1
|
Rajendran S, Surabhi RP, Kumar AS, Gopinath P, Kanakaveti V, Shanmugasundaram G, Michael Gromiha M, Rayala SK, Venkatraman G. P21-Activated Kinase 1 (PAK1) Modulates Therapeutic Response to Ionizing Radiation in Head and Neck Squamous Cell Carcinoma Cells. Mol Carcinog 2025; 64:970-984. [PMID: 40099538 DOI: 10.1002/mc.23902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) continues to be a formidable epithelial malignancy characterized by late-stage detection and recurrence impacting survival. P21-activated kinase-1 (PAK1) was reported to be overexpressed in head and neck cancers and activated by ionizing radiation (IR), affecting treatment outcomes. Present investigations revealed that PAK1 silencing on HNSCC cells reverted the aggressive phenotype and showed impaired DNA damage repair upon IR exposure. Further HNSCC cells were resistant to IR up to 30 Gy with elevated pPAK1 levels. Radiation-resistant (RR) HNSCC cells expressed radiation-resistant markers, namely MRE-11 and NME-1; stemness markers-OCT4 and SOX2; and EMT & metastasis markers-vimentin, snail, and α-smooth muscle actin (α-SMA). In addition, HNSCC RR cells showed increased levels of DNA damage response protein H2AX, indicative of an aggressive phenotype with an augmented DNA repair machinery and a potential target for inhibition. Since H2AX appears to be a mechanistic hub for PAK1-induced radiation resistance, using in silico methods, peptides were designed, and the PL-8 peptide was chosen to target the phosphorylation of H2AX, which could enhance the sensitivity to IR and push the cells to radiation-induced cell death. PL-8 peptide inhibited H2AX phosphorylation on HNSCC cells and triggered radiation-induced cell death as determined by functional assays. The present study reveals PAK1 induced in HNSCC cells by IR and causes resistance by enhancing DNA damage response mediated through γH2AX. To counteract this complex molecular interplay, we propose inhibiting γH2AX formation & silencing PAK1 appears to be a probable way forward in HNSCC.
Collapse
Affiliation(s)
- Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Rohan Prasad Surabhi
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - A Satheesh Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai, Tamil Nadu, India
| | - Prarthana Gopinath
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai, Tamil Nadu, India
| | - Vishnupriya Kanakaveti
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | - M Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology Vellore, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Murugan S, B SSS, Gopinath P, Saravanan R, Sundaram S, Shanmugasundaram G, Venkatraman G, Rayala SK. Pak1 dysregulates pyruvate metabolism in PDAC cells by exerting a phosphorylation-mediated regulatory effect on PDHA1. J Biol Chem 2025; 301:108409. [PMID: 40090587 PMCID: PMC12013493 DOI: 10.1016/j.jbc.2025.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive form of pancreatic cancer with the worst prognosis. Treating PDAC poses significant challenges, as tumor cells adapt metabolic alterations to thrive in the hypoxic environment created by desmoplasia surrounding the tumor cells. p21-activated kinase (Pak1), a serine-threonine kinase is found to be upregulated in many solid tumors and promotes tumor progression via diverse signaling pathways. In this study, we focused on exploring the role of Pak1 in mediating tumor cell metabolism. Deletion of the Pak1 gene reduced the tumorigenic potential of PDAC cells. Also, Pak1 regulated both glycolysis and mitochondrial respiration in PDAC cells, contributing to the Warburg phenomenon. Untargeted metabolomic analysis revealed that Pak1 was strongly associated with pyruvate metabolism. Interestingly, we found that Pak1 interacted and phosphorylated pyruvate dehydrogenase E1α (PDHA1) at serine 152. This phosphorylation negatively regulates PDHA1 activity, implying the direct regulatory role of Pak1 in pyruvate metabolism. Moreover, deleting the Pak1 gene altered the expression and activity of PDHA1 and LDHA, as both are involved in regulating the direction of pyruvate flux inside the cells. Our study demonstrated that Pak1 plays a significant role in PDAC metabolism and Warburg effect, partly by phosphorylating PDHA1.
Collapse
Affiliation(s)
- Sowmiya Murugan
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Srikanth Swamy Swaroop B
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Prarthana Gopinath
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Roshni Saravanan
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - Suresh Kumar Rayala
- Molecular Oncology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| |
Collapse
|
3
|
Ma Y, Dumesny C, Dong L, Ang CS, Asadi K, Zhan Y, Nikfarjam M, He H. Inhibition of P21-activated kinases 1 and 4 synergistically suppresses the growth of pancreatic cancer by stimulating anti-tumour immunity. Cell Commun Signal 2024; 22:287. [PMID: 38797819 PMCID: PMC11129409 DOI: 10.1186/s12964-024-01670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal types of cancer, and KRAS oncogene occurs in over 90% of cases. P21-activated kinases (PAK), containing six members (PAK1 to 6), function downstream of KRAS. PAK1 and PAK4 play important roles in carcinogenesis, but their combinational effect remains unknown. In this study, we have determined the effect of dual inhibition of PAK1 and PAK4 in PDA progression using knockout (KO) cancer cell lines. METHODS Murine wild-type (WT) and PAK1KO pancreatic cancer cell lines were isolated from PAK1+/+ and PAK1-/- KPC (LSL-KrasG12D/+; LSL-Trp53 R172H/+; Pdx-1-Cre) mice. KPC PAK4KO and KPC PAK1&4 KO cell lines were generated from KPC WT and KPC PAK1KO cell lines respectively using the CRISPR-CAS9 gene knockout technique. PAK WT and KO cell lines were used in mouse models of pancreatic tumours. Cells and tumour tissue were also used in flow cytometry and proteomic studies. A human PDA tissue microarray was stained by immunohistochemistry. RESULTS Double knock out of PAK1 and PAK4 caused complete regression of tumour in a syngeneic mouse model. PAK4KO inhibited tumour growth by stimulating a rapid increase of cytotoxic CD8+ T cell infiltration. PAK1KO synergistically with PAK4KO increased cytotoxic CD8+ T cell infiltration and stimulated a sustained infiltration of CD8+ T cells at a later phase to overcome the immune evasion in the PAK4KO tumour. The human PDA tissue microarray study showed the important role of PAK1 and PAK4 in intra-tumoral T-cell function. CONCLUSION Our results demonstrated that dual inhibition of PAK1 and PAK4 synergistically suppressed PDA progression by stimulating cytotoxic CD8 + T cell response.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
- Department of General Surgery, Monash Health, Clayton, VIC, Australia
| | - Chelsea Dumesny
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
| | - Li Dong
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
| | - Ching-Seng Ang
- Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Khashayar Asadi
- Department of Anatomical Pathology, Austin Health, Heidelberg, VIC, Australia
| | - Yifan Zhan
- Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia
- Department of Hepato-Pancreato-Biliary Surgery, Austin Health, Heidelberg, VIC, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, University of Melbourne, Level 8, Lance Townsend Building, Austin Hospital, 145 Studley Road, Heidelberg, VIC, Australia.
