1
|
Faiad J, Andrade MF, de Castro G, de Resende J, Coêlho M, Aquino G, Seelaender M. Muscle loss in cancer cachexia: what is the basis for nutritional support? Front Pharmacol 2025; 16:1519278. [PMID: 40078277 PMCID: PMC11897308 DOI: 10.3389/fphar.2025.1519278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer cachexia (CC) is characterized by significant skeletal muscle wasting, and contributes to diminished quality of life, while being associated with poorer response to treatment and with reduced survival. Chronic inflammation plays a central role in driving CC progression, within a complex interplay favoring catabolism. Although cachexia cannot be fully reversed by conventional nutritional support, nutritional intervention shows promise for the prevention and treatment of the syndrome. Of special interest are nutrients with antioxidant and anti-inflammatory potential and those that activate pathways involved in muscle mass synthesis and/or in the inhibition of muscle wasting. Extensive research has been carried out on novel nutritional supplements' power to mitigate CC impact, while the mechanisms through which some nutrients or bioactive compounds exert beneficial effects on muscle mass are still not totally clear. Here, we discuss the most studied supplements and nutritional strategies for dealing with muscle loss in CC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilia Seelaender
- Cancer Metabolism Research Group, Faculdade de Medicina da Universidade de São Paulo, Departamento de Cirurgia, LIM 26-HC-USP, São Paulo, Brazil
| |
Collapse
|
2
|
Brown JC, Spielmann G, Yang S, Compton SLE, Jones LW, Irwin ML, Ligibel JA, Meyerhardt JA. Effects of exercise or metformin on myokine concentrations in patients with breast and colorectal cancer: A phase II multi-centre factorial randomized trial. J Cachexia Sarcopenia Muscle 2024; 15:1520-1527. [PMID: 38887915 PMCID: PMC11294014 DOI: 10.1002/jcsm.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Physical activity and metformin pharmacotherapy are associated with improved clinical outcomes in breast and colorectal cancer survivors. Myokines are cytokines secreted from skeletal muscle that may mediate these associations. METHODS This hypothesis-generating analysis used biospecimens collected from a multi-centre 2 × 2 factorial randomized design of 116 patients with stage I-III breast and colorectal cancer who were randomized to 12 weeks of (1) aerobic exercise (moderate intensity titrated to 220 min/week); (2) metformin (850 mg daily for 2 weeks and then titrated to 850 mg twice per day); (3) aerobic exercise and metformin; or (4) control. Fourteen myokines were quantified using a multiplex panel. Myokine concentrations were log-transformed, and main effects analyses were conducted using linear mixed-effects regression models. The type I error rate was controlled with the Holm sequential testing procedure. RESULTS Randomization to exercise increased leukaemia inhibitory factor (1.26 pg/mL, 95% confidence interval [CI]: 0.69, 1.84; adjusted P = 0.001) and interleukin-15 (2.23 pg/mL, 95% CI: 0.87, 3.60; adjusted P = 0.013) compared with randomization to no exercise. Randomization to metformin decreased apelin (-2.69 pg/mL, 95% CI: -4.31, -1.07; adjusted P = 0.014) and interleukin-15 (-1.74 pg/mL, 95% CI: -2.79, -0.69; adjusted P = 0.013) compared with randomization to no metformin. Metformin decreased myostatin, irisin, oncostatin M, fibroblast growth factor 21 and osteocrin; however, these changes were not statistically significant after correction for multiple comparisons. CONCLUSIONS This pilot study demonstrates that randomization to exercise and metformin elicit unique effects on myokine concentrations in cancer patients. This hypothesis-generating observation warrants further basic, translational and clinical investigation and replication.
Collapse
Affiliation(s)
- Justin C. Brown
- Pennington Biomedical Research CenterBaton RougeLAUSA
- LSU Health Sciences Center New Orleans School of MedicineNew OrleansLAUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | | | | | | | - Lee W. Jones
- Memorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | | | | | | |
Collapse
|
3
|
Negro M, Crisafulli O, D'Antona G. Effects of essential amino acid (EAA) and glutamine supplementation on skeletal muscle wasting in acute, subacute, and postacute conditions. Clin Nutr ESPEN 2024; 62:224-233. [PMID: 38843393 DOI: 10.1016/j.clnesp.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/22/2024]
Abstract
Under optimal physiological conditions, muscle mass maintenance is ensured by dietary protein, which balances the amino acid loss during the post-absorption period and preserves the body's protein homeostasis. Conversely, in critical clinical conditions (acute, subacute or postacute), particularly those related to hypomobility or immobility, combined with malnutrition, and local/systemic inflammation, the loss of muscle mass and strength can be quantitatively significant. A decline of more than 1% in muscle mass and of more than 3% in muscle strength has been registered in subjects with aged 20-37 yr after just five days of bed rest, similarly to those observed during one year of age-related decline in individuals over the age of 50. Loss of muscle mass and strength can have a dramatic effect on subjects' functional capacities, on their systemic metabolic control and on the amino acid reserve function, all of which are fundamental for the maintenance of other organs' and tissues' cell processes. References available indicate that the average 1%-2% reduction per day of muscle mass in patients in the intensive care unit (ICU) could represent an independent predictor of hospital mortality and physical disability in the five years following hospitalization. After just a few days or weeks of administration, supplementation with EAAs and glutamine has shown significant effects in maintaining muscle size and strength, which are typically negatively affected by some acute/subacute or postacute critical conditions (muscle recovery after surgery, oncology patients, ICU treatments), especially in the elderly or in those with pre-existing degenerative diseases. In this review, we focused on the theoretical bases and the most relevant clinical studies of EAA and glutamine supplementation as a single compound, with the aim of clarifying whether their combined use in a blend (EAAs-glutamine) could be potentially synergistic to prevent disease-related muscle wasting and its impact on the duration and quality of patients' clinical course.
Collapse
Affiliation(s)
- Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Oscar Crisafulli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Giuseppe D'Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS) - Sport Medicine Centre, University of Pavia, Voghera, Italy; Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Pradhan R, Dieterich W, Natarajan A, Schwappacher R, Reljic D, Herrmann HJ, Neurath MF, Zopf Y. Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia. Cancers (Basel) 2024; 16:1921. [PMID: 38791998 PMCID: PMC11119313 DOI: 10.3390/cancers16101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia.
Collapse
Affiliation(s)
- Rashmita Pradhan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Walburga Dieterich
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anirudh Natarajan
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Raphaela Schwappacher
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dejan Reljic
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans J. Herrmann
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
| | - Yurdagül Zopf
- Department of Medicine, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (R.P.); (W.D.); (A.N.); (R.S.); (D.R.); (H.J.H.); (M.F.N.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
5
|
Hu J, Wang Y, Ji X, Zhang Y, Li K, Huang F. Non-Pharmacological Strategies for Managing Sarcopenia in Chronic Diseases. Clin Interv Aging 2024; 19:827-841. [PMID: 38765795 PMCID: PMC11102744 DOI: 10.2147/cia.s455736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
This article focuses on a range of non-pharmacological strategies for managing sarcopenia in chronic diseases, including exercise, dietary supplements, traditional Chinese exercise, intestinal microecology, and rehabilitation therapies for individuals with limited limb movement. By analyzing multiple studies, the article aims to summarize the available evidence to manage sarcopenia in individuals with chronic diseases. The results strongly emphasize the role of resistance training in addressing chronic diseases and secondary sarcopenia. Maintaining the appropriate frequency and intensity of resistance training can help prevent muscle atrophy and effectively reduce inflammation. Although aerobic exercise has limited ability to improve skeletal muscle mass, it does have some positive effects on physical function. Building upon this, the article explores the potential benefits of combined training approaches, highlighting their helpfulness for overall quality of life. Additionally, the article also highlights the importance of dietary supplements in combating muscle atrophy in chronic diseases. It focuses on the importance of protein intake, supplements rich in essential amino acids and omega-3, as well as sufficient vitamin D to prevent muscle atrophy. Combining exercise with dietary supplements appears to be an effective strategy for preventing sarcopenia, although the optimal dosage and type of supplement remain unclear. Furthermore, the article explores the potential benefits of intestinal microecology in sarcopenia. Probiotics, prebiotics, and bacterial products are suggested as new treatment options for sarcopenia. Additionally, emerging therapies such as whole body vibration training, blood flow restriction, and electrical stimulation show promise in treating sarcopenia with limited limb movement. Overall, this article provides valuable insights into non-pharmacological strategies for managing sarcopenia in individuals with chronic diseases. It emphasizes the importance of a holistic and integrated approach that incorporates exercise, nutrition, and multidisciplinary interventions, which have the potential to promote health in the elderly population. Future research should prioritize high-quality randomized controlled trials and utilize wearable devices, smartphone applications, and other advanced surveillance methods to investigate the most effective intervention strategies for sarcopenia associated with different chronic diseases.
