregulation of lncRNA H19 was observed in TMZ-resistant GBM cell lines and tissues, suggesting its involvement in acquired TMZ resistance. Silencing lncRNA H19 restored TMZ sensitivity in resistant GBM cells in vitro. Conversely, overexpression of lncRNA H19 promoted GBM cell proliferation and hindered TMZ-triggered apoptosis, facilitating the acquisition of TMZ resistance. Notably, lncRNA H19 functions as a molecular decoy for hsa-miR-138-5p and hsa-miR-22-3p, and these miRNAs can reverse the acquired TMZ resistance induced by lncRNA H19 in GBM cells. Additionally, BMP2 gene expression is crucial in the lncRNA H19-mediated pathway of acquired TMZ resistance in GBM cells. Knockdown of lncRNA H19 reinstated TMZ sensitivity in vivo, whereas BMP2 overexpression reinstated TMZ resistance. Conclusion LncRNA H19 enhances TMZ resistance in glioblastoma through competitive RNA targeting of BMP2.
Collapse
Affiliation(s)
- Qiudan Chen
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shihao Zhuang
- Department of Pediatrics, Fujian Children’s Hospital, Fuzhou, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Biying Wu
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qingyu Zhou
- Department of Clinical Laboratory, Central Laboratory, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Weifeng Wang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Wicher G, Roy A, Vaccaro A, Vemuri K, Ramachandran M, Olofsson T, Imbria RN, Belting M, Nilsson G, Dimberg A, Forsberg-Nilsson K. Lack of ST2 aggravates glioma invasiveness, vascular abnormality, and immune suppression. Neurooncol Adv 2025; 7:vdaf010. [PMID: 39931535 PMCID: PMC11808570 DOI: 10.1093/noajnl/vdaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Background Glioblastoma (GBM) is the most common primary malignant brain tumor in adults, characterized by aggressive growth and a dismal prognosis. Interleukin-33 (IL-33) and its receptor ST2 have emerged as regulators of glioma growth, but their exact function in tumorigenesis has not been deciphered. Indeed, previous studies on IL-33 in cancer have yielded somewhat opposing results as to whether it is pro- or anti-tumorigenic. Methods IL-33 expression was assessed in a GBM tissue microarray and public databases. As in vivo models we used orthotopic xenografts of patient-derived GBM cells, and syngenic models with grafted mouse glioma cells. Results We analyzed the role of IL-33 and its receptor ST2 in nonmalignant cells of the glioma microenvironment and found that IL-33 levels are increased in cells surrounding the tumor. Protein complexes of IL-33 and ST2 are mainly found outside of the tumor core. The IL-33-producing cells consist primarily of oligodendrocytes. To determine the function of IL-33 in the tumor microenvironment, we used mice lacking the ST2 receptor. When glioma cells were grafted to ST2-deficient mouse brains, the resulting tumors exhibited a more invasive growth pattern, and are associated with poorer survival, compared to wild-type mice. Tumors in ST2-deficient hosts are more invasive, with increased expression of extracellular matrix remodeling enzymes and enhanced tumor angiogenesis. Furthermore, the absence of ST2 leads to a more immunosuppressive environment. Conclusions Our findings reveal that glia-derived IL-33 and its receptor ST2 participate in modulating tumor invasiveness, tumor vasculature, and immunosuppression in glioma.
Collapse
Affiliation(s)
- Grzegorz Wicher
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ananya Roy
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Alessandra Vaccaro
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kalyani Vemuri
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mohanraj Ramachandran
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tommie Olofsson
- Academic Laboratory, Uppsala University Hospital, Uppsala, Sweden
| | - Rebeca-Noemi Imbria
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Belting
- Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Section of Oncology, Lund University, Lund, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gunnar Nilsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, and Centre for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anna Dimberg
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Science for Life Laboratory, Uppsala University, Sweden
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Kumthekar P, Lyleroehr M, Lacson L, Lukas RV, Dixit K, Stupp R, Kruser T, Raizer J, Hou A, Sachdev S, Schwartz M, Pa JB, Lezon R, Schmidt K, Amidei C, Kaiser K. A qualitative evaluation of factors influencing Tumor Treating fields (TTFields) therapy decision making among brain tumor patients and physicians. BMC Cancer 2024; 24:527. [PMID: 38664630 PMCID: PMC11046887 DOI: 10.1186/s12885-024-12042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Tumor Treating Fields (TTFields) Therapy is an FDA-approved therapy in the first line and recurrent setting for glioblastoma. Despite Phase 3 evidence showing improved survival with TTFields, it is not uniformly utilized. We aimed to examine patient and clinician views of TTFields and factors shaping utilization of TTFields through a unique research partnership with medical neuro oncology and medical social sciences. METHODS Adult glioblastoma patients who were offered TTFields at a tertiary care academic hospital were invited to participate in a semi-structured interview about their decision to use or not use TTFields. Clinicians who prescribe TTFields were invited to participate in a semi-structured interview about TTFields. RESULTS Interviews were completed with 40 patients with a mean age of 53 years; 92.5% were white and 60% were male. Participants who decided against TTFields stated that head shaving, appearing sick, and inconvenience of wearing/carrying the device most influenced their decision. The most influential factors for use of TTFields were the efficacy of the device and their clinician's opinion. Clinicians (N = 9) stated that TTFields was a good option for glioblastoma patients, but some noted that their patients should consider the burdens and benefits of TTFields as it may not be the desired choice for all patients. CONCLUSIONS This is the first study to examine patient decision making for TTFields. Findings suggest that clinician support and efficacy data are among the key decision-making factors. Properly understanding the path to patients' decision making is crucial in optimizing the use of TTFields and other therapeutic decisions for glioblastoma patients.
Collapse
Affiliation(s)
- Priya Kumthekar
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Madison Lyleroehr
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA
| | - Leilani Lacson
- Equal Hope, 300 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Rimas V Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Karan Dixit
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Roger Stupp
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Timothy Kruser
- Equal Hope, 300 South Ashland Avenue, Chicago, IL, 60607, USA
| | - Jeff Raizer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Alexander Hou
- Department of Human Oncology, University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53705, USA
| | - Sean Sachdev
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
- Northwestern University Feinberg School of Medicine, 420 E. Superior St, Chicago, IL, 60611, USA
| | - Margaret Schwartz
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Jessica Bajas Pa
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
| | - Ray Lezon
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
| | - Karyn Schmidt
- Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall Suite 1122 710 N Lake Shore Drive, Chicago, IL, 60611, USA
| | - Christina Amidei
- Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 1820, Chicago, IL, 60611, USA
| | - Karen Kaiser
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St. Clair Street, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Visioli A, Trivieri N, Mencarelli G, Giani F, Copetti M, Palumbo O, Pracella R, Cariglia MG, Barile C, Mischitelli L, Soriano AA, Palumbo P, Legnani F, DiMeco F, Gorgoglione L, Pesole G, Vescovi AL, Binda E. Different states of stemness of glioblastoma stem cells sustain glioblastoma subtypes indicating novel clinical biomarkers and high-efficacy customized therapies. J Exp Clin Cancer Res 2023; 42:244. [PMID: 37735434 PMCID: PMC10512479 DOI: 10.1186/s13046-023-02811-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most malignant among gliomas with an inevitable lethal outcome. The elucidation of the physiology and regulation of this tumor is mandatory to unravel novel target and effective therapeutics. Emerging concepts show that the minor subset of glioblastoma stem cells (GSCs) accounts for tumorigenicity, representing the true target for innovative therapies in GBM. METHODS Here, we isolated and established functionally stable and steadily expanding GSCs lines from a large cohort of GBM patients. The molecular, functional and antigenic landscape of GBM tissues and their derivative GSCs was highlited in a side-by-side comprehensive genomic and transcriptomic characterization by ANOVA and Fisher's exact tests. GSCs' physio-pathological hallmarks were delineated by comparing over time in vitro and in vivo their expansion, self-renewal and tumorigenic ability with hierarchical linear models for repeated measurements and Kaplan-Meier method. Candidate biomarkers performance in discriminating GBM patients' classification emerged by classification tree and patients' survival analysis. RESULTS Here, distinct biomarker signatures together with aberrant functional programs were shown to stratify GBM patients as well as their sibling GSCs population into TCGA clusters. Of importance, GSCs cells were demonstrated to fully resemble over time the molecular features of their patient of origin. Furthermore, we pointed out the existence of distinct GSCs subsets within GBM classification, inherently endowed with different self-renewal and tumorigenic potential. Particularly, classical GSCs were identified by more undifferentiated biological hallmarks, enhanced expansion and clonal capacity as compared to the more mature, relatively slow-propagating mesenchymal and proneural cells, likely endowed with a higher potential for infiltration either ex vivo or in vivo. Importantly, the combination of DCX and EGFR markers, selectively enriched among GSCs pools, almost exactly predicted GBM patients' clusters together with their survival and drug response. CONCLUSIONS In this study we report that an inherent enrichment of distinct GSCs pools underpin the functional inter-cluster variances displayed by GBM patients. We uncover two selectively represented novel functional biomarkers capable of discriminating GBM patients' stratification, survival and drug response, setting the stage for the determination of patient-tailored diagnostic and prognostic strategies and, mostly, for the design of appropriate, patient-selective treatment protocols.
Collapse
Affiliation(s)
| | - Nadia Trivieri
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Gandino Mencarelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | | | - Massimiliano Copetti
- Biostatistical Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Riccardo Pracella
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Maria Grazia Cariglia
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Chiara Barile
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Luigi Mischitelli
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Amata Amy Soriano
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy
| | - Pietro Palumbo
- Medical Genetics Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Federico Legnani
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, National Neurologic Institute IRCCS C. Besta, Milan, Italy
- Department of Neurosurgery, John Hopkins University, Baltimore, Mariland, USA
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Angelo L Vescovi
- Scientific Directorate, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
- Hyperstem SA, Lugano, Switzerland.
| | - Elena Binda
- Cancer Stem Cells Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapeutics (ISBReMIT), IRCSS Casa Sollievo della Sofferenza, Opera di San Pio da Pietrelcina, San Giovanni Rotondo, FG, Italy.
| |
Collapse
|
7
|
Parik S, Fernández-García J, Lodi F, De Vlaminck K, Derweduwe M, De Vleeschouwer S, Sciot R, Geens W, Weng L, Bosisio FM, Bergers G, Duerinck J, De Smet F, Lambrechts D, Van Ginderachter JA, Fendt SM. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. Front Oncol 2022; 12:988872. [PMID: 36338708 PMCID: PMC9635944 DOI: 10.3389/fonc.2022.988872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/16/2022] [Indexed: 07/30/2023] Open
Abstract
Glioblastoma is a highly lethal grade of astrocytoma with very low median survival. Despite extensive efforts, there is still a lack of alternatives that might improve these prospects. We uncovered that the chemotherapeutic agent temozolomide impinges on fatty acid synthesis and desaturation in newly diagnosed glioblastoma. This response is, however, blunted in recurring glioblastoma from the same patient. Further, we describe that disrupting cellular fatty acid homeostasis in favor of accumulation of saturated fatty acids such as palmitate synergizes with temozolomide treatment. Pharmacological inhibition of SCD and/or FADS2 allows palmitate accumulation and thus greatly augments temozolomide efficacy. This effect was independent of common GBM prognostic factors and was effective against cancer cells from recurring glioblastoma. In summary, we provide evidence that intracellular accumulation of saturated fatty acids in conjunction with temozolomide based chemotherapy induces death in glioblastoma cells derived from patients.