| |
Collapse
|
4
|
M R H Mostafa A, Petrai O, Poot AA, Prakash J. Polymeric nanofiber leveraged co-delivery of anti-stromal PAK1 inhibitor and paclitaxel enhances therapeutic effects in stroma-rich 3D spheroid models. Int J Pharm 2024; 656:124078. [PMID: 38569978 DOI: 10.1016/j.ijpharm.2024.124078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
The role of tumor stroma in solid tumors has been widely recognized in cancer progression, metastasis and chemoresistance. Cancer-associated fibroblasts (CAFs) play a crucial role in matrix remodeling and promoting cancer cell stemness and resistance via reciprocal crosstalk. Residual tumor tissue after surgical removal as well as unresectable tumors face therapeutic challenges to achieve curable outcome. In this study, we propose to develop a dual delivery approach by combining p21-activated kinase 1 (PAK1) inhibitor (FRAX597) to inhibit tumor stroma and chemotherapeutic agent paclitaxel (PTX) to kill cancer cells using electrospun nanofibers. First, the role of the PAK1 pathway was established in CAF differentiation, migration and contraction using relevant in vitro models. Second, polycaprolactone polymer-based nanofibers were fabricated using a uniaxial electrospinning technique to incorporate FRAX597 and/or PTX, which showed a uniform texture and a prolonged release of both drugs for 16 days. To test nanofibers, stroma-rich 3D heterospheroid models were set up which showed high resistance to PTX nanofibers compared to stroma-free homospheroids. Interestingly, nanofibers containing PTX and FRAX597 showed strong anti-tumor effects on heterospheroids by reducing the growth and viability by > 90 % compared to either of single drug-loaded nanofibers. These effects were reflected by reduced intra-spheroidal expression levels of collagen 1 and α-smooth muscle actin (α-SMA). Overall, this study provides a new therapeutic strategy to inhibit the tumor stroma using PAK1 inhibitor and thereby enhance the efficacy of chemotherapy using nanofibers as a local delivery system for unresectable or residual tumor. Use of 3D models to evaluate nanofibers highlights these models as advanced in vitro tools to study the effect of controlled release local drug delivery systems before animal studies.
Collapse
Affiliation(s)
- Ahmed M R H Mostafa
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Ornela Petrai
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - André A Poot
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Jai Prakash
- Engineered Therapeutics, Department of Advanced Organ Bioengineering and Therapeutics, TechMed Centre, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
5
|
Liu S, Yang P, Wang L, Zou X, Zhang D, Chen W, Hu C, Xiao D, Ren H, Zhang H, Cai S. Targeting PAK4 reverses cisplatin resistance in NSCLC by modulating ER stress. Cell Death Discov 2024; 10:36. [PMID: 38238316 PMCID: PMC10796919 DOI: 10.1038/s41420-024-01798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Chemoresistance poses a significant impediment to effective treatments for non-small-cell lung cancer (NSCLC). P21-activated kinase 4 (PAK4) has been implicated in NSCLC progression by invasion and migration. However, the involvement of PAK4 in cisplatin resistance is not clear. Here, we presented a comprehensive investigation into the involvement of PAK4 in cisplatin resistance within NSCLC. Our study revealed enhanced PAK4 expression in both cisplatin-resistant NSCLC tumors and cell lines. Notably, PAK4 silencing led to a remarkable enhancement in the chemosensitivity of cisplatin-resistant NSCLC cells. Cisplatin evoked endoplasmic reticulum stress in NSCLC. Furthermore, inhibition of PAK4 demonstrated the potential to sensitize resistant tumor cells through modulating endoplasmic reticulum stress. Mechanistically, we unveiled that the suppression of the MEK1-GRP78 signaling pathway results in the sensitization of NSCLC cells to cisplatin after PAK4 knockdown. Our findings establish PAK4 as a promising therapeutic target for addressing chemoresistance in NSCLC, potentially opening new avenues for enhancing treatment efficacy and patient outcomes.
Collapse
Affiliation(s)
- Shixin Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pingshan Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Lu Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaofang Zou
- Department of Medical Oncology, Cancer Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou, China
| | - Dongdong Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Wenyou Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Chuang Hu
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Duqing Xiao
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China
| | - Hongzheng Ren
- Department of Pathology, Gongli Hospital, Naval Medical University, Shanghai, 200135, China.
- Department of Pathology, Heping Hospital, Changzhi Medical College, Changzhi, 000465, China.
| | - Hao Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and Minister of Education Key Laboratory of Tumor Molecular Biology, Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou; The Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Songwang Cai
- Department of Thoracic Surgery, the First Affiliated Hospital of Jinan University, No.601 Huangpu Road West, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
6
|
Surabhi RP, Rajendran S, Srikanth Swamy Swaroop B, Murugan S, Shanmugasundaram G, Joseph LD, Pitani R, Babu PS, Suresh K R, Venkatraman G. Activation of oncogenic signaling kinase PAK1 by ionising radiation confers an aggressive phenotype in head and neck squamous cell carcinoma. Cell Signal 2023; 112:110910. [PMID: 37777103 DOI: 10.1016/j.cellsig.2023.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Head and neck squamous cancers are very aggressive tumors often diagnosed in late stages with poor prognosis. HNSCCs are usually treated by a course of radiation (IR) therapy and followed by surgery. These treatment regimens fail to bring a complete response. Molecular signatures in tumors are attributed to this response and an improved understanding of the signaling events could offer new avenues for therapy. Here, we show that P21 activated kinase-1 (PAK1) - an oncogenic signaling serine/threonine kinase, is activated upon exposure to IR and this leads to an accelerated tumorigenic character in HNSCC cells. Our results show that PAK1 is highly expressed in HNSCC cell lines, as compared to normal buccal mucosa cells and when HNSCC cells were exposed to IR, they show activated PAK1 and an aggressive phenotype as determined by in vitro functional assays. PAK1 levels were elevated in HNSCC as compared to adjacent normal oral tissues and our results also show convincing evidence of activated PAK1 in patient tumor samples of post- IR treatment as compared to pre-IR treatment and is associated with poor survival. Pak1 Knockout (KO) clones in HNSCC cells showed that they were more sensitive to IR as compared to wild type (wt) cells. This altered sensitivity to IR was attributed to enhanced DNA damage response modulated by PAK1 in cells. Overall, our results suggest that PAK1 expression in HNSCC could be a critical determinant in IR therapy response and silencing PAK1 is likely to be a treatment modality to improve clinical outcomes.
Collapse
Affiliation(s)
- Rohan Prasad Surabhi
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - B Srikanth Swamy Swaroop
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Sowmiya Murugan
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai 600036, India
| | - Gouthaman Shanmugasundaram
- Department of Surgical Oncology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Ravishankar Pitani
- Department of Community Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Pakala Suresh Babu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, Telangana 500046, India
| | - Rayala Suresh K
- Department of Biotechnology, Indian Institute of Technology Madras, Guindy, Chennai 600036, India.