Collapse
Affiliation(s)
- Jiawen Hu
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Ji
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinan Zhang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Caeiro L, Jaramillo Quiroz S, Hegarty JS, Grewe E, Garcia JM, Anderson LJ. Clinical Relevance of Physical Function Outcomes in Cancer Cachexia. Cancers (Basel) 2024; 16:1395. [PMID: 38611073 PMCID: PMC11010860 DOI: 10.3390/cancers16071395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Managing clinical manifestations of cancer/treatment burden on functional status and quality of life remains paramount across the cancer trajectory, particularly for patients with cachexia who display reduced functional capacity. However, clinically relevant criteria for classifying functional impairment at a single point in time or for classifying meaningful functional changes subsequent to disease and/or treatment progression are lacking. This unmet clinical need remains a major obstacle to the development of therapies for cancer cachexia. This review aims to describe current literature-based evidence for clinically meaningful criteria for (1) functional impairment at a single timepoint between cancer patients with or without cachexia and (2) changes in physical function over time across interventional studies conducted in patients with cancer cachexia. The most common functional assessment in cross-sectional and interventional studies was hand grip strength (HGS). We observed suggestive evidence that an HGS deficit between 3 and 6 kg in cancer cachexia may display clinical relevance. In interventional studies, we observed that long-duration multimodal therapies with a focus on skeletal muscle may benefit HGS in patients with considerable weight loss. Future studies should derive cohort-specific clinically relevant criteria to confirm these observations in addition to other functional outcomes and investigate appropriate patient-reported anchors.
Collapse
Affiliation(s)
- Lucas Caeiro
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sofia Jaramillo Quiroz
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Jenna S. Hegarty
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
| | - Ellen Grewe
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
| | - Jose M. Garcia
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lindsey J. Anderson
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (L.C.); (S.J.Q.); (J.S.H.); (E.G.); (J.M.G.)
- Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Deantoni CL, Mirabile A, Chiara A, Giannini L, Midulla M, Del Vecchio A, Fiorino C, Fodor A, Di Muzio NG, Dell’Oca I. Impact of low skeletal muscle mass in oropharyngeal cancer patients treated with radical chemo-radiotherapy: A mono-institutional experience. TUMORI JOURNAL 2024; 110:116-123. [PMID: 37978342 PMCID: PMC11005313 DOI: 10.1177/03008916231212382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
AIMS Low skeletal muscle mass index (SMI) has recently emerged as an independent prognostic factor in oncological patients and it is linked with poor survival and higher treatment toxicity. The present study aims to determine the possible impact of low SMI on survival and acute toxicity in oropharyngeal patients. METHODS Seventy-six patients with locally advanced oropharyngeal squamous cell carcinoma (stage III-IVC) were treated in our institution with Helical TomoTherapy® (HT - Accuray, Maddison, WI, USA) between 2005 and 2021. All patients received concomitant platinum-based chemotherapy (CT) (at least 200 mg/m2). The SMI was determined using the calculation of cross-sectional area at C3. Twenty patients (26%) presented pre-treatment low SMI, according to Chargi definitions. RESULTS All patients concluded the treatment. Thirteen patients with low SMI (65%) and 22 patients with normal SMI (39%) presented acute toxicity greater than or equal to grade 3, but this difference was not statistically significant (p-value = 0.25). Overall survival was analyzed in 65 patients, excluding those who finished CT-RT less than six months before the analysis. Overall survival was significantly lower in low SMI versus normal SMI patients (p-value = 0.035). Same difference was observed in N0-N2a patients, suggesting an important role of SMI also in lower nodal burden and putatively better prognosis. CONCLUSIONS Although the results are limited to a small population, our case series has the advantage to be very homogeneous in patients and treatment characteristics. In our setting, SMI demonstrated a crucial impact on overall survival. Further investigation with larger samples is necessary to confirm our results to improve patient outcomes.
Collapse
Affiliation(s)
- Chiara L. Deantoni
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Mirabile
- Department Unit of Oncology, Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Università Vita-Salute, Milano
| | - Anna Chiara
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Giannini
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Midulla
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Del Vecchio
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Fiorino
- Department of Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrei Fodor
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nadia G. Di Muzio
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Italo Dell’Oca
- Department of Radiation Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Nunthanawanich P, Wichansawakun S, Luangjinda C, Hudthagosol C. Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer. Nutrients 2024; 16:408. [PMID: 38337693 PMCID: PMC10857273 DOI: 10.3390/nu16030408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The most common cancer in Thailand is colorectal cancer (CRC). A lack of knowledge and misleading information from social media have contributed to cancer deaths from malnutrition. A web application is a tool that provides easy access to scientific nutritional information via an online platform. In this study, our goal was to compare the nutritional status of CRC patients using different nutrition-based educational tools with nutrition counseling, namely the Nutrition Educational Prototype based on Smartphone Web Applications (NEPSA) and standard hospital leaflets. Anthropometric and biochemical analyses and a dietary assessment, especially calories and protein, were measured during three visits. This study finally included 28 CRC patients who were undergoing chemotherapy and malnutrition with a body mass index (BMI) of <20 kg/m2. Thirteen participants received NEPSA while the remaining fifteen participants received a standard hospital leaflet. The results showed that NEPSAs improved nutritional outcomes by encouraging weight gain, increasing BMI, hemoglobin, hematocrit, and albumin levels, and consuming more calories and protein. NEPSA should be implemented to enhance the nutrition outcomes from anthropometric, biochemical, and dietary perspectives from nutrition advice among CRC patients. There could be positive impacts at the national level regarding equal accessibility to Thailand's nutrition information.
Collapse
Affiliation(s)
- Pornpimon Nunthanawanich
- Doctor of Public Health (International Program), Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| | - Sanit Wichansawakun
- Division of Clinical Nutrition, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Cholrit Luangjinda
- Research and Development Office, Thailand Institute of Occupational Safety and Health, Ministry of Labor, Bangkok 10170, Thailand
| | - Chatrapa Hudthagosol
- Department of Nutrition, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Siqueira JM, Vega MCMD, Pimentel GD. Amino acids and cancer: potential for therapies? Curr Opin Clin Nutr Metab Care 2024; 27:47-54. [PMID: 37997812 DOI: 10.1097/mco.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Cancer patients may have a variety of disorders associated with systemic inflammation caused by disease progression. Consequently, we have protein hypercatabolism. In view of this, protein and amino acid adequacy should be considered in relation to nutritional behavior. Therefore, this review aims to evaluate the influence of protein and amino acids in the nutritional therapy of cancer. RECENT FINDINGS Diets with adequate protein levels appear to be beneficial in the treatment of cancer; guidelines suggest consumption of greater than 1.0-1.5 g/kg body weight/day. In patients diagnosed with malnutrition, sarcopenia, or cachexia, it is recommended to use the maximum amount of protein (1.5 g/kg of weight/day) to adapt the diet. In addition, based on the evidence found, there is no consensus on the dose and effects in cancer patients of amino acids such as branched-chain amino acids, glutamine, arginine, and creatine. SUMMARY When evaluating the components of the diet of cancer patients, the protein recommendation should be greater than 1.0-1.5 g/kg of weight/day, with a distribution between animal and vegetable proteins. We found little evidence demonstrating clinical benefits regarding individual or combined amino acid supplementation. Still, it is unclear how the use, dose, and specificity for different types of cancer should be prescribed or at what stage of treatment amino acids should be prescribed.