Collapse
Affiliation(s)
- Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Francesca Lodi
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Karen De Vlaminck
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Marleen Derweduwe
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | | | - Raf Sciot
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
| | - Wietse Geens
- Department of Neurosurgery, UZ Brussel, Jette, Belgium
| | - Linqian Weng
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
| | - Francesca Maria Bosisio
- Department of Pathology, University Hospital Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Translational Cell & Tissue Research Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, United States
| | | | - Frederick De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
8
|
ZEB1 induces N-cadherin expression in human glioblastoma and may alter patient survival. Mol Clin Oncol 2022; 17:123. [PMID: 35911664 DOI: 10.3892/mco.2022.2556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the expression of epithelial-mesenchymal transition (EMT)-related factors zinc finger E-box-binding homeobox 1 (ZEB1), cadherin-1 (CDH1), cadherin-2 (CDH2) and the cell cycle modulating kinase cyclin-dependent kinase 1 (CDK1) in human glioblastoma (GBM) compared to normal brain tissue, as well as whether the levels of expression were associated with the overall and progression-free survival of the GBM patients. In 44 GBM and five normal brain tissue specimens, the expression levels of ZEB1, CDH1, CDH2 and CDK1 were evaluated by real-time PCR and immunostaining, and the results were correlated with clinical data. The expression levels of all investigated genes as detected by immunostaining were significantly higher in the GBM when compared to the normal brain tissues. There was no influence on survival. A linear correlation between ZEB1 and CDH2 and CDK1 expression was observed in GBM. Moreover, ZEB1 was involved in EMT (e.g., signaling in human GBM) and high ZEB1 levels were linked to an aberrant cell cycle processing, marked by CDK1 overexpression.
Collapse
|
9
|
Teixeira SA, Burim RV, Viapiano MS, Bidinotto LT, Nagashi Marie SK, Fleury Malheiros SM, Oba-Shinjo SM, Andrade AF, Carlotti CG. Alpha2beta1 Integrin Polymorphism in Diffuse Astrocytoma Patients. Front Oncol 2022; 12:914156. [PMID: 35936750 PMCID: PMC9353741 DOI: 10.3389/fonc.2022.914156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Integrins are heterodimeric transmembrane glycoproteins resulting from the non-covalent association of an α and β chain. The major integrin receptor for collagen/laminin, α2β1 is expressed on a wide variety of cell types and plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Integrin-triggered signaling pathways promote the invasion and survival of glioma cells by modifying the brain microenvironment. In this study, we investigated the association of a specific genetic polymorphism of integrin α2β1 with the incidence of diffusely infiltrating astrocytoma and the progression of these tumors. Single-nucleotide polymorphism in intron 7 of the integrin ITGA2 gene was examined in 158 patients and 162 controls using polymerase chain reaction and restriction enzyme analysis. The ITGA2 genotype +/+ (with a BglII restriction site in both alleles) exhibited higher frequency in grade II astrocytoma compared to control (P = 0.02) whereas the genotype -/- (lacking the BglII site) correlated with the poorest survival rate (P = 0.04). In addition, in silico analyses of ITGA2 expression from low-grade gliomas (LGG, n = 515) and glioblastomas (GBM, n = 159) indicated that the higher expression of ITGA2 in LGG was associated with poor overall survival (P < 0.0001). However, the distribution of integrin ITGA2 BglII genotypes (+/+, +/-, -/-) was not significantly different between astrocytoma subgroups III and IV (P = 0.65, 0.24 and 0.33; 0.29, 0.48, 0.25, respectively) compared to control. These results suggest a narrow association between the presence of this SNP and indicate that further studies with larger samples are warranted to analyze the relation between tumor grade and overall survival, highlighting the importance of determining these polymorphisms for prognosis of astrocytomas.
Collapse
Affiliation(s)
- Silvia A Teixeira
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Regislaine V Burim
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, University of São Paulo (USP), Faculty of Pharmaceutical Sciences of Ribeirão Preto, São Paulo, Brazil
| | - Mariano S Viapiano
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Lucas T Bidinotto
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
- Department of Pathology, School of Medicine, UNESP- Univ. Estadual Paulista, Botucatu, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos, Brazil
| | - Suely K Nagashi Marie
- Department of Neurology, Medical School, University of São Paulo (USP), São Paulo, Brazil
| | - Suzana M Fleury Malheiros
- Department of Neurology, Faculty of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Sueli M Oba-Shinjo
- Department of Internal Medicine, Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Augusto F Andrade
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Carlos G Carlotti
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Overexpression of NNMT in Glioma Aggravates Tumor Cell Progression: An Emerging Therapeutic Target. Cancers (Basel) 2022; 14:cancers14143538. [PMID: 35884600 PMCID: PMC9316405 DOI: 10.3390/cancers14143538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Glioma is one of the most common intracranial malignancies and is incurable due to strong aggressiveness and resistance to radiotherapy and chemotherapy. The lack of effective therapeutic targets is a major problem in current treatment. In the present study, we found that nicotinamide N-methyltransferase (NNMT) is a key factor influencing the occurrence and development of glioma. High NNMT expression in glioma is a predictor of short overall survival and poor patient outcome. NNMT knockdown reduced the volume of mice xenograft glioma and the viability of glioma cells. Additionally, overexpression of NNMT epigenetically silenced GAP43 through DNA methylation, histone methylation, and deacetylation modification processes. GAP43 can inhibit the formation of microtubules in tumor and intertumor cell network connections and induce apoptosis through the SIRT1 signaling pathway. Therefore, NNMT could be a potential candidate for the clinical diagnosis and treatment of glioma. Abstract Purpose: Increasing evidence has revealed that nicotinamide N-methyltransferase (NNMT) is a key factor influencing the prognosis of tumors. The present study aimed to investigate the role of NNMT in glioma and to elucidate the associated functional mechanisms. Methods: Clinical samples were analyzed by immunohistochemical staining and Western blotting to evaluate NNMT expression in glioma and normal brain tissues. The correlation between NNMT expression and glioma was analyzed using the Cancer Genome Atlas (TCGA) database. Additionally, NNMT was knocked down in two types of glioma cells, U87 and U251, to evaluate the invasive ability of these cells. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate NNMT knockdown in the cells. Furthermore, ELISA was used to determine the balance between nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide hydrogen (NAD/NADH ratio), which verified the altered methylation patterns in the cells. The glioma xenograft mouse models were used to verify the regulatory role of NNMT, GAP43, and SIRT1. Results: Analysis based on our clinical glioma samples and TCGA database revealed that overexpression of NNMT was associated with poor prognosis of patients. Knockdown of NNMT reduced the invasive ability of glioma cells, and downregulation of its downstream protein GAP43 occurred due to altered cellular methylation caused by NNMT overexpression. Gene Set Enrichment Analysis confirmed that NNMT modulated the NAD-related signaling pathway and showed a negative association between NNMT and SIRT1. Moreover, the regulatory roles of NNMT, GAP43, and SIRT1 were confirmed in glioma xenograft mouse models. Conclusion: Overexpression of NNMT causes abnormal DNA methylation through regulation of the NAD/NADH ratio, which in turn leads to the downregulation of GAP43 and SIRT1, eventually altering the biological behavior of tumor cells.
Collapse
|
11
|
Lingl JP, Wunderlich A, Goerke S, Paech D, Ladd ME, Liebig P, Pala A, Kim SY, Braun M, Schmitz BL, Beer M, Rosskopf J. The Value of APTw CEST MRI in Routine Clinical Assessment of Human Brain Tumor Patients at 3T. Diagnostics (Basel) 2022; 12:diagnostics12020490. [PMID: 35204583 PMCID: PMC8871436 DOI: 10.3390/diagnostics12020490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Background. With fast-growing evidence in literature for clinical applications of chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI), this prospective study aimed at applying amide proton transfer-weighted (APTw) CEST imaging in a clinical setting to assess its diagnostic potential in differentiation of intracranial tumors at 3 tesla (T). Methods. Using the asymmetry magnetization transfer ratio (MTRasym) analysis, CEST signals were quantitatively investigated in the tumor areas and in a similar sized region of the normal-appearing white matter (NAWM) on the contralateral hemisphere of 27 patients with intracranial tumors. Area under curve (AUC) analyses were used and results were compared to perfusion-weighted imaging (PWI). Results. Using APTw CEST, contrast-enhancing tumor areas showed significantly higher APTw CEST metrics than contralateral NAWM (AUC = 0.82; p < 0.01). In subgroup analyses of each tumor entity vs. NAWM, statistically significant effects were yielded for glioblastomas (AUC = 0.96; p < 0.01) and for meningiomas (AUC = 1.0; p < 0.01) but not for lymphomas as well as metastases (p > 0.05). PWI showed results comparable to APTw CEST in glioblastoma (p < 0.01). Conclusions. This prospective study confirmed the high diagnostic potential of APTw CEST imaging in a routine clinical setting to differentiate brain tumors.
Collapse
Affiliation(s)
- Julia P. Lingl
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Arthur Wunderlich
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Steffen Goerke
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (S.G.); (M.E.L.)
| | - Daniel Paech
- German Cancer Research Center (DKFZ), Division of Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Department of Neuroradiology, Venusberg-Campus 1, Bonn University, 53127 Bonn, Germany
| | - Mark E. Ladd
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (S.G.); (M.E.L.)
- Faculty of Medicine, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - Patrick Liebig
- Siemens Healthcare GmbH, Henkestraße 127, 91052 Erlangen, Germany;
| | - Andrej Pala
- Department of Neurosurgery, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany;
| | - Soung Yung Kim
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Michael Braun
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Bernd L. Schmitz
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
| | - Meinrad Beer
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
| | - Johannes Rosskopf
- Department of Radiology, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (J.P.L.); (A.W.); (S.Y.K.); (M.B.); (B.L.S.); (M.B.)
- Section of Neuroradiology, Bezirkskrankenhaus Guenzburg, Lindenallee 2, 89312 Guenzburg, Germany
- Correspondence:
| |
Collapse
|
12
|
Rose M, Cardon T, Aboulouard S, Hajjaji N, Kobeissy F, Duhamel M, Fournier I, Salzet M. Surfaceome Proteomic of Glioblastoma Revealed Potential Targets for Immunotherapy. Front Immunol 2021; 12:746168. [PMID: 34646273 PMCID: PMC8503648 DOI: 10.3389/fimmu.2021.746168] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most common and devastating malignant brain tumor in adults. The mortality rate is very high despite different treatments. New therapeutic targets are therefore highly needed. Cell-surface proteins represent attractive targets due to their accessibility, their involvement in essential signaling pathways, and their dysregulated expression in cancer. Moreover, they are potential targets for CAR-based immunotherapy or mRNA vaccine strategies. In this context, we investigated the GBM-associated surfaceome by comparing it to astrocytes cell line surfaceome to identify new specific targets for GBM. For this purpose, biotinylation of cell surface proteins has been carried out in GBM and astrocytes cell lines. Biotinylated proteins were purified on streptavidin beads and analyzed by shotgun proteomics. Cell surface proteins were identified with Cell Surface Proteins Atlas (CSPA) and Gene Ontology enrichment. Among all the surface proteins identified in the different cell lines we have confirmed the expression of 66 of these in patient’s glioblastoma using spatial proteomic guided by MALDI-mass spectrometry. Moreover, 87 surface proteins overexpressed or exclusive in GBM cell lines have been identified. Among these, we found 11 specific potential targets for GBM including 5 mutated proteins such as RELL1, CYBA, EGFR, and MHC I proteins. Matching with drugs and clinical trials databases revealed that 7 proteins were druggable and under evaluation, 3 proteins have no known drug interaction yet and none of them are the mutated form of the identified proteins. Taken together, we discovered potential targets for immune therapy strategies in GBM.