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India.
| |
Collapse
|
7
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
8
|
Kong W, Zhu L, Li T, Chen J, Fan B, Ji W, Zhang C, Cai X, Hu C, Sun X, Cao P. Azeliragon inhibits PAK1 and enhances the therapeutic efficacy of AKT inhibitors in pancreatic cancer. Eur J Pharmacol 2023; 948:175703. [PMID: 37028543 DOI: 10.1016/j.ejphar.2023.175703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
Pancreatic cancer is a lethal malignancy for which there is currently no effective treatment strategy. We previously reported that p21-activated kinase 1 (PAK1) is aberrantly expressed in pancreatic cancer patients and that targeted inhibition of PAK1 significantly suppressed pancreatic cancer progression in vitro and in vivo. In this study, we identified the drug azeliragon as a novel inhibitor of PAK1. Cell experiments revealed that azeliragon abolished PAK1 activation and promoted apoptosis in pancreatic cancer cells. Azeliragon was also found to significantly inhibit tumor growth in a pancreatic cancer xenograft model; when combined with afuresertib, an oral pan-AKT kinase inhibitor, azeliragon exhibited a strong synergistic effect against pancreatic cancer cells. Interestingly, afuresertib enhanced the antitumor efficacy of azeliragon in a xenograft mouse model. Collectively, our findings revealed previously unreported aspects of the drug azeliragon, and identified a novel combination strategy for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Weikang Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Lingxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjing Ji
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunli Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Clinical Significance of Combined Epithelial-Mesenchymal Transition Markers Expression and Role of Rac1 in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24021765. [PMID: 36675278 PMCID: PMC9865966 DOI: 10.3390/ijms24021765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in cancer progression, invasion, and metastasis. We aimed to evaluate the correlations between clinicopathological characteristics and EMT markers in patients with hepatocellular carcinoma (HCC) who underwent surgical resection and to identify the key regulator in EMT process. Fresh-frozen HCC tissues and adjacent nontumor liver tissues from 30 patients who underwent surgical resection were provided by the Gachon University Gil Medical Center Bio Bank. Human HCC cell lines, Hep3B, SNU449, and Huh7 cells were transfected with Rac1 siRNA and exposed to hypoxic conditions. The combined EMT markers expression (down-expression of E-cadherin and overexpression of p21-activated kinases 1 (PAK1)/Snail) by Western blot in HCC tissues when compared to adjacent nontumor liver tissues was significantly associated with macrovascular invasion (p = 0.021), microvascular invasion (p = 0.001), large tumor size (p = 0.021), and advanced tumor stage (p = 0.015). Patients with combined EMT markers expression showed early recurrence and poor overall survival. In vitro studies showed that Rac1 knockdown decreased the expression of EMT markers including PAK1 and Snail in hypoxia-induced Hep3B cells and suppressed the migration and invasion of hypoxia-induced HCC cells. Rac1 may be a potential therapeutic target for inhibition of EMT process through the inhibition of PAK1 and Snail in HCC.
Collapse
|
10
|
Ma Y, Nikfarjam M, He H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett 2022; 548:215868. [PMID: 36027997 DOI: 10.1016/j.canlet.2022.215868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 11/02/2022]
Abstract
Pancreatic Ductal Adenocarcinoma (PDA) is one of the most lethal types of cancer with a dismal prognosis. KRAS mutation is a commonly identified oncogene in PDA tumorigenesis and P21-activated kinases (PAKs) are its downstream mediator. While PAK1 is more well-studied, PAK4 also attracted increasing interest. In PDA, PAK inhibition not only reduces cancer cell viability but also sensitises it to chemotherapy. While PDA remains resistant to existing immunotherapies, PAK inhibition has been shown to increase cancer immunogenicity of melanoma, glioblastoma and PDA. Furthermore, autophagy plays an important role in PDA immune evasion, and accumulating evidence has pointed to a connection between PAK and cancer cell autophagy. In this literature review, we aim to summarize currently available studies that have assessed the potential connection between PAK, autophagy and immune evasion in PDA biology to guide future research.
Collapse
Affiliation(s)
- Yi Ma
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia; Department of Hepatopancreatic-Biliary Surgery, Austin Health, 145 Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, Austin Precinct, The University of Melbourne, 145 Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
11
|
Ji W, Sun X, Gao Y, Lu M, Zhu L, Wang D, Hu C, Chen J, Cao P. Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells. Molecules 2022; 27:2747. [PMID: 35566098 PMCID: PMC9102431 DOI: 10.3390/molecules27092747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Shikonin is the main component of root extracts from the Chinese herbal medicine Lithospermum erythrorhizon, which is commonly used for the treatment of various diseases including cancer. Previous research showed that shikonin suppressed pancreatic cancer growth; nevertheless, its molecular targets and mechanisms have not been elucidated. This study aimed to investigate the interaction and regulatory mechanisms of shikonin on its potential target p21-activated kinase 1 (PAK1). Through a labchip-based screening method, shikonin was identified as a potential bioactive PAK1 inhibitor. Molecular docking technology was used to detect the interaction sites of shikonin and PAK1 kinase. Western blot was performed to validate the mechanism. MTT and flow cytometry were practiced to investigate the effect of shikonin against pancreatic cancer cells. The results show that shikonin significantly inhibited the activity of PAK1 kinase with IC50 value of 7.252 ± 0.054 μM. Molecular docking studies showed that shikonin binds to the ATP-binding pocket of the PAK1 kinase domain. Moreover, shikonin inhibited PAK1 activation and its downstream signaling pathway proteins, while reducing proliferation and inducing apoptosis of pancreatic cancer cells. Further studies showed that the treatment of shikonin sensitized pancreatic cancer cells to chemotherapeutic drugs. These results suggest that shikonin, a potential natural inhibitor targeting PAK1 kinase, has promising potent applications in the treatment of pancreatic cancer and chemotherapy sensitization.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China;
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Yang Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Man Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Lingxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Dawei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; (X.S.); (Y.G.); (M.L.); (L.Z.); (D.W.); (C.H.)