Collapse
|
10
|
Dave S, Patel BM. Deliberation on debilitating condition of cancer cachexia: Skeletal muscle wasting. Fundam Clin Pharmacol 2023; 37:1079-1091. [PMID: 37474262 DOI: 10.1111/fcp.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/18/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Cancer cachexia is a debilitating syndrome associated with marked body loss because of muscular atrophy and fat loss. There are several mechanisms contributing to the pathogenesis of cachexia. The presence of the tumor releases cytokines from inflammatory and immune cells, which play a significant role in activating and deactivating certain pathways associated with protein, carbohydrate, and lipid metabolism. This review focuses on various cascades involving an imbalance between protein synthesis and degradation in the skeletal muscles. OBJECTIVES This study aimed to elucidate the mechanisms involved in skeletal muscle wasting phenomenon over the last few years. METHODS This article briefly overviews different pathways responsible for muscle atrophy in cancer cachexia. Studies published up to April 2023 were included. Important findings and study contributions were chosen and compiled using several databases including PubMed, Google Scholar, Science Direct, and ClinicalTrials.gov using relevant keywords. RESULTS Cancer cachexia is a complex disease involving multiple factors resulting in atrophy of skeletal muscles. Systemic inflammation, altered energy balance and carbohydrate metabolism, altered lipid and protein metabolism, and adipose tissue browning are some of the major culprits in cancer cachexia. Increased protein degradation and decreased protein synthesis lead to muscle atrophy. Changes in signaling pathway like ubiquitin-proteasome, autophagy, mTOR, AMPK, and IGF-1 also lead to muscle wasting. Physical exercise, nutritional supplementation, steroids, myostatin inhibitors, and interventions targeting on inflammation have been investigated to treat cancer cachexia. Some therapy showed positive results in preclinical and clinical settings, although more research on the efficacy and safety of the treatment should be done. CONCLUSION Muscle atrophy in cancer cachexia is the result of multiple complex mechanisms; as a result, a lot more research has been done to describe the pathophysiology of the disease. Targeted therapy and multimodal interventions can improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Srusti Dave
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Bhoomika M Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar, India
| |
Collapse
|
11
|
Zhang FM, Wu HF, Shi HP, Yu Z, Zhuang CL. Sarcopenia and malignancies: epidemiology, clinical classification and implications. Ageing Res Rev 2023; 91:102057. [PMID: 37666432 DOI: 10.1016/j.arr.2023.102057] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Sarcopenia is a progressive systemic skeletal muscle disorder characterized by a pathological decline in muscle strength, quantity, and quality, which frequently affects the elderly population. The majority of cancer patients are of advanced age. Patients may already have sarcopenia prior to cancer development, and those with cancer are prone to developing sarcopenia due to hypercatabolism, inflammation, reduced physical fitness, anorexia, adverse effects, and stress associated with anticancer therapy. Based on the timing, sarcopenia in patients with cancer can be categorized into three: pre-existing sarcopenia before the onset of cancer, sarcopenia related to cancer, and sarcopenia related to cancer treatment. Sarcopenia not only changes the body composition of patients with cancer but also increases the incidence of postoperative complications, reduces therapeutic efficacy, impairs quality of life, and results in shortened survival. Different therapeutic strategies are required to match the cancer status and physical condition of patients with different etiologies and stages of sarcopenia. Here, we present a comprehensive review of the epidemiology and diagnosis of sarcopenia in patients with cancer, elucidate the complex interactions between cancer and sarcopenia, and provide evidence-based strategies for sarcopenia management in these patients.
Collapse
Affiliation(s)
- Feng-Min Zhang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao-Fan Wu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University/ Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, China
| | - Zhen Yu
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Johnston EA, Ibiebele TI, Friedlander ML, Grant PT, van der Pols JC, Webb PM. Association of protein intake with recurrence and survival following primary treatment of ovarian cancer. Am J Clin Nutr 2023:S0002-9165(23)48895-8. [PMID: 37146759 DOI: 10.1016/j.ajcnut.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Malnutrition is common during treatment for ovarian cancer and one in three report multiple symptoms affecting food intake after primary treatment. Little is known about diet post-treatment in relation to ovarian cancer survival, however, general recommendations for cancer survivors are to maintain a higher level of protein intake to support recovery and minimize nutritional deficits. OBJECTIVE To investigate whether intake of protein and protein food sources following primary treatment for ovarian cancer is associated with recurrence and survival. DESIGN Intake levels of protein and protein food groups were calculated from dietary data collected about 12 months post-diagnosis using a validated food frequency questionnaire in an Australian cohort of females with invasive epithelial ovarian cancer. Disease recurrence and survival status were abstracted from medical records (median 4.9 years follow-up). Cox proportional hazards regression was used to calculate adjusted hazard ratios (HR) and 95% confidence intervals (CI) for protein intake and progression-free and overall survival. RESULTS Among 591 females who were progression-free at 12-months follow-up, 329 (56%) subsequently experienced cancer recurrence and 231 (39%) died. A higher level of protein intake was associated with better progression-free survival (>1-1.5 vs. ≤1 grams per kilogram body weight (g/kg): HRadjusted=0.69, 95% CI 0.48, 1.00; >1.5 vs. ≤1g/kg: HRadjusted=0.61, 95% CI 0.41, 0.90; >20% vs. ≤20% total energy intake from protein: HRadjusted=0.77, 95% CI 0.61, 0.96). There was no evidence for better progression-free survival with any particular protein food sources. There was a suggestion of better overall survival among those with higher total intakes of animal-based protein foods, particularly dairy products (HR=0.71, 95% CI 0.51, 0.99 for highest vs. lowest tertiles of total dairy intake). CONCLUSIONS After primary treatment for ovarian cancer, a higher level of protein intake may benefit progression-free survival. Ovarian cancer survivors should avoid dietary practices that limit intake of protein-rich foods.
Collapse
Affiliation(s)
- Elizabeth A Johnston
- QIMR Berghofer Medical Research Institute, Population Health Program, Herston, Queensland, Australia; Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, Queensland, Australia; Viertel Cancer Research Centre, Cancer Council Queensland, Fortitude Valley, Queensland, Australia.
| | - Torukiri I Ibiebele
- QIMR Berghofer Medical Research Institute, Population Health Program, Herston, Queensland, Australia
| | - Michael L Friedlander
- University of New South Wales Clinical School, Prince of Wales Hospital, Randwick, New South Wales, Australia; Department of Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Peter T Grant
- University of Melbourne, Department of Gynaecological Oncology, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jolieke C van der Pols
- QIMR Berghofer Medical Research Institute, Population Health Program, Herston, Queensland, Australia; Queensland University of Technology (QUT), Faculty of Health, School of Exercise and Nutrition Sciences, Kelvin Grove, Queensland, Australia
| | - Penelope M Webb
- QIMR Berghofer Medical Research Institute, Population Health Program, Herston, Queensland, Australia
| |
Collapse
|
13
|
Miyazaki M, Sawada A, Sawamura D, Yoshida S. Decreased insulin-like growth factor-1 expression in response to mechanical loading is associated with skeletal muscle anabolic resistance in cancer cachexia. Growth Horm IGF Res 2023; 69-70:101536. [PMID: 37229943 DOI: 10.1016/j.ghir.2023.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVE Cachexia is a systemic metabolic syndrome characterized by loss of body weight and skeletal muscle mass during chronic wasting diseases, such as cancer. Skeletal muscle in cancer cachexia is less responsive to anabolic factors including mechanical loading; however, the precise molecular mechanism is largely unknown. In this study, we examined the underlying mechanism of anabolic resistance in skeletal muscle in a cancer cachexia model. METHODS CD2F1 mice (male, 8 weeks old) were subcutaneously transplanted (1 × 106 cells per mouse) with a mouse colon cancer-derived cell line (C26) as a model of cancer cachexia. Mechanical overload of the plantaris muscle by synergist tenotomy was performed during the 2nd week and the plantaris muscle was sampled at the 4th week following C26 transplantation. RESULTS The hypertrophic response of skeletal muscle (increased skeletal muscle weight/protein synthesis efficiency and activation of mechanistic target of rapamycin complex 1 signaling) associated with mechanical overload was significantly suppressed during cancer cachexia. Screening of gene expression profile and pathway analysis using microarray revealed that blunted muscle protein synthesis was associated with cancer cachexia and was likely induced by downregulation of insulin-like growth factor-1 (IGF-1) and impaired activation of IGF-1-dependent signaling. CONCLUSIONS These observations indicate that cancer cachexia induces resistance to muscle protein synthesis, which may be a factor for inhibiting the anabolic adaptation of skeletal muscle to physical exercise in cancer patients.