Collapse
Affiliation(s)
- Mélanie Rose
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Tristan Cardon
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Soulaimane Aboulouard
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Nawale Hajjaji
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Breast Cancer Unit, Oscar Lambret Center, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marie Duhamel
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France
| | - Isabelle Fournier
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut Universitaire de France, Paris, France
| | - Michel Salzet
- Université Lille, Inserm, CHU Lille, U1192, Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
13
|
A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med Sci 2021; 37:789-797. [PMID: 34581904 DOI: 10.1007/s10103-021-03426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Glioma is the most common primary central nervous system tumor; many methods are currently being used to research and treat glioma. In recent years, fluorescent-guided resection (FGR) and photodynamic therapy (PDT) have become hot spots in the treatment of glioma. Based on the existing literatures regarding the FGR enhancing resection rate and regarding efficacy of PDT for the treatment of glioma, this paper made a systematic review of FGR for gross total resection of patients and the PDT for the survival of patients with glioma. Meta-analysis of eligible studies was performed to derive precise estimation of PDT on the prognosis of patients with glioma by searching all related literatures in PubMed, EMBASE, Cochrane, and Web of Science databases, and further to evaluate (GTR) under FGR and the efficacy of PDT therapy, including 1-year and 2-year survival rates, overall survival (OS), and progression-free survival (PFS). According to the inclusion and exclusion criteria, a total of 1294 patients with glioma were included in the final analysis of 31 articles, among which a 73.00% (95% CI, 68.00 ~ 79.00%, P < 0.01) rate of GTR in 27 groups included in 23 articles was reported for those receiving FGR. The OS was 17.78 months (95% CI, 8.89 ~ 26.67, P < 0.01) in 5 articles on PDT-treated patients with glioma, and the mean difference of OS was 6.18 (95% CI, 3.3 ~ 9.06, P < 0.01) between PDT treatment and conventional glioma surgery, showing a statistically significant difference (P < 0.01). The PFS was 10.82 months (95% CI, 7.04 ~ 14.61, P < 0.01) in 5 articles on PDT-treated patients with glioma. A 1-year survival rate of 59.00% (95% CI, 38.00 ~ 77.00%, P < 0.01) in 10 groups included in 8 articles and 2-year survival rate of 25.00% (95% CI, 15.00 ~ 36.00%, P < 0.01) in 7 groups included in 6 articles were reported for those with PDT. FGR and PDT are feasible for treatment of patients with glioma, because FGR can effectively increase the resection rate, at the same time, PDT can prolong the survival time. However, due to the limitation of small sample size in the existing studies, larger samples and randomized controlled clinical trials are needed to analyze the resection under FGR and efficacy of PDT in patients with glioma.
Collapse
|
14
|
Coaxial bioprinted microfibers with mesenchymal stem cells for glioma microenvironment simulation. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00155-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Dang NN, Li XB, Zhang M, Han C, Fan XY, Huang SH. NLGN3 Upregulates Expression of ADAM10 to Promote the Cleavage of NLGN3 via Activating the LYN Pathway in Human Gliomas. Front Cell Dev Biol 2021; 9:662763. [PMID: 34485271 PMCID: PMC8415229 DOI: 10.3389/fcell.2021.662763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.
Collapse
Affiliation(s)
- Ning-Ning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao-Bing Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mei Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chen Han
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao-Yong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Kumthekar P, Ko CH, Paunesku T, Dixit K, Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, Lukas RV, Jovanovic B, McCortney K, Colman H, Chen S, Lai B, Antipova O, Deng J, Li L, Tommasini-Ghelfi S, Hurley LA, Unruh D, Sharma NV, Kandpal M, Kouri FM, Davuluri RV, Brat DJ, Muzzio M, Glass M, Vijayakumar V, Heidel J, Giles FJ, Adams AK, James CD, Woloschak GE, Horbinski C, Stegh AH. A first-in-human phase 0 clinical study of RNA interference-based spherical nucleic acids in patients with recurrent glioblastoma. Sci Transl Med 2021; 13:13/584/eabb3945. [PMID: 33692132 DOI: 10.1126/scitranslmed.abb3945] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most difficult cancers to effectively treat, in part because of the lack of precision therapies and limited therapeutic access to intracranial tumor sites due to the presence of the blood-brain and blood-tumor barriers. We have developed a precision medicine approach for GBM treatment that involves the use of brain-penetrant RNA interference-based spherical nucleic acids (SNAs), which consist of gold nanoparticle cores covalently conjugated with radially oriented and densely packed small interfering RNA (siRNA) oligonucleotides. On the basis of previous preclinical evaluation, we conducted toxicology and toxicokinetic studies in nonhuman primates and a single-arm, open-label phase 0 first-in-human trial (NCT03020017) to determine safety, pharmacokinetics, intratumoral accumulation and gene-suppressive activity of systemically administered SNAs carrying siRNA specific for the GBM oncogene Bcl2Like12 (Bcl2L12). Patients with recurrent GBM were treated with intravenous administration of siBcl2L12-SNAs (drug moniker: NU-0129), at a dose corresponding to 1/50th of the no-observed-adverse-event level, followed by tumor resection. Safety assessment revealed no grade 4 or 5 treatment-related toxicities. Inductively coupled plasma mass spectrometry, x-ray fluorescence microscopy, and silver staining of resected GBM tissue demonstrated that intravenously administered SNAs reached patient tumors, with gold enrichment observed in the tumor-associated endothelium, macrophages, and tumor cells. NU-0129 uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein expression, as indicated by comparison of matched primary tumor and NU-0129-treated recurrent tumor. Our results establish SNA nanoconjugates as a potential brain-penetrant precision medicine approach for the systemic treatment of GBM.
Collapse
Affiliation(s)
- Priya Kumthekar
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | - Caroline H Ko
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| | - Tatjana Paunesku
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karan Dixit
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Orin Bloch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew Tate
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Margaret Schwartz
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Laura Zuckerman
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ray Lezon
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Rimas V Lukas
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Borko Jovanovic
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Junjing Deng
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Luxi Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Serena Tommasini-Ghelfi
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Lisa A Hurley
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Dusten Unruh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nitya V Sharma
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Manoj Kandpal
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Fotini M Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ramana V Davuluri
- Preventive Medicine, Health and Biomedical Informatics, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, IL 60616, USA
| | | | | | | | - Francis J Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ann K Adams
- Office for Research, Northwestern University, Evanston, IL 60208, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Northwestern Malnati Brain Tumor Institute, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA. .,International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Park CW, Lee SM, Yoon KJ. Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Rep 2020. [PMID: 33148378 PMCID: PMC7704224 DOI: 10.5483/bmbrep.2020.53.11.204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper development of the nervous system is critical for its function, and deficits in neural development have been impli-cated in many brain disorders. A precise and predictable developmental schedule requires highly coordinated gene expression programs that orchestrate the dynamics of the developing brain. Especially, recent discoveries have been showing that various mRNA chemical modifications can affect RNA metabolism including decay, transport, splicing, and translation in cell type- and tissue-specific manner, leading to the emergence of the field of epitranscriptomics. Moreover, accumulating evidences showed that certain types of RNA modifications are predominantly found in the developing brain and their dysregulation disrupts not only the developmental processes, but also neuronal activities, suggesting that epitranscriptomic mechanisms play critical post-transcriptional regulatory roles in development of the brain and etiology of brain disorders. Here, we review recent advances in our understanding of molecular regulation on transcriptome plasticity by RNA modifications in neurodevelopment and how alterations in these RNA regulatory programs lead to human brain disorders.
Collapse
Affiliation(s)
- Chan-Woo Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Sung-Min Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
18
|
Grant R, Dowswell T, Tomlinson E, Brennan PM, Walter FM, Ben-Shlomo Y, Hunt DW, Bulbeck H, Kernohan A, Robinson T, Lawrie TA. Interventions to reduce the time to diagnosis of brain tumours. Cochrane Database Syst Rev 2020; 9:CD013564. [PMID: 32901926 PMCID: PMC8082957 DOI: 10.1002/14651858.cd013564.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Brain tumours are recognised as one of the most difficult cancers to diagnose because presenting symptoms, such as headache, cognitive symptoms, and seizures, may be more commonly attributable to other, more benign conditions. Interventions to reduce the time to diagnosis of brain tumours include national awareness initiatives, expedited pathways, and protocols to diagnose brain tumours, based on a person's presenting symptoms and signs; and interventions to reduce waiting times for brain imaging pathways. If such interventions reduce the time to diagnosis, it may make it less likely that people experience clinical deterioration, and different treatment options may be available. OBJECTIVES To systematically evaluate evidence on the effectiveness of interventions that may influence: symptomatic participants to present early (shortening the patient interval), thresholds for primary care referral (shortening the primary care interval), and time to imaging diagnosis (shortening the secondary care interval and diagnostic interval). To produce a brief economic commentary, summarising the economic evaluations relevant to these interventions. SEARCH METHODS For evidence on effectiveness, we searched CENTRAL, MEDLINE, and Embase from January 2000 to January 2020; Clinicaltrials.gov to May 2020, and conference proceedings from 2014 to 2018. For economic evidence, we searched the UK National Health Services Economic Evaluation Database from 2000 to December 2014. SELECTION CRITERIA We planned to include studies evaluating any active intervention that may influence the diagnostic pathway, e.g. clinical guidelines, direct access imaging, public health campaigns, educational initiatives, and other interventions that might lead to early identification of primary brain tumours. We planned to include randomised and non-randomised comparative studies. Included studies would include people of any age, with a presentation that might suggest a brain tumour. DATA COLLECTION AND ANALYSIS Two review authors independently assessed titles identified by the search strategy, and the full texts of potentially eligible studies. We resolved discrepancies through discussion or, if required, by consulting another review author. MAIN RESULTS We did not identify any studies for inclusion in this review. We excluded 115 studies. The main reason for exclusion of potentially eligible intervention studies was their study design, due to a lack of control groups. We found no economic evidence to inform a brief economic commentary on this topic. AUTHORS' CONCLUSIONS In this version of the review, we did not identify any studies that met the review inclusion criteria for either effectiveness or cost-effectiveness. Therefore, there is no evidence from good quality studies on the best strategies to reduce the time to diagnosis of brain tumours, despite the prioritisation of research on early diagnosis by the James Lind Alliance in 2015. This review highlights the need for research in this area.