| |
Collapse
|
12
|
Micó-Carnero M, Casillas-Ramírez A, Sánchez-González A, Rojano-Alfonso C, Peralta C. The Role of Neuregulin-1 in Steatotic and Non-Steatotic Liver Transplantation from Brain-Dead Donors. Biomedicines 2022; 10:978. [PMID: 35625715 PMCID: PMC9138382 DOI: 10.3390/biomedicines10050978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Brain death (BD) and steatosis are key risk factors to predict adverse post-transplant outcomes. We investigated the role of Neuregulin-1 (NRG1) in rat steatotic and non-steatotic liver transplantation (LT) from brain death donors (DBD). METHODS NRG1 pathways were characterized after surgery. RESULTS NRG1 and p21-activated kinase 1 (PAK1) levels increased in steatotic and non-steatotic grafts from DBDs. The abolishment of NRG1 effects reduced PAK1. When the effect of either NRG1 nor PAK1 was inhibited, injury and regenerative failure were exacerbated. The benefits of the NRG-1-PAK1 axis in liver grafts from DBDs were associated with increased vascular endothelial growth factor-A (VEGFA) and insulin growth factor-1 (IGF1) levels, respectively. Indeed, VEGFA administration in non-steatotic livers and IGF1 treatment in steatotic grafts prevented damage and regenerative failure resulting from the inhibition of either NRG1 or PAK-1 activity in each type of liver. Exogenous NRG1 induced greater injury than BD induction. CONCLUSIONS This study indicates the benefits of endogenous NRG1 in liver grafts from DBDs and underscores the specificity of the NRG1 signaling pathway depending on the type of liver: NRG1-PAK1-VEGFA in non-steatotic livers and NRG1-PAK1-IGF1 in steatotic livers. Exogenous NRG1 is not an appropriate strategy to apply to liver grafts from DBD.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Alfredo Sánchez-González
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico; (A.C.-R.); (A.S.-G.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
13
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
14
|
Wu S, Shao M, Zhang Y, Shi D. Activation of RSK2 upregulates SOX8 to promote methotrexate resistance in gestational trophoblastic neoplasia. J Transl Med 2021; 101:1494-1504. [PMID: 34373588 DOI: 10.1038/s41374-021-00651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Resistance to chemotherapy is frequently driven by aberrantly activated kinases in cancer. Herein, we characterized the global phosphoproteomic alterations associated with methotrexate (MTX) resistance in gestational trophoblastic neoplastic (GTN) cells. A total of 1111 phosphosites on 713 proteins were significantly changed, with highly elevated Ribosomal S6 Kinase 2 (RSK2) phosphorylation (pS227) observed in MTX-resistant GTN cells. Activation of RSK2 promoted cell proliferation and survival after MTX treatment in GTN cell models. Interestingly, RSK2 might play an important role in the regulation of reactive oxygen species (ROS) homeostasis, as manipulation of RSK2 activation affected ROS accumulation and SOX8 expression in GTN cells. In addition, overexpression of SOX8 partly rescued cell proliferation and survival in RSK2-depleted MTX-resistant GTN cells, suggesting that SOX8 might serve as a downstream effector of RSK2 to promote MTX resistance in GTN cells. Highly activated RSK2/SOX8 signaling was observed in MTX-resistant GTN specimens. Further, the RSK2 inhibitor BIX02565 effectively reduced SOX8 expression, induced ROS accumulation, and enhanced MTX-induced cytotoxicity in vitro and in vivo. Collectively, our findings suggested that RSK2 activation could promote MTX resistance via upregulating SOX8 and attenuating MTX-induced ROS in GTN cells, which may help to develop experimental therapeutics to treat MTX-resistant GTN.
Collapse
Affiliation(s)
- Shaobin Wu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Shao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Dazun Shi
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Kanumuri R, Chelluboyina AK, Biswal J, Vignesh R, Pandian J, Venu A, Vaishnavi B, Leena DJ, Jeyaraman J, Ganesan K, Aradhyam GK, Venkatraman G, Rayala SK. Small peptide inhibitor from the sequence of RUNX3 disrupts PAK1-RUNX3 interaction and abrogates its phosphorylation-dependent oncogenic function. Oncogene 2021; 40:5327-5341. [PMID: 34253860 DOI: 10.1038/s41388-021-01927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
P21 Activated Kinase 1 (PAK1) is an oncogenic serine/threonine kinase known to play a significant role in the regulation of cytoskeleton and cell morphology. Runt-related transcription factor 3 (RUNX3) was initially known for its tumor suppressor function, but recent studies have reported the oncogenic role of RUNX3 in various cancers. Previous findings from our laboratory provided evidence that Threonine 209 phosphorylation of RUNX3 acts as a molecular switch in dictating the tissue-specific dualistic functions of RUNX3 for the first time. Based on these proofs and to explore the translational significance of these findings, we designed a small peptide (RMR) from the protein sequence of RUNX3 flanking the Threonine 209 phosphorylation site. The selection of this specific peptide from multiple possible peptides was based on their binding energies, hydrogen bonding, docking efficiency with the active site of PAK1 and their ability to displace PAK1-RUNX3 interaction in our prediction models. We found that this peptide is stable both in in vitro and in vivo conditions, not toxic to normal cells and inhibits the Threonine 209 phosphorylation in RUNX3 by PAK1. We also tested the efficacy of this peptide to block the RUNX3 Threonine 209 phosphorylation mediated tumorigenic functions in in vitro cell culture models, patient-derived explant (PDE) models and in in vivo tumor xenograft models. These results proved that this peptide has the potential to be developed as an efficient therapeutic molecule for targeting RUNX3 Threonine 209 phosphorylation-dependent tumor phenotypes.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Aruna Kumar Chelluboyina
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
- Division of General Medical Sciences - Oncology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jayashree Biswal
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Ravichandran Vignesh
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
| | - Jaishree Pandian
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Akkanapally Venu
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - B Vaishnavi
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - D J Leena
- Department of Pathology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai, Tamilnadu, India.
| | - Suresh K Rayala
- Department of Biotechnology, Indian Institute of technology Madras (IITM), Chennai, Tamilnadu, India.
| |
Collapse
|
16
|
Murthy SS, Narsaiah TB. Cytotoxic Effect of Bromelain on HepG2 Hepatocellular Carcinoma Cell Line. Appl Biochem Biotechnol 2021; 193:1873-1897. [PMID: 33735410 DOI: 10.1007/s12010-021-03505-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/07/2021] [Indexed: 01/17/2023]
Abstract
Cancer is a complicated long-term disease due to computable key molecular players involved in aggravating the disease. Among various kinds of cancer, hepatocellular carcinoma (HCC) is the ninth leading cause of cancer. Recently, plant-based products are gaining a lot of attention in the field of research because of their anti-tumor properties. In our previous study, we reported based on in-silico method that bromelain, a cysteine protease extracted from the stem of the pineapple, has high binding affinity with the transcription factors p53 and β-catenin proteins which are key players in controlling the progression of hepatocellular carcinoma. Bromelain, isolated mainly from the stem of Pineapple (Ananas comosus), belongs to the family Bromeliaceae. The present study deals with preclinical analysis of bromelain as an anti-cancer agent and its intracellular effect on the expression of p53 and β-catenin protein. Our study reports cytotoxic activity, cell proliferation, migration, invasion, arrest in the S-phase, and G2/M phase in cell cycle analysis by treating with bromelain in HepG2 cell lines. We also report up-regulation of p53 protein by drug-induced impediment leading to apoptotic process in HepG2 cells and down-regulation of β-catenin protein in HepG2 cells which interferes in β-catenin/TCF-DNA interaction further, down-regulating Wnt genes and suppressing the canonical pathway. Finally, we conclude that bromelain inhibits tumorigenic potential in HepG2 cell lines.
Collapse
Affiliation(s)
- Sushma S Murthy
- Department of Biotechnology, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India.
| | - T Bala Narsaiah
- Department of Chemical Engineering, JNTUA College of Engineering, Ananthapuram, 515002, Andhra Pradesh, India
| |
Collapse
|
17
|
Venu A, Archana B, Kanumuri R, Vuttaradhi VK, D'Cruze L, Murugan S, Ganesh K, Prathiba D, Dymova MA, Rayala SK, Venkatraman G. Clinical Evaluation of P21 Activated Kinase 1 (PAK1) Activation in Gliomas and Its Effect on Cell Proliferation. Cancer Invest 2020; 39:98-113. [PMID: 33251876 DOI: 10.1080/07357907.2020.1858097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastomas are the primary malignant tumors of brain tissues with poor prognosis and highly invasive phenotypes. Till now Ki-67 LI has emerged as a well-studied proliferation marker that aids in tumor grading, but labeling index alone cannot predict overall survival in gliomas. P21 activated kinase 1 (PAK1) - a serine/threonine kinase has been shown to function as downstream nodule for various oncogenic signaling pathways that promote neoplastic changes. This study is designed to evaluate the expression of PAK1 across various grades and its correlation with Ki-67 LI and overall survival rates among a total number of 140 clinical brain tumors of glioma patients. We also studied the activation status of phospho PAK1 in glioma tissues and established the role of PAK1 in proliferation of glioblatoma cell lines under γ-irradiation.This study provides molecular evidence signifying the role of PAK1 and its activation status in the progression of Gliomas to more aggressive phenotypes.