Collapse
Affiliation(s)
- Mitsunori Miyazaki
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan.
| | - Atsushi Sawada
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| | - Daisuke Sawamura
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Japan
| | - Susumu Yoshida
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Japan
| |
Collapse
|
14
|
Deng Y, Zhao L, Huang X, Zeng Y, Xiong Z, Zuo M. Contribution of skeletal muscle to cancer immunotherapy: A focus on muscle function, inflammation, and microbiota. Nutrition 2023; 105:111829. [PMID: 36265324 DOI: 10.1016/j.nut.2022.111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Sarcopenia, characterized by degenerative and systemic loss of skeletal muscle mass and function, is a multifactorial syndrome commonly observed in individuals with cancer. Additionally, it represents a poor nutritional status and indicates possible presence of cancer cachexia. Recently, with the extensive application of cancer immunotherapy, the effects of sarcopenia/cachexia on cancer immunotherapy, have gained attention. The aim of this review was to summarize the influence of low muscle mass (sarcopenia/cachexia) on the response and immune-related adverse events to immunotherapy from the latest literature. It was revealed that low muscle mass (sarcopenia/cachexia) has detrimental effects on cancer immunotherapy in most cases, although there were results that were not consistent with this finding. This review also discussed potential causes of the paradox, such as different measure methods, research types, muscle indicators, time point, and cancer type. Mechanically, chronic inflammation, immune cells, and microbiota may be critically involved in regulating the efficacy of immunotherapy under the condition of low muscle mass (sarcopenia/cachexia). Thus, nutritional interventions will likely be promising ways for individuals with cancer to increase the efficacy of immunotherapy in the future, for low muscle mass (sarcopenia/cachexia) is an important prognostic factor for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanle Deng
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Ling Zhao
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Xuemei Huang
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Yu Zeng
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Zhujuan Xiong
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China.
| | - Ming Zuo
- Department of Clinical Nutrition, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
15
|
Nuhu JM, Barnes R, van der Merwe A. Exercise interventions used along the continuum of cancer care: A scoping review protocol. SOUTH AFRICAN JOURNAL OF PHYSIOTHERAPY 2022; 78:1819. [PMID: 36483132 PMCID: PMC9724114 DOI: 10.4102/sajp.v78i1.1819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 09/10/2024] Open
Abstract
Background Cancer is one of the leading causes of death worldwide. Exercise is crucial for ameliorating the burden associated with cancer and its management. A broad review of exercise interventions for cancer patients is not available. Objective Our study aims to review the documented exercise interventions prescribed for adult cancer patients aimed at ameliorating cancer-related and cancer treatment-induced symptoms in patients along the continuum of care. Methods A three-step search strategy will be used, the research question was developed; the first step in the research process was identified and the search strategy was developed using the Participants-Concept-Context framework. English language publications from 15 electronic databases from 2011 to 2021 will be searched. The Joanna Briggs Institute methodology for scoping reviews will be to guide the review and the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping reviews will be used for the report. The search strategy incorporated terms relevant to the research question. The reference lists of articles included in the review will be screened for additional papers. Searched articles will be screened to determine their eligibility for inclusion and a pretested data extraction form will be used to chart the extracted evidence. Results This article presents a protocol for a scoping review on exercise interventions to affect symptoms in cancer patients from diagnosis to end-of-life care. Conclusion A broad review of exercise interventions for cancer management in adult patients will elucidate the characteristics and context of exercises used along the cancer care continuum. Clinical implications Exercise interventions used as part of cancer management will be mapped out to provide an overview of such exercise interventions. This could enhance knowledge among exercise oncology experts regarding exercise interventions for different cancer patient populations.
Collapse
Affiliation(s)
- Jibril M Nuhu
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| | - Roline Barnes
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| | - Anke van der Merwe
- Department of Physiotherapy, School of Health and Rehabilitation Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
16
|
Colomba E, Alves Costa Silva C, Le Teuff G, Elmawieh J, Afonso D, Benchimol‐Zouari A, Guida A, Derosa L, Flippot R, Raynard B, Escudier B, Bidault F, Albiges L. Weight and skeletal muscle loss with cabozantinib in metastatic renal cell carcinoma. J Cachexia Sarcopenia Muscle 2022; 13:2405-2416. [PMID: 35903892 PMCID: PMC9530538 DOI: 10.1002/jcsm.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cabozantinib, a standard of care metastatic renal cell carcinoma (mRCC), may be associated with weight and muscle loss. These effects of new generation VEGFR tyrosine kinase inhibitor on muscle mass loss are poorly described. METHODS All cabozantinib-treated mRCC patients from January 2014 to February 2019 in our institution were included. Clinical data including weight were collected during therapy. Computed tomography images were centrally reviewed for response assessment, and axial sections at the third lumbar vertebrae were used to measure the total muscle area. Toxicities and cabozantinib outcomes were evaluated. Co-primary endpoints included skeletal muscle loss and weight loss (WL), longitudinally evaluated during treatment. WL has been classified according to CTCAEv5.0: Grade 1 (loss of 5 to <10% of baseline body weight), Grade 2 (loss of 10% to <20% of baseline body weight), and Grades 3-4 (loss >20% of baseline body weight). RESULTS Patients were mostly men (70.3%), median age was 59.2 (range: 22.0-78.0) years, and median baseline body mass index was 25.0 (range: 16.4-49.3) kg/cm2 . Prognosis according to International Metastatic RCC Database Consortium score was good, intermediate, and poor for 13 (13.0%), 63 (63.0%), and 24 (24.0%) patients, respectively. Out of a total of 120 patients, 101 patients with a median follow-up of 22.3 months (range: 4.5-62.2) were eligible for analysis; 85 experienced muscle loss and muscle loss >10% increased during cabozantinib exposition, especially after 6 months of treatment. At cabozantinib baseline, 71 patients (70.3%) had sarcopenia, and 16/30 (53.3%) non-sarcopenic patients developed sarcopenia during treatment. Baseline sarcopenia was associated with lower response rates (P = 0.031) and higher grades 3-4 toxicities (P = 0.001). Out of 92 patients included in the WL analysis, 44 (47.8%) and 12 (13.0%) experienced grades 2 and 3 WL, respectively. CONCLUSIONS We report a high incidence of grades 3-4 WL, fourth times higher than reported in prior pivotal trials, and half of the patients developed sarcopenia while on cabozantinib treatment. Weight and muscle mass loss with cabozantinib are underreported and may require further investigations and early management.