Collapse
Affiliation(s)
- Robin Grant
- Edinburgh Centre for Neuro-Oncology (ECNO), Western General Hospital, Edinburgh, UK
| | - Therese Dowswell
- C/o Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's Health, The University of Liverpool, Liverpool, UK
| | - Eve Tomlinson
- Cochrane Gynaecological, Neuro-oncology and Orphan Cancers, 1st Floor Education Centre, Royal United Hospital, Bath, UK
| | - Paul M Brennan
- Translational Neurosurgery Department, Western General Hospital, Edinburgh, UK
| | - Fiona M Walter
- Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, Bristol, UK
| | - David William Hunt
- Foundation School/Dept of Clinical and Experimental Medicine, Royal Surrey County Hospital/University of Surrey, Guildford, UK
| | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
19
|
Liu Y, Jin M, Gao Y, Wang Y, Xue S, Wang L, Xuan C. Prediction of Ubiquitin Ligase Nrdp1-Associated Proteins in Glioma Database. Cell Biochem Biophys 2020; 78:301-308. [PMID: 32562142 DOI: 10.1007/s12013-020-00926-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/09/2020] [Indexed: 01/24/2023]
Abstract
The ubiquitin proteasome pathway is conserved from yeast to mammals and is necessary for the targeted degradation of most short-lived proteins in eukaryotic cells. Its protein substrates include cell cycle regulatory proteins and proteins that are not properly folded in the endoplasmic reticulum. Owing to the ubiquity of its protein substrates, ubiquitination regulates a variety of cellular activities, including cell proliferation, apoptosis, autophagy, endocytosis, DNA damage repair, and immune response. With new genomic data continuously being obtained, ubiquitination through genomic data analysis will be an effective method. We obtained 83 overlapping genes from four glioma databases, which differed from ubiquitin ligase Nrdp1 expression, including 36 downregulated and 47 upregulated genes. The KEGG pathways, molecular functions, cellular components, and biological processes potentially associated with Nrdp1 were obtained using GSEA and Cytoscape. In human gliomas, differences in the expression of Nrdp1 were identified between nontumor brain tissue and different glioma tissues, but no difference in expression was found between low‑grade glioma (LGG) and anaplastic glioma (AG). In survival analysis, we found no significant association between Nrdp1 expression level and patient prognosis.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurosurgery, Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Yong Gao
- Department of Orthopaedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China
| | - Shengbai Xue
- Department of Clinical Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, PR China
| | - Lei Wang
- Department of Neurosurgery, Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, PR China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, PR China.
| |
Collapse
|
20
|
Xu X, Ban Y, Zhao Z, Pan Q, Zou J. MicroRNA-1298-3p inhibits proliferation and invasion of glioma cells by downregulating Nidogen-1. Aging (Albany NY) 2020; 12:7761-7773. [PMID: 32355035 PMCID: PMC7244082 DOI: 10.18632/aging.103087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
Glioma is the most prevalent tumor of the central nervous system. To identify differentially expressed miRNAs (DEMs) in gliomas of different grades, bioinformatics analysis was performed. The DEMs between low-grade gliomas (LGGs) and high-grade gliomas (HGGs) were identified by screening the Gene Expression Omnibus and The Cancer Genome Atlas databases using the LIMMA package. Six overlapping DEMs were identified by comparing LGGs and HGGs. Downregulation of miR-1298-3p correlated with poor overall survival rates in glioma patients. Overexpression of miR-1298-3p induced apoptosis of glioma cells and inhibited glioma cell proliferation, migration, and invasion. The basement membrane protein Nidogen-1 (NID1) was identified as a direct binding target of miR-1298-3p in glioma cells. MiR-1298-3p agonist downregulated the NID1 and vimentin levels, but upregulated the level of E-cadherin in glioma cells. Importantly, overexpression of miR-1298-3p induced apoptosis and reduced tumor growth in a mouse xenograft model of glioma. Our results show that miR-1298-3p functions as a tumor suppressor in glioma cells, and suggest that it might serve as a potential biomarker and therapeutic target in glioma patients.
Collapse
Affiliation(s)
- Xiaohe Xu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Yunchao Ban
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Zilong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Qichen Pan
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| | - Jingyu Zou
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, P.R. China
| |
Collapse
|
21
|
PART1 and hsa-miR-429-Mediated SHCBP1 Expression Is an Independent Predictor of Poor Prognosis in Glioma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1767056. [PMID: 32351983 PMCID: PMC7174919 DOI: 10.1155/2020/1767056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
Abstract
Gliomas are the most common primary brain tumors. Because of their high degree of malignancy, patient survival rates are unsatisfactory. Therefore, exploring glioma biomarkers will play a key role in early diagnosis, guiding treatment, and monitoring the prognosis of gliomas. We found two lncRNAs, six miRNAs, and nine mRNAs that were differentially expressed by analyzing genomic data of glioma patients. The diagnostic value of mRNA expression levels in gliomas was determined by receiver operating characteristic (ROC) curve analysis. Among the nine mRNAs, the area under the ROC curve values of only CEP55 and SHCBP1 were >0.7, specifically 0.834 and 0.816, respectively. Additionally, CEP55 and SHCBP1 were highly expressed in glioma specimens and showed increased expression according to the glioma grade, and outcomes of high expression patients were poor. CEP55 was enriched in the cell cycle, DNA replication, mismatch repair, and P53 signaling pathway. SHCBP1 was enriched in the cell cycle, DNA replication, ECM receptor interaction, and P53 signaling pathway. Age, grade, IDH status, chromosome 19/20 cogain, and SHCBP1 were independent factors for prognosis. Our findings suggest the PART1-hsa-miR-429-SHCBP1 regulatory network plays an important role in gliomas.
Collapse
|
22
|
Mahmoud BS, AlAmri AH, McConville C. Polymeric Nanoparticles for the Treatment of Malignant Gliomas. Cancers (Basel) 2020; 12:E175. [PMID: 31936740 PMCID: PMC7017235 DOI: 10.3390/cancers12010175] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant gliomas are one of the deadliest forms of brain cancer and despite advancements in treatment, patient prognosis remains poor, with an average survival of 15 months. Treatment using conventional chemotherapy does not deliver the required drug dose to the tumour site, owing to insufficient blood brain barrier (BBB) penetration, especially by hydrophilic drugs. Additionally, low molecular weight drugs cannot achieve specific accumulation in cancerous tissues and are characterized by a short circulation half-life. Nanoparticles can be designed to cross the BBB and deliver their drugs within the brain, thus improving their effectiveness for treatment when compared to administration of the free drug. The efficacy of nanoparticles can be enhanced by surface PEGylation to allow more specificity towards tumour receptors. This review will provide an overview of the different therapeutic strategies for the treatment of malignant gliomas, risk factors entailing them as well as the latest developments for brain drug delivery. It will also address the potential of polymeric nanoparticles in the treatment of malignant gliomas, including the importance of their coating and functionalization on their ability to cross the BBB and the chemistry underlying that.
Collapse
Affiliation(s)
- Basant Salah Mahmoud
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
- Hormones Department, Medical Research Division, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt
| | - Ali Hamod AlAmri
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
- College of Pharmacy, King Khalid University, Abha 62585, Saudi Arabia
| | - Christopher McConville
- College of Medical and Dental Sciences, School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK; (B.S.M.); or
| |
Collapse
|
23
|
Drewes AM, Møller ME, Hertzum-Larsen R, Engholm G, Storm HH. Risk of primary brain tumour after breast cancer. Endocr Connect 2020; 9:28-33. [PMID: 31821158 PMCID: PMC6993258 DOI: 10.1530/ec-19-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Cancer registry data in the USA indicated that women diagnosed with breast cancer before the age of 40 were at increased risk of a new primary tumour within the brain and women aged 50 years or above were at lower risk than expected. Our aim was to investigate if similar results could be found in Danish population-based data, considering an explanatory role of hormonal status. METHODS Our study cohort included all women diagnosed with breast cancer below the age of 60 between 1978 and 2013 in Denmark. A total of 47,920 women were followed up in the Danish Cancer Registry for primary brain cancer. Standardized incidence ratios (observed/expected cases (O/E)) were used to estimate the risk of getting a primary brain tumour in the breast cancer cohort. RESULTS Data indicated an increased tendency of brain cancer following breast cancer at ages below 60 years (O/E = 1.24). For premenopausal women (age <49 at the diagnosis of breast cancer) the O/E was 1.25. Stratifying by time of breast cancer diagnosis, we observed an increased risk of being diagnosed with a brain tumour among women aged 49 years or younger at breast cancer diagnosis between 2004 and 2013. CONCLUSION The results indicate an increased tendency of developing a primary brain tumour in women with previous breast cancer history. Whereas the finding in premenopausal women is in line with the SEER data, the finding among postmenopausal is not. Primary brain tumours in breast cancer patients call for research in genetics and hormones to establish common risk factors.
Collapse
Affiliation(s)
| | - Maria E Møller
- The Danish Cancer Society, Denmark (Kræftens Bekæmpelse), København Ø, Denmark
| | | | - Gerda Engholm
- The Danish Cancer Society, Denmark (Kræftens Bekæmpelse), København Ø, Denmark
| | - Hans H Storm
- The Danish Cancer Society, Denmark (Kræftens Bekæmpelse), København Ø, Denmark
- Correspondence should be addressed to H H Storm:
| |
Collapse
|
24
|
Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:2893043. [PMID: 31871484 PMCID: PMC6913337 DOI: 10.1155/2019/2893043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/16/2019] [Accepted: 10/31/2019] [Indexed: 12/30/2022]
Abstract
Purpose To classify radiation necrosis versus recurrence in glioma patients using a radiomics model based on combinational features and multimodality MRI images. Methods Fifty-one glioma patients who underwent radiation treatments after surgery were enrolled in this study. Sixteen patients revealed radiation necrosis while 35 patients showed tumor recurrence during the follow-up period. After treatment, all patients underwent T1-weighted, T1-weighted postcontrast, T2-weighted, and fluid-attenuated inversion recovery scans. A total of 41,284 handcrafted and 24,576 deep features were extracted for each patient. The 0.623 + bootstrap method and the area under the curve (denoted as 0.632 + bootstrap AUC) metric were used to select the features. The stepwise forward method was applied to construct 10 logistic regression models based on different combinations of image features. Results For handcrafted features on multimodality MRI, model 7 with seven features yielded the highest AUC of 0.9624, sensitivity of 0.8497, and specificity of 0.9083 in the validation set. These values were higher than the accuracy of using handcrafted features on single-modality MRI (paired t-test, p < 0.05, except sensitivity). For combined handcrafted and AlexNet features on multimodality MRI, model 6 with six features achieved the highest AUC of 0.9982, sensitivity of 0.9941, and specificity of 0.9755 in the validation set. These values were higher than the accuracy of using handcrafted features on multimodality MRI (paired t-test, p < 0.05). Conclusions Handcrafted and deep features extracted from multimodality MRI images reflecting the heterogeneity of gliomas can provide useful information for glioma necrosis/recurrence classification.