Collapse
Affiliation(s)
- Akkanapally Venu
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Balasubramanian Archana
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Rahul Kanumuri
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | | - Lawrence D'Cruze
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sowmiya Murugan
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Krishnamurthy Ganesh
- Department of Neurosurgery, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Duvuru Prathiba
- Department of Biotechnology, Indian Institute of Technology, Chennai, India
| | - Mayya Alexandrovna Dymova
- Institute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Suresh Kumar Rayala
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
18
|
Amala M, Richard M, Saritha P, Prabhu D, Veerapandiyan M, Surekha K, Jeyakanthan J. Molecular evolution, binding site interpretation and functional divergence of aspartate semialdehyde dehydrogenase. J Biomol Struct Dyn 2020; 40:3223-3241. [DOI: 10.1080/07391102.2020.1846619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mathimaran Amala
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Mariadasse Richard
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Poopandi Saritha
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Dhamodharan Prabhu
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Malaisamy Veerapandiyan
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Kangarajan Surekha
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, India
| |
Collapse
|
19
|
Khurana N, Dodhiawala PB, Bulle A, Lim KH. Deciphering the Role of Innate Immune NF-ĸB Pathway in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12092675. [PMID: 32961746 PMCID: PMC7564842 DOI: 10.3390/cancers12092675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapeutics. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer-driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.
Collapse
Affiliation(s)
- Namrata Khurana
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Yao D, Li C, Rajoka MSR, He Z, Huang J, Wang J, Zhang J. P21-Activated Kinase 1: Emerging biological functions and potential therapeutic targets in Cancer. Am J Cancer Res 2020; 10:9741-9766. [PMID: 32863957 PMCID: PMC7449905 DOI: 10.7150/thno.46913] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The p21-Activated kinase 1 (PAK1), a member of serine-threonine kinases family, was initially identified as an interactor of the Rho GTPases RAC1 and CDC42, which affect a wide range of processes associated with cell motility, survival, metabolism, cell cycle, proliferation, transformation, stress, inflammation, and gene expression. Recently, the PAK1 has emerged as a potential therapeutic target in cancer due to its role in many oncogenic signaling pathways. Many PAK1 inhibitors have been developed as potential preclinical agents for cancer therapy. Here, we provide an overview of essential roles that PAK1 plays in cancer, including its structure and autoactivation mechanism, its crucial function from onset to progression to metastasis, metabolism, immune escape and even drug resistance in cancer; endogenous regulators; and cancer-related pathways. We also summarize the reported PAK1 small-molecule inhibitors based on their structure types and their potential application in cancer. In addition, we provide overviews on current progress and future challenges of PAK1 in cancer, hoping to provide new ideas for the diagnosis and treatment of cancer.
Collapse
|
21
|
Okumura K, Saito M, Yoshizawa Y, Ito Y, Isogai E, Araki K, Wakabayashi Y. Pak1 maintains epidermal stem cells by regulating Langerhans cells and is required for skin carcinogenesis. Oncogene 2020; 39:4756-4769. [PMID: 32427988 DOI: 10.1038/s41388-020-1323-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/03/2023]
Abstract
Pak1 (serine/threonine p21-activated kinases) was previously reported to have oncogenic activity in several cancers. However, its roles in the cancer microenvironment are poorly understood. We demonstrated that Pak1 expression in Langerhans cells (LCs) is essential for the maintenance of epidermal stem cells and skin tumor development. We found that PAK1 is localized in LCs by immunohistochemistry. Furthermore, the number of LCs significantly decreased in MSM/Ms Pak1 homozygous knockout mice (MSM/Ms-Pak1-/-). F1 hybrid (FVB/N×MSM/Ms) Pak1 heterozygous knockout mice (F1-Pak1+/-) had increased numbers of Th17 cells in the skin. Therefore, Pak1 knockdown cells were prepared using LC-derived XS52 cells (XS52-Pak1KD) and co-cultured with keratinocyte-derived C5N cells. As a result, XS52-Pak1KD cell supernatants promoted C5N cell proliferation. We then carried out DMBA/TPA skin carcinogenesis experiments using F1-Pak1+/- mice. Of note, F1-Pak1+/- mice exhibited stronger resistance to skin tumors than control mice. F1-Pak1+/- mice had fewer epidermal stem cells in the skin bulge. Our study suggested that Pak1 regulates the epidermal stem cell number by changing the properties of LCs and functions in skin carcinogenesis. We clarified a novel role of Pak1 in regulating LCs as a potential therapeutic target in skin immune disease and carcinogenesis.
Collapse
Affiliation(s)
- Kazuhiro Okumura
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Megumi Saito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Yasuhiro Yoshizawa
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Yuki Ito
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Eriko Isogai
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, 2-2-1 Honjo Chuo-ku, Kumamoto, 860-0811, Japan
| | - Yuichi Wakabayashi
- Department of Carcinogenesis Research, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, 666-2 Nitonacho Chuo-ku, Chiba, 260-8717, Japan.
| |
Collapse
|
22
|
Maruta H, Kittaka A. Chemical evolution for taming the 'pathogenic kinase' PAK1. Drug Discov Today 2020; 25:959-964. [PMID: 32348877 PMCID: PMC7194552 DOI: 10.1016/j.drudis.2020.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 01/14/2023]
Abstract
PAK1 is the major ‘pathogenic’ kinase. Several potent PAK1 blockers developed are introduced for treatment of a wide variety of PAK1-dependent diseases including cancers and pandemic COVID-19 infection.
To celebrate the 25th anniversary of the cloning of the first mammalian p21-activated kinases (PAKs) (RAC/CDC42-activated kinases) by Ed Manser, the first international PAK symposium was held in NYC in October 2019. Among six distinct PAKs in mammals, PAK1 is the major ‘pathogenic kinase’, the abnormal activation of which is responsible for a wide variety of diseases and disorders including cancers, ageing processes and infectious and inflammatory diseases such as pandemic coronaviral infection. Recently, for a clinical application, a few potent (highly cell-permeable and water-soluble) PAK1 blockers have been developed from natural or synthetic PAK1 blockers (triptolide, vitamin D3 and ketorolac) via a series of ‘chemical evolutions’ that boost pharmacological activities >500 times.