Collapse
Affiliation(s)
- Emeline Colomba
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - Carolina Alves Costa Silva
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015Equipe Labellisée—Ligue Nationale contre le CancerVillejuifFrance
| | - Gwénaël Le Teuff
- Biostatistics and Epidemiology DepartmentGustave RoussyVillejuifFrance
- Oncostat U1018, Inserm, Labeled Ligue Contre le CancerUniversity Paris‐SaclayVillejuifFrance
| | - Jamie Elmawieh
- Department of Anaesthesia, Surgery and Interventional, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - Daniel Afonso
- Imaging Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | | | - Annalisa Guida
- Medical and Translational Oncology Unit, Department of OncologyAzienda Ospedaliera Santa MariaTerniItaly
| | - Lisa Derosa
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015Equipe Labellisée—Ligue Nationale contre le CancerVillejuifFrance
| | - Ronan Flippot
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - Bruno Raynard
- Dietetics and Nutrition Unit, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - Bernard Escudier
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - François Bidault
- Imaging Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| | - Laurence Albiges
- Cancer Medicine Department, Gustave RoussyParis‐Saclay UniversityVillejuifFrance
| |
Collapse
|
17
|
Bland KA, Kouw IWK, van Loon LJC, Zopf EM, Fairman CM. Exercise-Based Interventions to Counteract Skeletal Muscle Mass Loss in People with Cancer: Can We Overcome the Odds? Sports Med 2022; 52:1009-1027. [PMID: 35118634 DOI: 10.1007/s40279-021-01638-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2021] [Indexed: 12/15/2022]
Abstract
Addressing skeletal muscle mass loss is an important focus in oncology research to improve clinical outcomes, including cancer treatment tolerability and survival. Exercise is likely a necessary component of muscle-mass-preserving interventions for people with cancer. However, randomized controlled trials with exercise that include people with cancer with increased susceptibility to more rapid and severe muscle mass loss are limited. The aim of the current review is to highlight features of cancer-related skeletal muscle mass loss, discuss the impact in patients most at risk, and describe the possible role of exercise as a management strategy. We present current gaps within the exercise oncology literature and offer several recommendations for future studies to support research translation, including (1) utilizing accurate and reliable body composition techniques to assess changes in skeletal muscle mass, (2) incorporating comprehensive assessments of patient health status to allow personalized exercise prescription, (3) coupling exercise with robust nutritional recommendations to maximize the impact on skeletal muscle outcomes, and (4) considering key exercise intervention features that may improve exercise efficacy and adherence. Ultimately, the driving forces behind skeletal muscle mass loss are complex and may impede exercise tolerability and efficacy. Our recommendations are intended to foster the design of high-quality patient-centred research studies to determine whether exercise can counteract muscle mass loss in people with cancer and, as such, improve knowledge on this topic.
Collapse
Affiliation(s)
- Kelcey A Bland
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,The Szalmuk Family Department of Medical Oncology, Cabrini Cancer Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Imre W K Kouw
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.,Centre of Research Excellence in Translating Nutritional Science To Good Health, The University of Adelaide, Adelaide, SA, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Luc J C van Loon
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,Department of Human Biology, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Eva M Zopf
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia.,The Szalmuk Family Department of Medical Oncology, Cabrini Cancer Institute, Cabrini Health, Melbourne, VIC, Australia
| | - Ciaran M Fairman
- Exercise Science Department, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, PHRC 220, Columbia, SC, 29208, USA.
| |
Collapse
|
18
|
Sealy MJ, Stuiver MM, Midtgaard J, van der Schans CP, Roodenburg JLN, Jager-Wittenaar H. Perception and Performance of Physical Activity Behavior after Head and Neck Cancer Treatment: Exploration and Integration of Qualitative and Quantitative Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:287. [PMID: 35010547 PMCID: PMC8751059 DOI: 10.3390/ijerph19010287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Maintaining or increasing physical activity (PA) may prevent loss of muscle mass and strength after completion of head and neck cancer (HNC) treatment. However, the exercise level of HNC patients may not meet PA guidelines. We aimed to explore HNC survivors' views on PA, their report of PA, and to compare these with objectively measured PA. Combined qualitative and quantitative data of HNC survivors were explored post-treatment. Data from semi-structured interviews, questionnaires, and objective measurements of PA were collected, analyzed, and integrated. This resulted in the identification of five themes related to prioritizing, day-to-day life, intention, positive feelings, and social support, respectively, in nine HNC survivors (male: n = 5; age: 52-67 years). Objectively measured PA levels were sedentary to low. The lack of intention to increase PA may be related to HNC survivors' perception that their current activity level is sufficient, despite low levels of measured PA. While some participants feel they need no help with PA, others are insecure about possible harms. Healthcare professionals may be able to help improve PA in HNC survivors with a tailored approach that reduces fear of harm and helps to incorporate higher intensity PA in daily activities.
Collapse
Affiliation(s)
- Martine J. Sealy
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands; (C.P.v.d.S.); (H.J.-W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| | - Martijn M. Stuiver
- Center for Quality of Life, Department of Head and Neck Surgery and Oncology, Division of Psychosocial Oncology and Epidemiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
- Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Tafelbergweg 51, 1105 AZ Amsterdam, The Netherlands
| | - Julie Midtgaard
- Mental Health Services in the Capital Region of Denmark, Mental Health Centre Glostrup, University of Copenhagen, Nordstjernevej 41, DK-2600 Glostrup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Cees P. van der Schans
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands; (C.P.v.d.S.); (H.J.-W.)
- Department of Rehabilitation Medicine and Department of Health Psychology Research, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jan L. N. Roodenburg
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| | - Harriët Jager-Wittenaar
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Petrus Driessenstraat 3, 9714 CA Groningen, The Netherlands; (C.P.v.d.S.); (H.J.-W.)
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
19
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer Cachexia: Its Mechanism and Clinical Significance. Int J Mol Sci 2021; 22:8491. [PMID: 34445197 PMCID: PMC8395185 DOI: 10.3390/ijms22168491] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022] Open
Abstract
The term "cachexia" is derived from the Greek words kakos (bad) and hexis (habit). Cachexia is a malnutrition associated with chronic diseases such as cancer, chronic heart failure, chronic renal failure, and autoimmune diseases, and is characterized by decreased skeletal muscle mass. Cancer cachexia is quite common in patients with advanced cancer. Weight loss is also a characteristic symptom of cancer cachexia, along with decreased skeletal muscle mass. As nutritional supplementation alone cannot improve cachexia, cytokines and tumor-derived substances have been attracting attention as its relevant factors. Cancer cachexia can be also associated with reduced chemotherapeutic effects, increased side effects and treatment interruptions, and even poorer survival. In 2011, a consensus definition of cachexia has been proposed, and the number of relevant research reports has increased significantly. However, the pathogenesis of cachexia is not fully understood, and there are currently few regulatory-approved standard treatments for cachexia. The main reason for this is that multiple etiologies are involved in the development of cachexia. In this review, we will outline the current status of cachexia, the mechanisms of which have been elucidated in recent years, especially from the perspective of advanced cancer.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
- The Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Masahiro Goto
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| | - Shinya Fukunishi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
- The Premier Departmental Research of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | - Akira Asai
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| | | | - Kazuhide Higuchi
- The Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan; (M.G.); (S.F.); (A.A.); (K.H.)
| |
Collapse
|
21
|
Renzini A, Riera CS, Minic I, D’Ercole C, Lozanoska-Ochser B, Cedola A, Gigli G, Moresi V, Madaro L. Metabolic Remodeling in Skeletal Muscle Atrophy as a Therapeutic Target. Metabolites 2021; 11:517. [PMID: 34436458 PMCID: PMC8398298 DOI: 10.3390/metabo11080517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly responsive tissue, able to remodel its size and metabolism in response to external demand. Muscle fibers can vary from fast glycolytic to slow oxidative, and their frequency in a specific muscle is tightly regulated by fiber maturation, innervation, or external causes. Atrophic conditions, including aging, amyotrophic lateral sclerosis, and cancer-induced cachexia, differ in the causative factors and molecular signaling leading to muscle wasting; nevertheless, all of these conditions are characterized by metabolic remodeling, which contributes to the pathological progression of muscle atrophy. Here, we discuss how changes in muscle metabolism can be used as a therapeutic target and review the evidence in support of nutritional interventions and/or physical exercise as tools for counteracting muscle wasting in atrophic conditions.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Carles Sánchez Riera
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Isidora Minic
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Chiara D’Ercole
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Biliana Lozanoska-Ochser
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| | - Alessia Cedola
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Giuseppe Gigli
- Institute of Nanotechnology, c/o Campus Ecotekne, National Research Council (CNR-NANOTEC), Monteroni, 73100 Lecce, Italy;
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
- Institute of Nanotechnology, c/o Dipartimento di Fisica, National Research Council (CNR-NANOTEC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Luca Madaro
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, 00185 Rome, Italy; (A.R.); (C.S.R.); (I.M.); (C.D.); (B.L.-O.); (L.M.)