Collapse
|
25
|
Paech D, Windschuh J, Oberhollenzer J, Dreher C, Sahm F, Meissner JE, Goerke S, Schuenke P, Zaiss M, Regnery S, Bickelhaupt S, Bäumer P, Bendszus M, Wick W, Unterberg A, Bachert P, Ladd ME, Schlemmer HP, Radbruch A. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol 2019; 20:1661-1671. [PMID: 29733378 DOI: 10.1093/neuonc/noy073] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Early identification of prognostic superior characteristics in glioma patients such as isocitrate dehydrogenase (IDH) mutation and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is of great clinical importance. The study purpose was to investigate the non-invasive predictability of IDH mutation status, MGMT promoter methylation, and differentiation of low-grade versus high-grade glioma (LGG vs HGG) in newly diagnosed patients employing relaxation-compensated multipool chemical exchange saturation transfer (CEST) MRI at 7.0 Tesla. Methods Thirty-one patients with newly diagnosed glioma were included in this prospective study. CEST MRI was performed at a 7T whole-body scanner. Nuclear Overhauser effect (NOE) and isolated amide proton transfer (APT; downfield NOE-suppressed APT = dns-APT) CEST signals (mean value and 90th signal percentile) were quantitatively investigated in the whole tumor area with regard to predictability of IDH mutation, MGMT promoter methylation status, and differentiation of LGG versus HGG. Statistics were performed using receiver operating characteristic (ROC) and area under the curve (AUC) analysis. Results were compared with advanced MRI methods (apparent diffusion coefficient and relative cerebral blood volume ROC/AUC analysis) obtained at 3T. Results dns-APT CEST yielded highest AUCs in IDH mutation status prediction (dns-APTmean = 91.84%, P < 0.01; dns-APT90 = 97.96%, P < 0.001). Furthermore, dns-APT metrics enabled significant differentiation of LGG versus HGG (AUC: dns-APTmean = 0.78, P < 0.05; dns-APT90 = 0.83, P < 0.05). There was no significant difference regarding MGMT promoter methylation status at any contrast (P > 0.05). Conclusions Relaxation-compensated multipool CEST MRI, particularly dns-APT imaging, enabled prediction of IDH mutation status and differentiation of LGG versus HGG and should therefore be considered as a non-invasive MR biomarker in the diagnostic workup.
Collapse
Affiliation(s)
- Daniel Paech
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany
| | - Johannes Windschuh
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany.,Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | | | - Constantin Dreher
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Jan-Eric Meissner
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Steffen Goerke
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Patrick Schuenke
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Moritz Zaiss
- Max-Planck-Institute for Biological Cybernetics, Magnetic Resonance Center, Tuebingen, Germany
| | - Sebastian Regnery
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Philipp Bäumer
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany.,German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Mark Edward Ladd
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Alexander Radbruch
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany.,Department of Radiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
26
|
IL-21 Increases the Reactivity of Allogeneic Human Vγ9Vδ2 T Cells Against Primary Glioblastoma Tumors. J Immunother 2019; 41:224-231. [PMID: 29683891 DOI: 10.1097/cji.0000000000000225] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glioblastoma multiforme (GBM) remains the most frequent and deadliest primary brain tumor in adults despite aggressive treatments, because of the persistence of infiltrative and resistant tumor cells. Nonalloreactive human Vγ9Vδ2 T lymphocytes, the major peripheral γδ T-cell subset in adults, represent attractive effectors for designing immunotherapeutic strategies to track and eliminate brain tumor cells, with limited side effects. We analyzed the effects of ex vivo sensitizations of Vγ9Vδ2 T cells by IL-21, a modulating cytokine, on their cytolytic reactivity. We first showed that primary human GBM-1 cells were naturally eliminated by allogeneic Vγ9Vδ2 T lymphocytes, through a perforin/granzyme-mediated cytotoxicity. IL-21 increased both intracellular granzyme B levels and cytotoxicity of allogeneic human Vγ9Vδ2 T lymphocytes in vitro. Importantly, IL-21-enhanced cytotoxicity was rapid, which supports the development of sensitization(s) of γδ T lymphocytes before adoptive transfer, a process that avoids any deleterious effect associated with direct administrations of IL-21. Finally, we showed, for the first time, that IL-21-sensitized allogeneic Vγ9Vδ2 T cells significantly eliminated GBM tumor cells that developed in the brain after orthotopic administrations in vivo. Altogether our observations pave the way for novel efficient stereotaxic immunotherapies in GBM patients by using IL-21-sensitized allogeneic human Vγ9Vδ2 T cells.
Collapse
|
27
|
Gao Y, Xuan C, Jin M, An Q, Zhuo B, Chen X, Wang L, Wang Y, Sun Q, Shi Y. Ubiquitin ligase RNF5 serves an important role in the development of human glioma. Oncol Lett 2019; 18:4659-4666. [PMID: 31611975 PMCID: PMC6781729 DOI: 10.3892/ol.2019.10801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The ubiquitin ligase ring finger protein 5 (RNF5) has previously been associated with the development of breast cancer. Patients with breast cancer and high RNF5 expression have been demonstrated to have a shorter survival time compared with patients with low RNF5 expression. However, the role of RNF5 in human glioma has not been determined. The present study analyzed the role of RNF5 in gliomas using bioinformatics analysis. The results revealed that RNF5 was differentially expressed in non-cancerous brain tissues and different grades of glioma. Furthermore, a high RNF5 expression in patients with glioma was associated with an improved prognosis compared with patients with low expression. Gene Set Enrichment Analysis revealed that RNF5 was particularly associated with 'Wnt signaling pathway', 'apoptosis', 'focal adhesion' and 'cytokine-cytokine receptor interaction' in patients with glioma. Additionally, 4 potential ubiquitination substrates for RNF5 were predicted, including sorting nexin 10, proprotein convertase subtilisin/kexin type 1, leucine rich glioma inactivated 1 and solute carrier family 39 member 12. These findings provided the basis for further investigation on the role of RNF5 in tumors.
Collapse
Affiliation(s)
- Yong Gao
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Baobiao Zhuo
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu 221400, P.R. China
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Orthopedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
28
|
Tumour-treating fields (TTFields): Investigations on the mechanism of action by electromagnetic exposure of cells in telophase/cytokinesis. Sci Rep 2019; 9:7362. [PMID: 31089145 PMCID: PMC6517379 DOI: 10.1038/s41598-019-43621-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
Tumour-treating fields (TTFields) use alternating electric fields which interfere with dividing cells, thereby reducing tumour growth. Previous reports suggest that electrical forces on cell structure proteins interfered with the chromosome separation during mitosis and induced apoptosis. In the present report we evaluate electromagnetic exposure of cells in telophase/cytokinesis in order to further analyse the mechanism of action on cells. We performed numerical electromagnetic simulations to analyse the field distribution in a cell during different mitotic phases. Based thereon, we developed an electric lumped element model of the mitotic cell. Both the electromagnetic simulation and the lumped element model predict a local increase of the specific absorption rate (SAR) as a measure of the electromagnetically induced power absorption density at the mitotic furrow which may help to explain the anti-proliferative effect. In accordance with other reports, cell culture experiments confirmed that TTFields reduce the proliferation of different glioma cell lines in a field strength- and frequency-dependent manner. Furthermore, we found an additional dependence on the commutation time of the electrical fields. The report gives new insights into TTFields’ anti-proliferative effect on tumours, which could help to improve future TTFields application systems.
Collapse
|
29
|
Paech D, Dreher C, Regnery S, Meissner JE, Goerke S, Windschuh J, Oberhollenzer J, Schultheiss M, Deike-Hofmann K, Bickelhaupt S, Radbruch A, Zaiss M, Unterberg A, Wick W, Bendszus M, Bachert P, Ladd ME, Schlemmer HP. Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients. Eur Radiol 2019; 29:4957-4967. [PMID: 30809720 DOI: 10.1007/s00330-019-06066-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/28/2018] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the association of relaxation-compensated chemical exchange saturation transfer (CEST) MRI with overall survival (OS) and progression-free survival (PFS) in newly diagnosed high-grade glioma (HGG) patients. METHODS Twenty-six patients with newly diagnosed high-grade glioma (WHO grades III-IV) were included in this prospective IRB-approved study. CEST MRI was performed on a 7.0-T whole-body scanner. Association of patient OS/PFS with relaxation-compensated CEST MRI (amide proton transfer (APT), relayed nuclear Overhauser effect (rNOE)/NOE, downfield-rNOE-suppressed APT (dns-APT)) and diffusion-weighted imaging (apparent diffusion coefficient) were assessed using the univariate Cox proportional hazards regression model. Hazard ratios (HRs) and corresponding 95% confidence intervals were calculated. Furthermore, OS/PFS association with clinical parameters (age, gender, O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status, and therapy: biopsy + radio-chemotherapy vs. debulking surgery + radio-chemotherapy) were tested accordingly. RESULTS Relaxation-compensated APT MRI was significantly correlated with patient OS (HR = 3.15, p = 0.02) and PFS (HR = 1.83, p = 0.009). The strongest association with PFS was found for the dns-APT metric (HR = 2.61, p = 0.002). These results still stand for the relaxation-compensated APT contrasts in a homogenous subcohort of n = 22 glioblastoma patients with isocitrate dehydrogenase (IDH) wild-type status. Among the tested clinical parameters, patient age (HR = 1.1, p = 0.001) and therapy (HR = 3.68, p = 0.026) were significant for OS; age additionally for PFS (HR = 1.04, p = 0.048). CONCLUSION Relaxation-compensated APT MRI signal intensity is associated with overall survival and progression-free survival in newly diagnosed, previously untreated glioma patients and may, therefore, help to customize treatment and response monitoring in the future. KEY POINTS • Amide proton transfer (APT) MRI signal intensity is associated with overall survival and progression in glioma patients. • Relaxation compensation enhances the information value of APT MRI in tumors. • Chemical exchange saturation transfer (CEST) MRI may serve as a non-invasive biomarker to predict prognosis and customize treatment.
Collapse
Affiliation(s)
- Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Constantin Dreher
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sebastian Regnery
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jan-Eric Meissner
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Steffen Goerke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Johannes Windschuh
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Johanna Oberhollenzer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Miriam Schultheiss
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Katerina Deike-Hofmann
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sebastian Bickelhaupt
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexander Radbruch
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiology, University Hospital Essen, Essen, Germany
| | - Moritz Zaiss
- Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tuebingen, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, 69120, Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Gutova M, Flores L, Adhikarla V, Tsaturyan L, Tirughana R, Aramburo S, Metz M, Gonzaga J, Annala A, Synold TW, Portnow J, Rockne RC, Aboody KS. Quantitative Evaluation of Intraventricular Delivery of Therapeutic Neural Stem Cells to Orthotopic Glioma. Front Oncol 2019; 9:68. [PMID: 30838174 PMCID: PMC6389659 DOI: 10.3389/fonc.2019.00068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Neural stem cells (NSCs) are inherently tumor-tropic, which allows them to migrate through normal tissue and selectively localize to invasive tumor sites in the brain. We have engineered a clonal, immortalized allogeneic NSC line (HB1.F3.CD21; CD-NSCs) that maintains its stem-like properties, a normal karyotype and is HLA Class II negative. It is genetically and functionally stable over time and multiple passages, and has demonstrated safety in phase I glioma trials. These properties enable the production of an "off-the-shelf" therapy that can be readily available for patient treatment. There are multiple factors contributing to stem cell tumor-tropism, and much remains to be elucidated. The route of NSC delivery and the distribution of NSCs at tumor sites are key factors in the development of effective cell-based therapies. Stem cells can be engineered to deliver and/or produce many different therapeutic agents, including prodrug activating enzymes (which locally convert systemically administered prodrugs to active chemotherapeutic agents); oncolytic viruses; tumor-targeted antibodies; therapeutic nanoparticles; and extracellular vesicles that contain therapeutic oligonucleotides. By targeting these therapeutics selectively to tumor foci, we aim to minimize toxicity to normal tissues and maximize therapeutic benefits. In this manuscript, we demonstrate that NSCs administered via intracerebral/ventricular (IVEN) routes can migrate efficiently toward single or multiple tumor foci. IVEN delivery will enable repeat administrations for patients through an Ommaya reservoir, potentially resulting in improved therapeutic outcomes. In our preclinical studies using various glioma lines, we have quantified NSC migration and distribution in mouse brains and have found robust migration of our clinically relevant HB1.F3.CD21 NSC line toward invasive tumor foci, irrespective of their origin. These results establish proof-of-concept and demonstrate the potential of developing a multitude of therapeutic options using modified NSCs.