Collapse
|
23
|
Wang J, Zhu Y, Chen J, Yang Y, Zhu L, Zhao J, Yang Y, Cai X, Hu C, Rosell R, Sun X, Cao P. Identification of a novel PAK1 inhibitor to treat pancreatic cancer. Acta Pharm Sin B 2020; 10:603-614. [PMID: 32322465 PMCID: PMC7161699 DOI: 10.1016/j.apsb.2019.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate. The family of P21-activated kinases (PAKs) appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis. In this work, we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth. PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer. Our small molecule screening identified a relatively specific PAK1-targeted inhibitor, CP734. Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity. Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways. Little toxicity of CP734 was observed in murine models. Combined with gemcitabine or 5-fluorouracil, CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells. All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- ANOVA, analysis of variance
- AST, aspartate aminotransferase
- BCL-2, B-cell lymphoma-2
- BUN, blood urea nitrogen
- CCK-8, cell counting kit-8
- CDC42, cell division cycle 42
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethylsulfoxide
- ERK, extracellular regulated protein kinase
- GEPIA, gene expression profiling interactive analysis
- GTEx, genotype-tissue expression
- Gem, gemcitabine
- HEK293, human embryonic kidney 293
- HTVS, high-throughput virtual screening
- IMEM, improved minimum essential medium
- IP, immunoprecipitation
- Inhibitor
- MEK, mitogen-activated protein kinase kinase
- MEM, modified Eagle's medium
- NSCLC, non-small cell lung cancer
- OHP, oxaliplatin
- OS, overall survival
- PAK, P21-activated kinase
- PAK1
- PARP, poly(ADP-ribose) polymerase
- PAX, paclitaxel
- PSCs, pancreatic stellate cells
- PUMA, P53 upregulated modulator of apoptosis
- PVDF, polyvinylidene fluoride
- Pancreatic cancer
- RAC1, Rac family small GTPase 1
- RIPA, radio immunoprecipitation assay
- RPMI1640, Roswell Park Memorial Institute 1640 medium
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SP, standard precision
- Structure-based virtual screening
- Synergistic effect
- TCGA, The Cancer Genome Atlas
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling
- XP, extra precision
Collapse
Affiliation(s)
- Jiaqi Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yonghua Zhu
- Fullshare Health College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lingxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jiayu Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yang Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol University Hospital, Badalona, Badalona 08916, Spain
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Corresponding authors. Tel.: +86 25 85608666; fax: +86 25 52362230.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding authors. Tel.: +86 25 85608666; fax: +86 25 52362230.
| |
Collapse
|
24
|
PAK1 promotes proliferation, migration and invasion of hepatocellular carcinoma by facilitating EMT via directly up-regulating Snail. Genomics 2020; 112:694-702. [DOI: 10.1016/j.ygeno.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023]
|
25
|
Qu Y, Lin Z, Qi Y, Qi Y, Chen Y, Zhou Q, Zeng H, Liu Z, Wang Z, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Zhu Y, Xu L, Chen L, Zhang P, Zhang W, Dai B, Liu L, Xu J, Guo J. PAK1 expression determines poor prognosis and immune evasion in metastatic renal cell carcinoma patients. Urol Oncol 2019; 38:293-304. [PMID: 31889617 DOI: 10.1016/j.urolonc.2019.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/06/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Previous studies have shown the prognostic value of PAK1 expression in different tumor patients, including nonmetastatic renal cell carcinoma. In this study, we explored the prognostic and drug predictive value of PAK1 expression in metastatic renal cell carcinoma (mRCC) patients treated with tyrosine kinase inhibitors (TKIs). MATERIALS AND METHODS We retrospectively enrolled 138 mRCC patients treated with TKIs from a single institution from 2005 to 2014. Analyses were based on 111 patients who met our inclusion criteria. The validation set enrolled 538 RCC patients from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma cohort (TCGA KIRC) between 1998 and 2013 in North America. PAK1 expression was assessed by immunohistochemistry (IHC) on tissue microarrays. RESULTS High PAK1 expression was associated with short overall survival (OS) (P < 0.001) and progression-free survival (PFS) (P = 0.008). Multivariate analyses further indicated that PAK1 expression was an independent prognostic factor for OS (hazard ratio 3.301 [95% confidence interval 2.579-10.899], P < 0.001) and PFS (hazard ratio 3.108 [95% confidence interval 1.795-5.381], P < 0.001). Subgroup analyses suggested that PAK1 was more significant in patients with the intermediate risk group of Heng risk criteria (OS, P = 0.004). Of note, patients treated with Sunitinib showed improved outcome in the low PAK1 subgroup (OS, P = 0.002; PFS, P = 0.013). Finally, relationship was found between PAK1 expression and natural killer cell-mediated cytotoxicity according to gene profile investigation. CONCLUSIONS High PAK1 expression predicted dismal prognosis in mRCC patients treated with TKIs. Besides, PAK1 was a potential predictor for TKIs treatments.
Collapse
Affiliation(s)
- Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yangyang Qi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yifan Chen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Lett 2019; 472:8-18. [PMID: 31857154 DOI: 10.1016/j.canlet.2019.12.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Immunotherapies have not yielded significant clinical benefits for pancreatic ductal adenocarcinoma (PDA) because of the existence of an immunosuppressive tumour microenvironment (TME) characterized by a desmoplastic stroma containing infiltrated immune cells and activated pancreatic stellate cells (PSCs). This study aims to investigate the involvement of PAK1 in anti-tumour immunity. In PDA patients, low PAK1 expression, low activation of PSC and high CD8+ T cell/PAK1 ratios correlated with longer overall survival. In a murine PDA model, PAK1 knockout increased intra-tumoral CD4+ and CD8+ T cells, inhibited PSCs activation and extended survival. Inhibition of PAK1 reduced PSC-stimulated PDA cell proliferation and migration, blocked PSC-mediated protection of PDA cells from killing by cytotoxic lymphocytes and decreased intrinsic and PSC-stimulated PD-L1 expression in PDA cells, which further sensitized PDA cells to cytotoxic lymphocytes. Inhibition of PAK1 stimulates anti-tumour immunity by increasing intra-tumoral CD4+ and CD8+ T cells, and by sensitizing PDA cells to killing by cytotoxic lymphocytes via down-regulation of intrinsic and PSC-stimulated PD-L1 expression. PAK1 inhibitors, especially in combination with immune checkpoint inhibitors may result in improved efficacy of immunotherapy of PDA.
Collapse
|
27
|
Lee SW, Zhang Y, Jung M, Cruz N, Alas B, Commisso C. EGFR-Pak Signaling Selectively Regulates Glutamine Deprivation-Induced Macropinocytosis. Dev Cell 2019; 50:381-392.e5. [PMID: 31257175 DOI: 10.1016/j.devcel.2019.05.043] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/24/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
Macropinocytosis has emerged as an important nutrient-scavenging pathway that supports tumor cell fitness. By internalizing extracellular protein and targeting it for lysosomal degradation, this endocytic pathway functions as an amino acid supply route, permitting tumor cell growth and survival despite the nutrient-poor conditions of the tumor microenvironment. Here, we provide evidence that a subset of pancreatic ductal adenocarcinoma (PDAC) tumors are wired to integrate contextual metabolic inputs to regulate macropinocytosis, dialing up or down this uptake pathway depending on nutrient availability. We find that regional depletion of amino acids coincides with increased levels of macropinocytosis and that the scarcity of glutamine uniquely drives this process. Mechanistically, this stimulation of macropinocytosis depends on the nutrient stress-induced potentiation of epidermal growth factor receptor signaling that, through the activation of Pak, controls the extent of macropinocytosis in these cells. These results provide a mechanistic understanding of how nutritional cues can control protein scavenging in PDAC tumors.