| |
Collapse
|
22
|
Moreira-Pais A, Ferreira R, Oliveira PA, Duarte JA. Sarcopenia versus cancer cachexia: the muscle wasting continuum in healthy and diseased aging. Biogerontology 2021; 22:459-477. [PMID: 34324116 DOI: 10.1007/s10522-021-09932-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Muscle wasting is one of the major health problems in older adults and is traditionally associated to sarcopenia. Nonetheless, muscle loss may also occur in older adults in the presence of cancer, and in this case, it is associated to cancer cachexia. The clinical management of these conditions is a challenge due to, at least in part, the difficulties in their differential diagnosis. Thus, efforts have been made to better comprehend the pathogenesis of sarcopenia and cancer cachexia, envisioning the improvement of their clinical discrimination and treatment. To add insights on this topic, this review discusses the current knowledge on key molecular players underlying sarcopenia and cancer cachexia in a comparative perspective. Data retrieved from this analysis highlight that while sarcopenia is characterized by the atrophy of fast-twitch muscle fibers, in cancer cachexia an increase in the proportion of fast-twitch fibers appears to happen. The molecular drivers for these specificmuscle remodeling patterns are still unknown; however, among the predominant contributors to sarcopenia is the age-induced neuromuscular denervation, and in cancer cachexia, the muscle disuse experienced by cancer patients seems to play an important role. Moreover, inflammation appears to be more severe in cancer cachexia. Impairment of nutrition-related mediators may also contribute to sarcopenia and cancer cachexia, being distinctly modulated in each condition.
Collapse
Affiliation(s)
- Alexandra Moreira-Pais
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal. .,Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal. .,Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A Oliveira
- Centre for Research and Technology of Agro Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Duarte
- CIAFEL, Faculty of Sport, University of Porto, Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa 91, 4200-450, Porto, Portugal. .,TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| |
Collapse
|
23
|
Wang Q, Zhou W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:201-210. [PMID: 32738520 PMCID: PMC7987556 DOI: 10.1016/j.jshs.2020.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 05/18/2023]
Abstract
Exercise can enhance motivation to change lifestyle behaviors, improve aerobic fitness, improve physical function, control fatigue, and enhance quality of life. Studies have demonstrated the benefits to be gained from physical exercise, highlighting the importance of popularizing the concept of physical exercise for individuals and making professional exercise-treatment programs available to patients with cancer. However, the correlation between physical exercise and carcinogenesis is easily overlooked, and exercise interventions are not routinely provided to patients with cancer, especially those with advanced cancer. In this article, we present a literature review of the effects of exercise on cancer development and progression and give recent evidence for the type of exercise best suited for different types of cancer and in different disease stages. Moreover, the molecular mechanisms about regulating metabolism and systemic immune function in cancer are summarized and discussed. In conclusion, physical exercise should be considered as an important intervention for preventing and treating cancer and its complications.
Collapse
Affiliation(s)
- Qiaoyun Wang
- Department of Oncology, Shanghai Fourth People's Hospital Affiliated of Tongji University School of Medicine, Shanghai 200081, China; Department of Oncology, The Second Affiliated Hospital of Soochow University, Soochow 215004, China
| | - Wenli Zhou
- Department of Medical Oncology, Changzheng Hospital, Navy Medical University, Shanghai 200070, China.
| |
Collapse
|
24
|
Hiroux C, Dalle S, Koppo K, Hespel P. Voluntary exercise does not improve muscular properties or functional capacity during C26-induced cancer cachexia in mice. J Muscle Res Cell Motil 2021; 42:169-181. [PMID: 33606189 DOI: 10.1007/s10974-021-09599-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Exercise training is considered as a potential intervention to counteract muscle degeneration in cancer cachexia. However, evidence to support such intervention is equivocal. Therefore, we investigated the effect of exercise training, i.e. voluntary wheel running, on muscle wasting, functional capacity, fiber type composition and vascularization during experimental cancer cachexia in mice. Balb/c mice were injected with PBS (CON) or C26 colon carcinoma cells to induce cancer cachexia (C26). Mice had free access to a running wheel in their home cage (CONEX and C26EX, n = 8-9) or were sedentary (CONS and C26S, n = 8-9). Mice were sacrificed 18 days upon tumor cell injection. Immunohistochemical analyes were performed on m. gastrocnemius and quadriceps, and ex vivo contractile properties were assessed in m. soleus and extensor digitorum longus (EDL). Compared with CON, C26 mice exhibited body weight loss (~ 20 %), muscle atrophy (~ 25 %), reduced grip strength (~ 25 %), and lower twitch and tetanic force (~ 20 %) production in EDL but not in m. soleus. Furthermore, muscle of C26 mice were characterizd by a slow-to-fast fiber type shift (type IIx fibers: +57 %) and increased capillary density (~ 30 %). In C26 mice, wheel running affect neither body weight loss, nor muscle atrophy or functional capacity, nor inhibited tumor growth. However, wheel running induced a type IIb to type IIa fiber shift in m. quadriceps from both CON and C26, but not in m. gastrocnemius. Wheel running does not exacerbate muscular degeneration in cachexic mice, but, when voluntary, is insufficient to improve the muscle phenotype.
Collapse
Affiliation(s)
- Charlotte Hiroux
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Sebastiaan Dalle
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Katrien Koppo
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, box 1500, 3001, Leuven, Belgium.
| |
Collapse
|
25
|
Exercise as a therapy for cancer-induced muscle wasting. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:186-194. [PMID: 35782998 PMCID: PMC9219331 DOI: 10.1016/j.smhs.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Collapse
|
26
|
Anjanappa M, Corden M, Green A, Roberts D, Hoskin P, McWilliam A, Choudhury A. Sarcopenia in cancer: Risking more than muscle loss. Tech Innov Patient Support Radiat Oncol 2020; 16:50-57. [PMID: 33385074 PMCID: PMC7769854 DOI: 10.1016/j.tipsro.2020.10.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is characterised by progressive and extensive skeletal muscle degeneration and is associated with functional decline. Sarcopenia has primary and secondary aetiology, arising as a result of the ageing process or through chronic cytokine-mediated inflammation (associated with health conditions including cancer), respectively. Diagnosis of sarcopenia is dependent upon detection of reduced skeletal muscle strength, mass and performance. A combination of non-radiological and radiological methods can be used to assess each of these in turn to accurately diagnose sarcopenia. Sarcopenia is known to adversely affect outcomes of patients with various forms of cancer. Early identification of sarcopenia is imperative in improving patient care and overall prognosis. Various interventions, such as resistance exercise, nutritional support, and amino acid and vitamin supplementation have shown promise in the management of sarcopenia. However, further insight into novel interventions and indeed, assessment of the benefits of management of sarcopenia in terms of survival, are required to better support cancer patients.
Collapse
Affiliation(s)
- Milan Anjanappa
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Michael Corden
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| | - Andrew Green
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| | - Darren Roberts
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| | - Peter Hoskin
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Alan McWilliam
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Ananya Choudhury
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
27
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
28
|
Soares JDP, Howell SL, Teixeira FJ, Pimentel GD. Dietary Amino Acids and Immunonutrition Supplementation in Cancer-Induced Skeletal Muscle Mass Depletion: A Mini-Review. Curr Pharm Des 2020; 26:970-978. [PMID: 32067606 DOI: 10.2174/1381612826666200218100420] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 01/12/2023]
Abstract
Cancer patients display systemic inflammation, which leads to an increase in protein catabolism, thus promoting the release of free amino acids to further support metabolism and remodelling of muscle proteins. Inflammation associated with tumor growth leads to malnutrition, a factor that increases the risk of developing cachexia. With cancer-induced cachexia, nutritional interventions have gained traction as a preventative method to manage this condition. Currently, cancer consensus recommendations suggest a protein intake above 1.0 g/kg.day-1 up to 2.0 g/k.day-1 for cancer patients, although an ideal amount for some amino acids in isolation has yet to be determined. Due to controversy in the literature regarding the benefits of the biochemical mechanisms of various muscle mass supplements, such as L-leucine (including whey protein and BCAA), β-hydroxy-beta-methyl butyrate (HMβ), arginine, glutamine and creatine, several studies have carefully examined their effects. L-leucine and its derivatives appear to regulate protein synthesis by direct or indirect activation of the mTORC1 pool of kinases, further promoting muscle protein balance. Arginine and glutamine may act by reducing inflammation and infection progression, thus promoting improvements in food intake. Creatine exerts anabolic activity, acting as an immediate energy substrate to support muscle contraction further increasing lean mass, mainly due to greater water uptake by the muscle. In this narrative review, we highlighted the main findings regarding protein consumption and amino acids to mitigate cancer-induced skeletal muscle depletion.