Collapse
Affiliation(s)
- Margarita Gutova
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Linda Flores
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Lusine Tsaturyan
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Revathiswari Tirughana
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Soraya Aramburo
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Marianne Metz
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Joanna Gonzaga
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Alexander Annala
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Timothy W Synold
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jana Portnow
- Department of Medical Oncology & Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Russell C Rockne
- Division of Mathematical Oncology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Karen S Aboody
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
31
|
Navone SE, Doniselli FM, Summers P, Guarnaccia L, Rampini P, Locatelli M, Campanella R, Marfia G, Costa A. Correlation of Preoperative Von Willebrand Factor with Magnetic Resonance Imaging Perfusion and Permeability Parameters as Predictors of Prognosis in Glioblastoma. World Neurosurg 2019; 122:e226-e234. [DOI: 10.1016/j.wneu.2018.09.216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
32
|
Zhu A, Li X, Wu H, Miao Z, Yuan F, Zhang F, Wang B, Zhou Y. Molecular mechanism of SSFA2 deletion inhibiting cell proliferation and promoting cell apoptosis in glioma. Pathol Res Pract 2018; 215:600-606. [PMID: 30712887 DOI: 10.1016/j.prp.2018.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/09/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
Gliomas are the most common primary brain malignant tumors in humans. Glioblastoma multiforme(GBM) is the most malignant intracranial tumor with a relatively poor prognosis. There promote us to find effective anti-cancer therapies to reduce cancer mortality. By using bioinformatic analysis, we found SSFA2 as a gene with elevated expression in the glioma tissues. We detected the expression of SSFA2 in glioma tissues and in the glioma cell lines, as well as in normal brain tissues. SSFA2 expression was higher in glioma tissues, especially in glioblastoma multiforme than normal brain tissues. Subsequently, we found that down-regulate SSFA2 in glioma cell lines can regulate the cell cycle to reduce the proliferation ability and induce the early apoptosis rate in shSSFA2 cells relative to control cells. Moreover, we found that down-regulate SSFA2 in glioma cell line U87(shSSFA2-U87) inhibited the growth effectiveness compared to the control cell line U87. These result reveals us that SSFA2 may act as oncogene to promote the progression of glioma. For further research specific mechanisms of SSFA2 in gliomas, we used the gene chip to detect the downstream gene in U87. We found that 30 genes also may be as target gene of SSFA2, and we testify the protein expression by western-blot. The result reveal that IL1A, IL1B and CDK6 as target gene of SSFA2 to regulate the progression of glioma. These finding suggest that SSFA2 could be a new therapeutic target for gliomas.
Collapse
Affiliation(s)
- Aihua Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China; Department of Neurosurgery of Wuxi Third People's Hospital Research, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Zongning Miao
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Fenglai Yuan
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Feng Zhang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Bei Wang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
33
|
Barui A, Datta P. Biophysical factors in the regulation of asymmetric division of stem cells. Biol Rev Camb Philos Soc 2018; 94:810-827. [PMID: 30467934 DOI: 10.1111/brv.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/14/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Ananya Barui
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| | - Pallab Datta
- Centre for Healthcare Science and TechnologyIndian Institute of Engineering Science and Technology, Shibpur Howrah West Bengal 711103 India
| |
Collapse
|
34
|
Inhibition of PIM1 blocks the autophagic flux to sensitize glioblastoma cells to ABT-737-induced apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:175-189. [PMID: 30389373 DOI: 10.1016/j.bbamcr.2018.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
Abstract
Overcoming apoptosis resistance is one major issue in glioblastoma (GB) therapies. Accumulating evidence indicates that resistance to apoptosis in GB is mediated via upregulation of pro-survival BCL2-family members. The synthetic BH3-mimetic ABT-737 effectively targets BCL2, BCL2 like 1 and BCL2 like 2 but still barely affects cell survival which is presumably due to its inability to inhibit myeloid cell leukemia 1 (MCL1). The constitutively active serine/threonine kinase proviral integration site for moloney murine leukemia virus 1 (PIM1) was recently found to be overexpressed in GB patient samples and to maintain cell survival in these tumors. For different GB cell lines, Western Blot, mitochondrial fractionation, fluorescence microscopy, effector caspase assays, flow cytometry, and an adult organotypic brain slice transplantation model were used to investigate the putative PIM1/MCL1 signaling axis regarding potential synergistic effects with ABT-737. We demonstrate that combination of the PIM1 inhibitor SGI-1776 or the pan-PIM kinase inhibitor AZD1208 with ABT-737 strongly sensitizes GB cells to apoptosis. Unexpectedly, this effect was found to be MCL1-independent, but could be partially blocked by caspase 8 (CASP8) inhibition. Remarkably, the analysis of autophagy markers in combination with the observation of massive accumulation and hampered degradation of autophagosomes suggests a completely novel function of PIM1 as a late stage autophagy regulator, maintaining the autophagic flux at the level of autophagosome/lysosome fusion. Our data indicate that PIM1 inhibition and ABT-737 synergistically induce apoptosis in an MCL1-independent but CASP8-dependent manner in GB. They also identify PIM1 as a suitable target for overcoming apoptosis resistance in GB.
Collapse
|
35
|
Ji P, Wang L, Liu J, Mao P, Li R, Jiang H, Lou M, Xu M, Yu X. Knockdown of RPL34 inhibits the proliferation and migration of glioma cells through the inactivation of JAK/STAT3 signaling pathway. J Cell Biochem 2018; 120:3259-3267. [PMID: 30216512 DOI: 10.1002/jcb.27592] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
Ribosomal protein L34 (RPL34), belonging to the L34E family of ribosomal proteins, was reported to be dysregulated in several types of cancers and plays important roles in tumor progression. However, the expression and roles of RPL34 in human glioma remain largely unknown. Thus, the objective of this study was to investigate the expression and role of RPL34 in glioma. We report here that RPL34 is highly expressed in human glioma tissues and cell lines. Knockdown of RPL34 markedly inhibited the proliferation, migration, and invasion, as well as prevented the epithelial-mesenchymal transition phenotype in glioma cells. Further, mechanistic analysis showed that knockdown of RPL34 significantly downregulated the levels of p-JAK and p-STAT3 in glioma cells. Taken together, our findings indicated that knockdown of RPL34 inhibits the proliferation and migration of glioma cells through the inactivation of JAK/STAT3 signaling pathway. Thus, RPL34 may serve as a potential therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Peigang Ji
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haitao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miao Lou
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Meng Xu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
36
|
Jarry U, Joalland N, Chauvin C, Clemenceau B, Pecqueur C, Scotet E. Stereotactic Adoptive Transfer of Cytotoxic Immune Cells in Murine Models of Orthotopic Human Glioblastoma Multiforme Xenografts. J Vis Exp 2018. [PMID: 30222164 DOI: 10.3791/57870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain cancer in adults, is generally associated with a poor prognosis, and scarce efficient therapies have been proposed over the last decade. Among the promising candidates for designing novel therapeutic strategies, cellular immunotherapies have been targeted to eliminate highly invasive and chemo-radioresistant tumor cells, likely involved in a rapid and fatal relapse of this cancer. Thus, administration(s) of allogeneic GBM-reactive immune cell effectors, such as human Vϒ9Vδ2 T lymphocytes, in the vicinity of the tumor would represents a unique opportunity to deliver efficient and highly concentrated therapeutic agents directly into the site of brain malignancies. Here, we present a protocol for the preparation and the stereotaxic administration of allogeneic human lymphocytes in immunodeficient mice carrying orthotopic human primary brain tumors. This study provides a preclinical proof-of-concept for both the feasibility and the antitumor efficacy of these cellular immunotherapies that rely on stereotactic injections of allogeneic human lymphocytes within intrabrain tumor beds.
Collapse
Affiliation(s)
- Ulrich Jarry
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Noémie Joalland
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Cynthia Chauvin
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Béatrice Clemenceau
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO; Hopital de Nantes, Hotel Dieu
| | - Claire Pecqueur
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO
| | - Emmanuel Scotet
- INSERM, CNRS, Université d'Angers, Université de Nantes, CRCINA; Immunotherapy, Graft, Oncology, LabEx IGO;
| |
Collapse
|
37
|
Dreher C, Oberhollenzer J, Meissner JE, Windschuh J, Schuenke P, Regnery S, Sahm F, Bickelhaupt S, Bendszus M, Wick W, Unterberg A, Zaiss M, Bachert P, Ladd ME, Schlemmer HP, Radbruch A, Paech D. Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imaging 2018; 49:777-785. [PMID: 30133046 DOI: 10.1002/jmri.26215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/23/2018] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chemical exchange saturation transfer (CEST) is a novel MRI technique applied to brain tumor patients. PURPOSE To investigate the anatomic location dependence of CEST MRI obtained at 7T and histopathological/molecular parameters in WHO IV° glioma patients. STUDY TYPE Analytic prospective study. POPULATION Twenty-one patients with newly diagnosed WHO IV° gliomas were studied prior to surgery; 11 healthy volunteers were investigated. FIELD STRENGTH/SEQUENCE Conventional MRI (contrast-enhanced, T2 w and diffusion-weighted imaging) at 3T and T2 w and CEST MRI at 7T was performed for patients and both patients and volunteers. ASSESSMENT Mean CEST signal intensities (nuclear-Overhauser-enhancement [NOE], amide-proton-transfer [APT], downfield NOE-suppressed APT [dns-APT]), ADC values, and histopathological/molecular parameters were evaluated with regard to hemisphere location and contact with the subventricular zone. CEST signal intensities of cerebral tissue of healthy volunteers were evaluated with regard to hemisphere discrimination. STATISTICAL TESTS Spearman correlation, Mann-Whitney U-test, Wilcoxon signed-rank-test, Fisher's exact test, and area under the receiver operating curve. RESULTS Maximum APT and dns-APT signal intensities were significantly different in right vs. left hemisphere gliomas (P = 0.037 and P = 0.007), but not in right vs. left hemisphere cerebral tissue of healthy subjects (P = 0.062-0.859). Mean ADC values were significantly decreased in right vs. left hemisphere gliomas (P = 0.044). Mean NOE signal intensity did not differ significantly between gliomas of either hemisphere (P = 0.820), but in case of subventricular zone contact (P = 0.047). A significant correlation was observed between APT and dns-APT and ADC signal intensities (rs = -0.627, P = 0.004 and rs = -0.534, P = 0.019), but not between NOE and ADC (rs = -0.341, P = 0.154). Histopathological/molecular parameters were not significantly different concerning the tumor location (P = 0.104-1.000, P = 0.286-0.696). DATA CONCLUSION APT, dns-APT, and ADC were inversely correlated and depended on the gliomas' hemisphere location. NOE showed significant dependence on subventricular zone contact. Location dependency of APT- and NOE-mediated CEST effects should be considered in clinical investigations of CEST MRI. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:777-785.