Collapse
Affiliation(s)
- Szu-Wei Lee
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yijuan Zhang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael Jung
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Nathalia Cruz
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Basheer Alas
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Cosimo Commisso
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
28
|
Wang K, Baldwin GS, Nikfarjam M, He H. Antitumor effects of all-trans retinoic acid and its synergism with gemcitabine are associated with downregulation of p21-activated kinases in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 2019; 316:G632-G640. [PMID: 30844294 DOI: 10.1152/ajpgi.00344.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies worldwide. All-trans retinoic acid (ATRA) has been used as an antistromal agent in PDA, and its antitumor effect has also been reported in various kinds of cancer, including PDA. Inhibition of p21-activated kinases (PAKs) is associated with decreased tumor growth and increased gemcitabine sensitivity. The aim of this study was to evaluate the inhibitory effects of ATRA alone and in combination with gemcitabine on cell growth and migration of wild-type and gemcitabine-resistant PDA cells and the potential mechanism(s) involved. Human (MiaPaCa-2) and murine (TB33117) PDA cell lines were incubated in increasing concentrations of gemcitabine to establish resistant clones. Cell growth, clonogenicity, and migration/invasion were determined using a sulforhodamine B assay, a colony formation assay, and a Boyden chamber assay, respectively. Protein expression was measured by Western blotting. ATRA reduced cell proliferation, colony formation, and migration/invasion in both wild-type and gemcitabine-resistant cell lines. PAK1 expression was significantly increased in resistant cells. Cells treated with ATRA showed decreased expression of PAK1, PAK2, PAK4, and α-smooth muscle actin. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant cell lines. Depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. In conclusion, the antitumor effects of ATRA and its synergism with gemcitabine are associated with downregulation of PAKs. NEW & NOTEWORTHY The inhibitory effect of all-trans retinoic acid (ATRA) on cell proliferation, colony formation, and migration/invasion was associated with downregulation of p21-activated kinases (PAKs), and depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant pancreatic ductal adenocarcinoma cells. As an important prognostic marker, α-smooth muscle actin also can be downregulated by ATRA in pancreatic ductal adenocarcinoma cells.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Melbourne, Victoria , Australia
| |
Collapse
|
29
|
Biswal J, Jayaprakash P, Suresh Kumar R, Venkatraman G, Poopandi S, Rangasamy R, Jeyaraman J. Identification of Pak1 inhibitors using water thermodynamic analysis. J Biomol Struct Dyn 2019; 38:13-31. [PMID: 30661460 DOI: 10.1080/07391102.2019.1567393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.
Collapse
Affiliation(s)
- Jayashree Biswal
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Prajisha Jayaprakash
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Rayala Suresh Kumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Saritha Poopandi
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Raghu Rangasamy
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Department of Bioinformatics, Science Block Alagappa University, Karaikudi Tamil Nadu, India
| |
Collapse
|
30
|
Wang K, Baldwin GS, Nikfarjam M, He H. p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J Gastroenterol 2018; 24:3709-3723. [PMID: 30197477 PMCID: PMC6127653 DOI: 10.3748/wjg.v24.i33.3709] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies worldwide, with a very poor prognosis and a five-year survival rate less than 8%. This dismal outcome is largely due to delayed diagnosis, early distant dissemination and resistance to conventional chemo-therapies. Kras mutation is a well-defined hallmark of pancreatic cancer, with over 95% of cases harbouring Kras mutations that give rise to constitutively active forms of Kras. As important down-stream effectors of Kras, p21-activated kinases (PAKs) are involved in regulating cell proliferation, apoptosis, invasion/migration and chemo-resistance. Immunotherapy is now emerging as a promising treatment modality in the era of personalized anti-cancer therapeutics. In this review, basic knowledge of PAK structure and regulation is briefly summarised and the pivotal role of PAKs in Kras-driven pancreatic cancer is highlighted in terms of tumour biology and chemo-resistance. Finally, the involvement of PAKs in immune modulation in the tumour microenvironment is discussed and the potential advantages of targeting PAKs are explored.
Collapse
Affiliation(s)
- Kai Wang
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Melbourne 3084, Australia
| |
Collapse
|
31
|
Marchetti C, Zyner KG, Ohnmacht SA, Robson M, Haider SM, Morton JP, Marsico G, Vo T, Laughlin-Toth S, Ahmed AA, Di Vita G, Pazitna I, Gunaratnam M, Besser RJ, Andrade ACG, Diocou S, Pike JA, Tannahill D, Pedley RB, Evans TRJ, Wilson WD, Balasubramanian S, Neidle S. Targeting Multiple Effector Pathways in Pancreatic Ductal Adenocarcinoma with a G-Quadruplex-Binding Small Molecule. J Med Chem 2018; 61:2500-2517. [PMID: 29356532 PMCID: PMC5867665 DOI: 10.1021/acs.jmedchem.7b01781] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/11/2022]
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) involves the dysregulation of multiple signaling pathways. A novel approach to the treatment of PDAC is described, involving the targeting of cancer genes in PDAC pathways having over-representation of G-quadruplexes, using the trisubstituted naphthalene diimide quadruplex-binding compound 2,7-bis(3-morpholinopropyl)-4-((2-(pyrrolidin-1-yl)ethyl)amino)benzo[ lmn][3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone (CM03). This compound has been designed by computer modeling, is a potent inhibitor of cell growth in PDAC cell lines, and has anticancer activity in PDAC models, with a superior profile compared to gemcitabine, a commonly used therapy. Whole-transcriptome RNA-seq methodology has been used to analyze the effects of this quadruplex-binding small molecule on global gene expression. This has revealed the down-regulation of a large number of genes, rich in putative quadruplex elements and involved in essential pathways of PDAC survival, metastasis, and drug resistance. The changes produced by CM03 represent a global response to the complexity of human PDAC and may be applicable to other currently hard-to-treat cancers.
Collapse
Affiliation(s)
- Chiara Marchetti
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Katherine G. Zyner
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Stephan A. Ohnmacht
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mathew Robson
- Cancer
Research UK Cancer Centre, UCL Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Shozeb M. Haider
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Jennifer P. Morton
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Giovanni Marsico
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - Tam Vo
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Sarah Laughlin-Toth
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ahmed A. Ahmed
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Gloria Di Vita
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ingrida Pazitna
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mekala Gunaratnam
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Rachael J. Besser
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Ana C. G. Andrade
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Seckou Diocou
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - Jeremy A. Pike
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - David Tannahill
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
| | - R. Barbara Pedley
- UCL
Cancer Institute, University College London, London WC1E 6BT, U.K.
| | - T. R. Jeffry Evans
- Cancer
Research UK, Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD U.K.