Collapse
Affiliation(s)
- Jéssika D P Soares
- Laboratorio de Investigacao em Nutricao Clinica e Esportiva (Labince), Faculdade de Nutricao, Universidade Federal de Goias, Goiania, Brazil
| | - Scott L Howell
- School of Health Sciences, Faculty Health Science, Trident University International, Cypress, CA 90630, United States
| | - Filipe J Teixeira
- CBIOS (Research Center for Biosciences & Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Gustavo D Pimentel
- Laboratorio de Investigacao em Nutricao Clinica e Esportiva (Labince), Faculdade de Nutricao, Universidade Federal de Goias, Goiania, Brazil
| |
Collapse
|
29
|
Impact of musculoskeletal degradation on cancer outcomes and strategies for management in clinical practice. Proc Nutr Soc 2020; 80:73-91. [PMID: 32981540 DOI: 10.1017/s0029665120007855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prevalence of malnutrition in patients with cancer is one of the highest of all patient groups. Weight loss (WL) is a frequent manifestation of malnutrition in cancer and several large-scale studies have reported that involuntary WL affects 50-80% of patients with cancer, with the degree of WL dependent on tumour site, type and stage of disease. The study of body composition in oncology using computed tomography has unearthed the importance of both low muscle mass (sarcopenia) and low muscle attenuation as important prognostic indications of unfavourable outcomes including poorer tolerance to chemotherapy; significant deterioration in performance status and quality of life (QoL), poorer post-operative outcomes and shortened survival. While often hidden by excess fat and high BMI, muscle abnormalities are highly prevalent in patients with cancer (ranging from 10 to 90%). Early screening to identify individuals with sarcopenia and decreased muscle quality would allow for earlier multimodal interventions to attenuate adverse body compositional changes. Multimodal therapies (combining nutritional counselling, exercise and anti-inflammatory drugs) are currently the focus of randomised trials to examine if this approach can provide a sufficient stimulus to prevent or slow the cascade of tissue wasting and if this then impacts on outcomes in a positive manner. This review will focus on the aetiology of musculoskeletal degradation in cancer; the impact of sarcopenia on chemotherapy tolerance, post-operative complications, QoL and survival; and outline current strategies for attenuation of muscle loss in clinical practice.
Collapse
|
30
|
Skeletal Muscle Loss during Multikinase Inhibitors Therapy: Molecular Pathways, Clinical Implications, and Nutritional Challenges. Nutrients 2020; 12:nu12103101. [PMID: 33053632 PMCID: PMC7601327 DOI: 10.3390/nu12103101] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022] Open
Abstract
In cancer patients, loss of muscle mass is significantly associated with low tolerability of chemotherapy and poor survival. Despite the great strides in the treatment of cancer, targeted therapies such as tyrosine kinase inhibitors (TKIs) could exacerbate muscle wasting. Over recent years, the impact of skeletal muscle loss during TKI therapy on clinical outcomes has been in the spotlight. In this review, we focus on the different molecular pathways of TKIs potentially involved in muscle wasting. Then, we report the results of the studies assessing the effects of different TKI therapies—such as sorafenib, regorafenib, sunitinib, and lenvatinib—on muscle mass, and highlight their potential clinical implications. Finally, we discuss an integrative nutritional approach to be adopted during TKI treatment. The assessment of muscle mass from computerized tomography imaging could be helpful in predicting toxicity and prognosis in patients treated with TKI such as sorafenib. Early recognition of low muscle mass and effective personalized nutritional support could prevent or attenuate muscle mass wasting. However, the role of nutrition is still overlooked, and future clinical trials are needed to find the optimal nutritional support to countermeasure muscle mass depletion during TKI therapy.
Collapse
|
31
|
Agarwal S, Garg R, Minhas V, Bhatnagar S, Mishra S, Kumar V, Bharati SJ, Gupta N, Khan MA. To assess the Prevalence and Predictors of Cancer-related Fatigue and its Impact on Quality of Life in Advanced Cancer Patients Receiving Palliative Care in a Tertiary Care Hospital: A Cross-sectional Descriptive Study. Indian J Palliat Care 2020; 26:523-527. [PMID: 33623316 PMCID: PMC7888426 DOI: 10.4103/ijpc.ijpc_223_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Cancer-related fatigue (CRF) is one of the adverse outcomes of cancer and its treatment. Despite its high prevalence; the data are scarce from the Indian population on the prevalence of CRF and its predictors in advanced cancer patients. Hence, we aim to find the prevalence of the fatigue, its impact of fatigue on quality of life (QOL), and possible predictors. METHODS This study was conducted after approval of the ethical committee in adult patients of advanced cancer receiving palliative care. The data collected included demographic details, nutritional status, any comorbidities involving cardiorespiratory, renal, pulmonary, and neurological system, type and stage of cancer, site of metastasis, any previous or ongoing chemotherapy or radiotherapy, history of drug intake, hemoglobin, and albumin. The study parameters included assessment of fatigue, QOL, and symptom assessment as per the validated tools. The primary objective of the study was to find the prevalence of fatigue in advanced cancer patients receiving palliative care. The secondary objectives were to find predictive factors of fatigue, its impact on QOL of patients, and the relation between the fatigue and QOL receiving palliative care. The correlation between fatigue score and QOL was analyzed using Pearson's correlation coefficient. Multiple linear regression analysis was performed for identifying the predictors of CRF. RESULTS The fatigue was observed in all 110 patients in this study. Of these, severe fatigue was seen in 97 patients (Functional Assessment of Chronic Illness Therapy [FACIT]-F < 30). The median (interquartile range [IQR]) FACIT-F score was 14 (8-23). The median (IQR) of the overall QOL was 16.66 (16.6-50). The correlation between the fatigue (FACIT-F) and QOL was + 0.64 (P < 0.001). The predictors of fatigue included pain, physical functioning, Eastern Cooperative Oncology Group, tiredness, and the level of albumin. CONCLUSION We conclude that the prevalence of fatigue in Indian patients with advanced cancer receiving palliative care was high and it has a negative impact on QOL. Pain, physical functioning, performance status, and albumin were found to be independent predictors of CRF.
Collapse
Affiliation(s)
- Shilpi Agarwal
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Garg
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Varnika Minhas
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Mishra
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Vinod Kumar
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Sachidanand Jee Bharati
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Gupta
- Departments of Onco-Anaesthesia and Palliative Medicine, Dr. BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
32
|
van der Meij BS, Deutz NEP, Rodriguez RE, Engelen MPKJ. Early Signs of Impaired Gut Function Affect Daily Functioning in Patients With Advanced Cancer Undergoing Chemotherapy. JPEN J Parenter Enteral Nutr 2020; 45:752-760. [PMID: 32511767 DOI: 10.1002/jpen.1941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal symptoms are common during chemotherapy, but underlying disturbances in gut function and their impact on daily life are unclear. This study investigates gut function in a heterogenous group of cancer patients with gastrointestinal symptoms during chemotherapy and its relation to anabolic response, muscle health, and daily functioning. METHODS In 16 patients with solid tumors (mostly stage III+IV) undergoing chemotherapy (T) and 16 healthy (H) matched controls, small-intestinal membrane integrity was measured by urine sugar tests. Protein digestion, absorption, and anabolic response to a conventional protein supplement were analyzed by stable-tracer methods. Muscle mass and strength and daily functioning were assessed. RESULTS Eighty-one percent of T patients reported gastrointestinal symptoms. Small-intestinal membrane permeability was similar, but active glucose transport was lower in the T group (T, 35.5% ± 3.4% vs H, 48.4% ± 4.7%; P = .03). Protein digestion and absorption tended to be lower in the T group (0.67 ± 0.02 vs 0.80 ± 0.04; P = .08). Net protein anabolic response to feeding was comparable, although lower in cancer patients with recent weight loss. Gut permeability negatively correlated to hand grip strength, global health, and physical functioning, and active-transport capacity positively correlated to global health in the T group. CONCLUSION Advanced cancer patients with gastrointestinal symptoms during chemotherapy, particularly those with recent weight loss, show signs of impaired gut function negatively affecting muscle health, daily functioning, and anabolic response to feeding.