Collapse
Affiliation(s)
- Constantin Dreher
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | | | - Jan-Eric Meissner
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Johannes Windschuh
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany.,Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | - Patrick Schuenke
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Moritz Zaiss
- Max-Planck-Institute for biological cybernetics, Magnetic Resonance Center, Tuebingen, Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Mark E Ladd
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Germany
| | | | - Alexander Radbruch
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Daniel Paech
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| |
Collapse
|
38
|
Rahmani Kukia N, Alipanah-Moghadam R, Delirezh N, Mazani M. Mesenchymal Stromal Stem Cell-Derived Microvesicles Enhance Tumor Lysate Pulsed Dendritic Cell Stimulated
Autologous T lymphocyte Cytotoxicity. Asian Pac J Cancer Prev 2018; 19:1895-1902. [PMID: 30049202 PMCID: PMC6165664 DOI: 10.22034/apjcp.2018.19.7.1895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy is one promising therapeutic strategy against glioma, an aggressive form of brain cancer. Previous studies have demonstrated that multiple tumor antigens exist and can be used to induce tumor specific T cell responses. Furthermore, recently it was shown that TLR4-primed mesenchymal stem cells (MSCs), also known as MSC1, mostly elaborate pro-inflammatory mediators. Compared to MSCs, MSC-derived microvesicles (MVs) have advantageous properties that present them as stable, long lasting effectors with no risk of immune rejection. Therefore, peripheral blood monocyte derived dendritic cells (MoDCs) have been used to load tumor antigens and stimulate T cell mediated responses in the presence of MSC1-derived MVs in vitro. Methods The B92 tumor cell line was heated to 43°C for 90 min prior to preparation of tumor cell lysates. MVs were purified by differential ultracentrifugation after isolation, stimulation of proliferation and treatment of MSCs. Autologous T cells isolated from non-adherent cells were harvested during the procedure to generate MoDCs and then incubated with heat stressed tumor cell lysate pulsed DCs in the presence of MSC1-derived MVs. T cells were then co-cultured with tumor cells in 96-well plates at a final volume of 200 μl CM at an effector: target ratio of 100:1 to determine their specific cytotoxic activity. Results Flow cytometric analysis, T cell mediated cytotoxicity showed that heat stressed tumor antigen pulsed MoDCs and MSC1-derived MVs primed T cells elicited non-significantly enhanced cytotoxic activity toward B92 tumor cells (P≥0.05). Conclusion These findings may offer new insights into tumor antigen presenting technology involving dendritic cells and MSC1-derived MVs. Further exploration of the potential of such nanoscale particles in immunotherapy and in novel cancer vaccine settings appears warranted.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran. ,
| | | | | | | |
Collapse
|
39
|
Sánchez-Hernández L, Hernández-Soto J, Vergara P, González RO, Segovia J. Additive effects of the combined expression of soluble forms of GAS1 and PTEN inhibiting glioblastoma growth. Gene Ther 2018; 25:439-449. [DOI: 10.1038/s41434-018-0020-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
|
40
|
Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 2018; 9:24766-24777. [PMID: 29872504 PMCID: PMC5973871 DOI: 10.18632/oncotarget.25346] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSC) display tumor tropism and have been addressed as vehicles for delivery of anti-cancer agents. As cellular components of the tumor microenvironment, MSC also influence tumor progression. However, the contribution of MSC in brain cancer is not well understood since either oncogenic or tumor suppressor effects have been reported for these cells. Here, MSC were found capable of stimulating human Glioblastoma (GBM) cell proliferation through a paracrine effect mediated by TGFB1. Moreover, when in direct cell-cell contact with GBM cells, MSC elicited an increased proliferative and invasive tumor cell behavior under 3D conditions, as well as accelerated tumor development in nude mice, independently of paracrine TGFB1. A secretome profiling of MSC-GBM co-cultures identified 126 differentially expressed proteins and 10 proteins exclusively detected under direct cell-cell contact conditions. Most of these proteins are exosome cargos and are involved in cell motility and tissue development. These results indicate a dynamic interaction between MSC and GBM cells, favoring aggressive tumor cell traits through alternative and independent mechanisms. Overall, these findings indicate that MSC may exert pro-tumorigenic effects when in close contact with tumor cells, which must be carefully considered when employing MSC in targeted cell therapy protocols against cancer.
Collapse
|
41
|
PPAR α Regulates the Proliferation of Human Glioma Cells through miR-214 and E2F2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3842753. [PMID: 29862267 PMCID: PMC5976971 DOI: 10.1155/2018/3842753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/09/2018] [Accepted: 02/05/2018] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear hormone receptor superfamily and functions as a transcription factor. Previous work showed that PPARα plays multiple roles in lipid metabolism in tissues such as cardiac and skeletal muscle, liver, and adipose tissue. Recent studies have discovered additional roles for PPARα in cell proliferation and metabolism, as well as tumor progression. PPARα is aberrantly expressed in various cancers, and activated PPARα inhibits the proliferation of some tumor cells. However, there have been no studies of PPARα in human gliomas. Here, we show that PPARα is expressed at lower levels in anaplastic gliomas and glioblastoma multiforme (GBM) tissue compared with low-grade gliomas tissue, and low expression is associated with poor patient prognosis. PPARα activates transcription of dynamin-3 opposite strand (DNMO3os), which encodes a cluster of miR-214, miR-199a-3p, and miR-199a-5p microRNAs. Of these, miR-214 is transcribed at particularly high levels. PPARα-induced miR-214 expression causes downregulation of its target E2F2. Finally, miR-214 overexpression inhibits glioma cell growth in vitro and in vivo by inducing cell cycle arrest in G0/G1. Collectively, these data uncover a novel role for a PPARα-miR-214-E2F2 pathway in controlling glioma cell proliferation.
Collapse
|
42
|
Meshalkina DA, Shevtsov MA, Dobrodumov AV, Komarova EY, Voronkina IV, Lazarev VF, Margulis BA, Guzhova IV. Knock-down of Hdj2/DNAJA1 co-chaperone results in an unexpected burst of tumorigenicity of C6 glioblastoma cells. Oncotarget 2017; 7:22050-63. [PMID: 26959111 PMCID: PMC5008343 DOI: 10.18632/oncotarget.7872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 01/04/2023] Open
Abstract
The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.
Collapse
Affiliation(s)
- Darya A Meshalkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia.,First I.P. Pavlov State Medical University of St. Petersburg, St. Petersburg 197022, Russia
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Elena Y Komarova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Voronkina
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
43
|
Dupont C, Vignion A, Mordon S, Reyns N, Vermandel M. Photodynamic therapy for glioblastoma: A preliminary approach for practical application of light propagation models. Lasers Surg Med 2017; 50:523-534. [DOI: 10.1002/lsm.22739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Clément Dupont
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Anne‐Sophie Vignion
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Nicolas Reyns
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| | - Maximilien Vermandel
- Univ. Lille, Inserm, CHU Lille, U1189‐ONCO‐THAI‐Image Assisted Laser Therapy for OncologyLilleF‐59000France
| |
Collapse
|
44
|
He JJ, Zhang WH, Liu SL, Chen YF, Liao CX, Shen QQ, Hu P. Activation of β-adrenergic receptor promotes cellular proliferation in human glioblastoma. Oncol Lett 2017; 14:3846-3852. [PMID: 28927156 DOI: 10.3892/ol.2017.6653] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/13/2017] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme is the most common and aggressive form of primary malignant brain tumor. Previous evidence demonstrates that β-adrenergic receptors (β-ARs) are closely associated with the occurrence and development of brain tumors. However, the functional role of β-ARs in human glioblastoma and the underlying mechanisms are not fully understood. In the present study, by using the MTT assay, western blotting, and the reverse transcription polymerase chain reaction, it was revealed that isoproterenol (ISO), an agonist of β-ARs, promoted the proliferation of U251 cells but not U87-MG cells, and that this effect was blocked by the β-ARs antagonist propranolol. It was also demonstrated that ISO transiently induced extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation, and that blocking the mitogen-activated protein kinase pathway by U0126 inhibited ERK1/2 phosphorylation and suppressed U251 cell proliferation. In addition, β-ARs activation increased the expression of matrix metalloproteinase (MMP) family members MMP-2 and MMP-9 mRNA through ERK1/2 activation. In conclusion, these data suggest that β-ARs induce ERK1/2 phosphorylation, which may in turn increase MMPs expression to promote U251 cell proliferation. These results provide additional insight into the specific roles of β-ARs in glioblastoma.
Collapse
Affiliation(s)
- Jing-Jing He
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Wen-Hua Zhang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Shi-Ling Liu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Yi-Fang Chen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Chen-Xi Liao
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Qian-Qing Shen
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| | - Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi 330001, P.R. China
| |
Collapse
|
45
|
Okawa S, Gagrica S, Blin C, Ender C, Pollard SM, Krijgsveld J. Proteome and Secretome Characterization of Glioblastoma-Derived Neural Stem Cells. Stem Cells 2017; 35:967-980. [PMID: 27870168 PMCID: PMC6135235 DOI: 10.1002/stem.2542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) (grade IV astrocytoma) is the most common and aggressive primary brain tumor. GBM consists of heterogeneous cell types including a subset of stem cell-like cells thought to sustain tumor growth. These tumor-initiating glioblastoma multiforme-derived neural stem (GNS) cells as well as their genetically normal neural stem (NS) counterparts can be propagated in culture as relatively pure populations. Here, we perform quantitative proteomics to globally characterize and compare total proteome plus the secreted proteome (secretome) between GNS cells and NS cells. Proteins and pathways that distinguish malignant cancer (GNS) stem cells from their genetically normal counterparts (NS cells) might have value as new biomarkers or therapeutic targets. Our analysis identified and quantified ∼7,500 proteins in the proteome and ∼2,000 in the secretome, 447 and 138 of which were differentially expressed, respectively. Notable tumor-associated processes identified using gene set enrichment analysis included: extracellular matrix interactions, focal adhesion, cell motility, and cell signaling. We focused on differentially expressed surface proteins, and identified 26 that participate in ligand-receptor pairs that play a prominent role in tumorigenesis. Immunocytochemistry and immunoblotting confirmed that CD9, a recently identified marker of adult subventricular zone NS cells, was consistently enriched across a larger set of primary GNS cell lines. CD9 may, therefore, have value as a GNS-specific surface marker and a candidate therapeutic target. Altogether, these findings support the notion that increased cell-matrix and cell-cell adhesion molecules play a crucial role in promoting the tumor initiating and infiltrative properties of GNS cells. Stem Cells 2017;35:967-980.