- Institute
of Cancer Sciences. University of Glasgow, Glasgow G12 8QQ, U.K.
| | - W. David Wilson
- Department
of Chemistry and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Shankar Balasubramanian
- Cancer
Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- The
School of Clinical Medicine, University
of Cambridge, Cambridge CB2 0SP, U.K.
| | - Stephen Neidle
- UCL
School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| |
Collapse
|
32
|
Santoro R, Carbone C, Piro G, Chiao PJ, Melisi D. TAK -ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist Updat 2017; 33-35:36-42. [DOI: 10.1016/j.drup.2017.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/11/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023]
|
33
|
From bench (laboratory) to bed (hospital/home): How to explore effective natural and synthetic PAK1-blockers/longevity-promoters for cancer therapy. Eur J Med Chem 2017; 142:229-243. [PMID: 28814374 DOI: 10.1016/j.ejmech.2017.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/19/2022]
Abstract
PAK family kinases are RAC/CDC42-activated kinases that were first found in a soil amoeba 4 decades ago, and 2 decades later, were discovered in mammals as well. Since then at least 6 members of this family have been identified in mammals. One of them called PAK1 has been best studied so far, mainly because it is essential not only for malignant cell growth and metastasis, but also for many other diseases/disorders such as diabetes (type 2), AD (Alzheimer's disease), hypertension, and a variety of inflammatory or infectious diseases, which definitely shorten our lifespan. Moreover, PAK1-deficient mutant of C. elegans lives longer than the wild-type by 60%, clearly indicating that PAK1 is not only an oncogenic but also ageing kinase. Thus, in theory, both anti-oncogenic and longevity-promoting activities are among the "intrinsic" properties or criteria of "clinically useful" PAK1-blockers. There are a variety of PAK1-blocking natural products such as propolis and curcumin which indeed extend the healthy lifespan of small animals such as C. elegans by inducing the autophagy. Recently, we managed to synthesize a series of potent water-soluble and highly cell-permeable triazolyl esters of COOH-bearing PAK1-blockers such as Ketorolac, ARC (artepillin C) and CA (caffeic acid) via "Click Chemistry" that boosts their anti-cancer activity over 500-fold, mainly by increasing their cell-permeability, and one of them called 15K indeed extends the lifespan of C. elegans. In this mini-review we shall discuss both synthetic and natural PAK1-blockers, some of which would be potentially useful for cancer therapy with least side effect (rather promoting the longevity as well).
Collapse
|
34
|
Huynh N, Wang K, Yim M, Dumesny CJ, Sandrin MS, Baldwin GS, Nikfarjam M, He H. Depletion of p21-activated kinase 1 up-regulates the immune system of APC ∆14/+ mice and inhibits intestinal tumorigenesis. BMC Cancer 2017. [PMID: 28629331 PMCID: PMC5477105 DOI: 10.1186/s12885-017-3432-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND P21-activated kinase 1 (PAK1) stimulates growth and metastasis of colorectal cancer (CRC) through activation of multiple signalling pathways. Up-regulation of CRC stem cell markers by PAK1 also contributes to the resistance of CRC to 5-fluorouracil. The aim of this study was to investigate the effect of PAK1 depletion and inhibition on the immune system and on intestinal tumour formation in APC∆14/+ mice. METHODS The PAK1 KO APC∆14/+ mice were generated by cross-breeding of PAK1 KO mice with APC∆14/+ mice. Splenic lymphocytes were analysed by flow cytometry, and immunohistochemical staining. The numbers of intestinal tumours were counted. Blood cells were also counted. RESULTS Compared to APC+/+ mice, the numbers of both T- and B- lymphocytes were reduced in the spleen of APC∆14/+ mice. Depletion of PAK1 in APC∆14/+ mice increased the numbers of splenic T- and B- lymphocytes and decreased the numbers of intestinal tumours. Treatment of APC∆14/+ mice with PF-3758309, a PAK inhibitor reduced the numbers of intestinal tumours and increased the numbers of blood lymphocytes. CONCLUSION Depletion of active PAK1 up-regulates the immune system of APC∆14/+ mice and suppresses intestinal tumour development. These observations suggest an important role for PAK1 in the immune response to tumours.
Collapse
Affiliation(s)
- Nhi Huynh
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Kai Wang
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mildred Yim
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Chelsea J Dumesny
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mauro S Sandrin
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Graham S Baldwin
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Hong He
- Department of Surgery, University of Melbourne, Austin Health, Studley Rd, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
35
|
Yang Z, Wang H, Xia L, Oyang L, Zhou Y, Zhang B, Chen X, Luo X, Liao Q, Liang J. Overexpression of PAK1 Correlates with Aberrant Expression of EMT Markers and Poor Prognosis in Non-Small Cell Lung Cancer. J Cancer 2017; 8:1484-1491. [PMID: 28638464 PMCID: PMC5479255 DOI: 10.7150/jca.18553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
Objective: p21-activated kinases (PAKs) are serine/threonine protein kinases. PAK1 and epithelial-mesenchymal transition (EMT) are key therapeutic targets in cancer. The clinical significance of PAK1 and its potential association with EMT phenotype in non-small cell lung cancer (NSCLC) was investigated. Methods: Immunohistochemistry was used to detect the expression of PAK1, and mesenchymal and epithelial markers (vimentin, N-cadherin, and E-cadherin) in 186 cases of NSCLC tissues and 50 cases of tumor-adjacent normal tissues. The correlation of PAK1 with the clinicopathological characteristics, prognosis, and mesenchymal and epithelial markers in NSCLC were analyzed. Results: Compared with the non-tumor tissues, PAK1, vimentin, and N-cadherin levels were markedly elevated in NSCLC tissues, whereas the E-cadherin levels were significantly decreased (P<0.05). The aberrant expression of PAK1 was significantly associated with TNM stage and metastasis (P<0.001). Patients who displayed high expression of PAK1 may achieve a poorer progression-free survival (PFS) and overall survival (OS), compared to those with low expression of PAK1 (P=0.001 and P<0.001). Univariate and multivariate analysis showed that high expression of PAK1 was an independent predictor of poor prognosis [hazard ratio (HR) =2.121, P<0.001, HR=1.928, P=0.001, respectively]. In addition, significant correlations were observed between the EMT markers and OS or PFS (P<0.01). Interestingly, PAK1 expression was positively correlated with vimentin and N-cadherin levels (r=0.473, P<0.001; r=0.526, P<0.001, respectively) and negatively correlated with E-cadherin levels (r=-0.463, P<0.001) in NSCLC tissues. Conclusion: PAK1 may promote NSCLC progression and metastasis through EMT, thereby exhibiting the potential of an efficient prognostic predictor in NSCLC patients.
Collapse
Affiliation(s)
- Zhiying Yang
- Department of Histology and Embryology, Medical College, Hunan normal University, Changsha 410013, PR China
| | - Heran Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Baihua Zhang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xiaoyan Chen
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jianping Liang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
36
|
Jagadeeshan S, Venkatraman G, Rayala SK. Targeting p21 activated kinase 1 (Pak1) to PAKup Pancreatic Cancer. Expert Opin Ther Targets 2016; 20:1283-1285. [PMID: 27654702 DOI: 10.1080/14728222.2016.1239719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sankar Jagadeeshan
- a Department of Biotechnology , IIT Madras , Chennai , India.,b Department of Genetics , University of Madras , Chennai , India
| | - Ganesh Venkatraman
- c Department of Human Genetics , Sri Ramachandra University , Chennai , India
| | - Suresh K Rayala
- a Department of Biotechnology , IIT Madras , Chennai , India
| |
Collapse
|
37
|
Toxicity and anti-angiogenicity evaluation of Pak1 inhibitor IPA-3 using zebrafish embryo model. Cell Biol Toxicol 2016; 33:41-56. [DOI: 10.1007/s10565-016-9358-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/24/2016] [Indexed: 01/14/2023]
|