Collapse
Affiliation(s)
- Satoshi Okawa
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Sladjana Gagrica
- Department of Cancer Biology, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Carla Blin
- Department of Cancer Biology, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Christine Ender
- Department of Cancer Biology, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Steven M. Pollard
- Department of Cancer Biology, Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg 69117, Germany
- German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- CellNetworks - Cluster of Excellence, and Heidelberg University, Heidelberg, Germany
| |
Collapse
|
46
|
TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget 2017; 7:8712-25. [PMID: 26556853 PMCID: PMC4890999 DOI: 10.18632/oncotarget.6007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Increasing evidences have implicated somatic gain-of-function mutations at the telomerase reverse transcriptase (TERT) promoter as one of the major mechanisms that promote transcriptional activation of TERT and subsequently maintain telomere length in human cancers including glioma. To investigate the prognostic value of these mutations and telomere length, individually and their coexistence, in gliomas, we analyzed two somatic mutations C228T and C250T in the TERT promoter, relative telomere length (RTL), IDH1 mutation and MGMT methylation in 389 glioma patients, and explored their associations with patient characteristics and clinical outcomes. Our data showed that C228T and C250T mutations were found in 17.0% (66 of 389) and 11.8% (46 of 389) of gliomas, respectively, and these two mutations were mutually exclusive in this cancer. Moreover, they were significantly associated with WHO grade. We also found that the RTL was significant longer in gliomas than in meningiomas and normal brain tissues (Median, 0.89 vs. 0.44 and 0.50; P < 0.001), and demonstrated that the RTL was strongly correlated with tumor recurrence. Importantly, TERT promoter mutations or long RTL caused a significantly poorer survival than TERT wild-type or short RTL. Coexisting TERT promoter mutations and long RTL were more commonly associated with poor patient survival than they were individually. Notably, the patients with TERT promoter mutations particularly C228T or long RTL were resistant to radiotherapy. Collectively, TERT promoter mutations and long RTL are not only prognostic factors for poor clinical outcomes, but also the predictors of radiotherapy resistance in gliomas.
Collapse
|
47
|
Tabatabaei P, Visse E, Bergström P, Brännström T, Siesjö P, Bergenheim AT. Radiotherapy induces an immediate inflammatory reaction in malignant glioma: a clinical microdialysis study. J Neurooncol 2016; 131:83-92. [PMID: 27664151 PMCID: PMC5258803 DOI: 10.1007/s11060-016-2271-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
Abstract
The knowledge of response to radiation in the immuno-microenvironment of high grade gliomas is sparse. In vitro results have indicated an inflammatory response of myeloid cells after irradiation. Therefore, microdialysis was used to verify whether this is operative in tumor tissue and brain adjacent to tumor (BAT) after clinical radiotherapy of patients with high grade glioma. Stereotactic biopsies and implantation of microdialysis catheters in tumor tissue and BAT were performed in eleven patients with high-grade glioma. The patients were given daily radiation fractions of 2–3.4 Gy. Microdialysis samples were collected before radiotherapy and during the first five days of radiation. Cytokines, glucose metabolites, glutamate and glycerol were analyzed. Immunohistochemistry was performed to detect macrophages (CD68) and monocytes (CD163) as well as IL-6, IL-8 and MCP-1. A significant increase of IL-8, MCP-1 and MIP-1a were detected in tumor tissue already after the first dose of radiation and increased further during 5 days of radiation. IL-6 did also increase but after five fractions of radiation. In BAT, the cytokine response was modest with significant increase of IL-8 after third dose of radiation. We found a positive correlation between baseline IL-8 and IL-6 microdialysis levels in tumor tissue and survival. Glucose metabolites or glycerol and glutamate did not change during radiation. In all tumors staining for macrophages was demonstrated. IL-6 was found in viable tumor cells while MCP-1 was demonstrated in macrophages or tumor matrix. Our findings suggest that radiation induces a rapid enhancement of the prevailing inflammation in high-grade glioma tissue. The microdialysis technique is feasible for this type of study and could be used to monitor metabolic changes after different interventions.
Collapse
Affiliation(s)
- Pedram Tabatabaei
- Department of Clinical Neuroscience, Neurosurgery, Umea University, 901 85, Umeå, Sweden.
| | - Eward Visse
- Department of Clinical Science, Lund University Hospital, 221 85, Lund, Sweden
| | - Per Bergström
- Department of Radiation Science, Umeå University, 901 85, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Bioscience, Umeå University, 901 85, Umeå, Sweden
| | - Peter Siesjö
- Department of Clinical Science, Lund University Hospital, 221 85, Lund, Sweden
| | - A Tommy Bergenheim
- Department of Clinical Neuroscience, Neurosurgery, Umea University, 901 85, Umeå, Sweden
| |
Collapse
|
48
|
NF-YC in glioma cell proliferation and tumor growth and its role as an independent predictor of patient survival. Neurosci Lett 2016; 631:40-49. [DOI: 10.1016/j.neulet.2016.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/17/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022]
|
49
|
Carradori D, Gaudin A, Brambilla D, Andrieux K. Application of Nanomedicine to the CNS Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 130:73-113. [PMID: 27678175 DOI: 10.1016/bs.irn.2016.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug delivery to the brain is a challenge because of the many mechanisms that protect the brain from the entry of foreign substances. Numerous molecules which could be active against brain disorders are not clinically useful due to the presence of the blood-brain barrier. Nanoparticles can be used to deliver these drugs to the brain. Encapsulation within colloidal systems can allow the passage of nontransportable drugs across this barrier by masking their physicochemical properties. It should be noted that the status of the blood-brain barrier is different depending on the brain disease. In fact, in some pathological situations such as tumors or inflammatory disorders, its permeability is increased allowing very easy translocation of carriers. This chapter gathers the promising results obtained by using nanoparticles as drug delivery systems with the aim to improve the therapy of some CNS diseases such as brain tumor, Alzheimer's disease, and stroke. The data show that several approaches can be investigated: (1) carrying drug through a permeabilized barrier, (2) crossing the barrier thanks to receptor-mediated transcytosis pathway in order to deliver drug into the brain parenchyma, and also (3) targeting and treating the endothelial cells themselves to preserve locally the brain tissue. The examples given in this chapter contribute to demonstrate that delivering drugs into the brain is one of the most promising applications of nanotechnology in clinical neuroscience.
Collapse
Affiliation(s)
- D Carradori
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université catholique de Louvain, Bruxelles, Belgium
| | - A Gaudin
- Yale University, New Haven, CT, United States
| | - D Brambilla
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - K Andrieux
- Université Paris Descartes, Université Paris-Sorbonne, UTCBS, UMR CNRS 8258, UE1022 INSERM, Paris, France.
| |
Collapse
|
50
|
Affronti ML, Woodring S, Allen K, Kirkpatrick J, Peters KB, Herndon JE, McSherry F, Healy PN, Desjardins A, Vredenburgh JJ, Friedman HS. Phase II study to evaluate the safety and efficacy of intravenous palonosetron (PAL) in primary malignant glioma (MG) patients receiving standard radiotherapy (RT) and concomitant temozolomide (TMZ). Support Care Cancer 2016; 24:4365-75. [PMID: 27271867 DOI: 10.1007/s00520-016-3276-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 05/10/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND In malignant glioma (MG) patients undergoing radiation therapy (RT) with concomitant temozolomide, chemoradiation-induced nausea and vomiting (cRINV) degrades quality of life (QoL) and reduces treatment adherence, which thereby potentially compromises cancer control. METHODS We conducted a 6-week phase II single-arm trial of PAL, a second-generation 5-HT3RA antiemetic, for cRINV prevention in MG patients receiving radiation therapy (RT; 54-60 Gy) and concomitant daily temozolomide (TMZ; 75 mg/m(2)/dX42d). Each week before radiation, patients received single-dose palonosetron (PAL) 0.25 mg IV (total = 6 doses). With safety/tolerability as the primary endpoint, the study was designed to differentiate between toxicity rates of 25 % (unacceptable) and 10 % (acceptable) toxicity rates. Secondary endpoints included the percentage of patients achieving cRINV complete response (CR: no emesis or rescue antiemetic) and QoL. Patients reported adverse effects in Common Toxicity Criteria for Adverse Events diaries; recorded vomiting, nausea, and rescue medication use in diaries (which were used to assess cRINV-CR); and reported QoL 4 days/week using the Modified Functional Living Index-Emesis (M-FLIE) and Osoba nausea and vomiting/retching modules. RESULTS We enrolled 38 patients (mean age 59 years, 55 % female, 95 % white, 68 % used oral corticosteroids, 76 % reported low alcohol use). Four patients (10.5 %) experienced unacceptable treatment-related toxicity, defined as any grade 3, 4, or 5 non-hematologic toxicity. M-FLIE and Osoba scores showed no evidence of treatment impact on QoL. Overall, cRINV-CR rates for 6 weeks ranged from 67-79 %. CONCLUSION Single-dose weekly PAL is a safe and tolerable antiemetic for cRINV prevention in MG patients receiving standard RT and concomitant TMZ.
Collapse
Affiliation(s)
- Mary Lou Affronti
- Department of Neurosurgery, Duke University Health System, Durham, NC, 27710, USA.
- Duke University School of Nursing, Durham, NC, 27710, USA.
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Room 047 Baker House, South Hospital, Trent Drive, Durham, NC, 27710, USA.
| | - Sarah Woodring
- Department of Neurosurgery, Duke University Health System, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Room 047 Baker House, South Hospital, Trent Drive, Durham, NC, 27710, USA
| | - Karen Allen
- Department of Radiation Oncology, Duke University Health System, Durham, NC, 27710, USA
| | - John Kirkpatrick
- Department of Radiation Oncology, Duke University Health System, Durham, NC, 27710, USA
| | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Room 047 Baker House, South Hospital, Trent Drive, Durham, NC, 27710, USA
- Department of Neurology, Duke University Health System, Durham, NC, 27710, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Health System, Durham, NC, 27710, USA
| | - Frances McSherry
- Department of Biostatistics and Bioinformatics, Duke University Health System, Durham, NC, 27710, USA
| | - Patrick N Healy
- Department of Biostatistics and Bioinformatics, Duke University Health System, Durham, NC, 27710, USA
| | - Annick Desjardins
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Room 047 Baker House, South Hospital, Trent Drive, Durham, NC, 27710, USA
- Department of Neurology, Duke University Health System, Durham, NC, 27710, USA
| | | | - Henry S Friedman
- Department of Neurosurgery, Duke University Health System, Durham, NC, 27710, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Room 047 Baker House, South Hospital, Trent Drive, Durham, NC, 27710, USA
- Department of Medicine, Duke University Health System, Durham, NC, 27710, USA
- Department of Pediatrics, Duke University Health System, Durham, NC, 27710, USA
- Department of Pathology, Duke University Health System, Durham, NC, 27710, USA
| |
Collapse
|