Collapse
Affiliation(s)
- Barbara S van der Meij
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.,Faculty of Health Sciences and Medicine, Bond University, Bond University Nutrition and Dietetics Research Group, Gold Coast, Queensland, Australia.,Department of Dietetics and Food Services, Mater Health, Brisbane, Queensland, Australia.,Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Nicolaas E P Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| | - Ramon E Rodriguez
- Division of Hematology and Medical Oncology, Baylor Scott and White Medical Center, College Station, Texas, USA
| | - Mariëlle P K J Engelen
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Hiensch AE, Bolam KA, Mijwel S, Jeneson JAL, Huitema ADR, Kranenburg O, Wall E, Rundqvist H, Wengstrom Y, May AM. Doxorubicin-induced skeletal muscle atrophy: Elucidating the underlying molecular pathways. Acta Physiol (Oxf) 2020; 229:e13400. [PMID: 31600860 PMCID: PMC7317437 DOI: 10.1111/apha.13400] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022]
Abstract
Aim Loss of skeletal muscle mass is a common clinical finding in cancer patients. The purpose of this meta‐analysis and systematic review was to quantify the effect of doxorubicin on skeletal muscle and report on the proposed molecular pathways possibly leading to doxorubicin‐induced muscle atrophy in both human and animal models. Methods A systematic search of the literature was conducted in PubMed, EMBASE, Web of Science and CENTRAL databases. The internal validity of included studies was assessed using SYRCLE’s risk of bias tool. Results Twenty eligible articles were identified. No human studies were identified as being eligible for inclusion. Doxorubicin significantly reduced skeletal muscle weight (ie EDL, TA, gastrocnemius and soleus) by 14% (95% CI: 9.9; 19.3) and muscle fibre cross‐sectional area by 17% (95% CI: 9.0; 26.0) when compared to vehicle controls. Parallel to negative changes in muscle mass, muscle strength was even more decreased in response to doxorubicin administration. This review suggests that mitochondrial dysfunction plays a central role in doxorubicin‐induced skeletal muscle atrophy. The increased production of ROS plays a key role within this process. Furthermore, doxorubicin activated all major proteolytic systems (ie calpains, the ubiquitin‐proteasome pathway and autophagy) in the skeletal muscle. Although each of these proteolytic pathways contributes to doxorubicin‐induced muscle atrophy, the activation of the ubiquitin‐proteasome pathway is hypothesized to play a key role. Finally, a limited number of studies found that doxorubicin decreases protein synthesis by a disruption in the insulin signalling pathway. Conclusion The results of the meta‐analysis show that doxorubicin induces skeletal muscle atrophy in preclinical models. This effect may be explained by various interacting molecular pathways. Results from preclinical studies provide a robust setting to investigate a possible dose‐response, separate the effects of doxorubicin from tumour‐induced atrophy and to examine underlying molecular pathways. More research is needed to confirm the proposed signalling pathways in humans, paving the way for potential therapeutic approaches.
Collapse
Affiliation(s)
- Anouk E. Hiensch
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| | - Kate A. Bolam
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
| | - Sara Mijwel
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre Division of Neuroscience University Medical Center Groningen Groningen The Netherlands
- Department of Radiology Academic Medical Center Amsterdam University of Amsterdam Amsterdam The Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & Pharmacology The Netherlands Cancer Institute‐Antoni van Leeuwenhoek and MC Slotervaart Amsterdam The Netherlands
- Department of Clinical Pharmacy University Medical Center Utrecht University Utrecht The Netherlands
| | - Onno Kranenburg
- UMC Utrecht Cancer Center University Medical Center Utrecht Utrecht The Netherlands
| | - Elsken Wall
- Department of Medical Oncology University Medical Center Utrecht Utrecht University Utrecht The Netherlands
| | - Helene Rundqvist
- Department of Cell and Molecular Biology Karolinska Institutet Stockholm Sweden
| | - Yvönne Wengstrom
- Department of Neurobiology, Care Sciences and Society Karolinska Institutet Stockholm Sweden
- Theme Cancer Karolinska University Hospital Stockholm Sweden
| | - Anne M. May
- Julius Center for Health Sciences and Primary Care University Medical Center UtrechtUtrecht University Utrecht The Netherlands
| |
Collapse
|
34
|
van Rijn-Dekker MI, van den Bosch L, van den Hoek JG, Bijl HP, van Aken ES, van der Hoorn A, Oosting SF, Halmos GB, Witjes MJ, van der Laan HP, Langendijk JA, Steenbakkers RJ. Impact of sarcopenia on survival and late toxicity in head and neck cancer patients treated with radiotherapy. Radiother Oncol 2020; 147:103-110. [DOI: 10.1016/j.radonc.2020.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022]
|
35
|
Sannicandro AJ, McDonagh B, Goljanek-Whysall K. MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia. Curr Opin Clin Nutr Metab Care 2020; 23:157-163. [PMID: 32073414 DOI: 10.1097/mco.0000000000000645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Muscle wasting in cancer cachexia remains an unmet clinical need due to lack of effective therapies associated with the complexity of the disease. Here, we discuss microRNAs, robust regulators of the expression of multiple genes, only recently characterized in cancer cachexia in humans and their therapeutic potential for muscle wasting. RECENT FINDINGS Changes in microRNAs in muscle of cancer patients have been demonstrated for the first time and these are associated with dysregulated signalling networks during muscle wasting. These data, together with studies in animal models, indicate that microRNAs are attractive therapeutic candidates for maintaining muscle mass, both during and following cancer treatment ultimately improving patient outcomes. SUMMARY Cancer cachexia is a complex metabolic condition associated with muscle wasting. Maintenance of muscle mass in cancer patients can improve their response to therapy and prognosis. microRNAs, which can act as oncogenes or tumour suppressors, are also dysregulated in muscle of cachexia patients. Studies in animal models of muscle wasting have demonstrated that microRNAs regulate muscle mass and strength. With more microRNA-based therapeutics in clinical trials and first RNA drugs approved, microRNAs present an attractive novel therapeutic avenue for maintaining muscle homeostasis in cachexia patients to improve their prognosis.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Discipline of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
A high-protein diet, not isolated BCAA, is associated with skeletal muscle mass index in patients with gastrointestinal cancer. Nutrition 2020; 72:110698. [DOI: 10.1016/j.nut.2019.110698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
|
37
|
Wu Q, Sun S, Li Z, Yang Q, Li B, Zhu S, Wang L, Wu J, Yuan J, Wang C, Li J, Sun S. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte 2019; 8:31-45. [PMID: 30474469 PMCID: PMC6768245 DOI: 10.1080/21623945.2018.1551688] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cancer-secreted exosomes are emerging mediators of cancer-associated cachexia. Here, we show that miR-155 secreted by breast cancer cells is a potent role on the catabolism of adipocytes and muscle cells through targeting the PPARγ. After cocultivated with mature adipocytes or C2C12, tumour cells exhibit an aggressive phenotype via inducing epithelial-mesenchymal transition while breast cancer-derived exosomes increased catabolism and release the metabolites in adipocytes and muscle cells. In adipocytes, cancer cell-secreted miR-155 promotes beige/brown differentiation and remodel metabolism in resident adipocytes by downregulating the PPARγ expression, but does not significantly affect biological conversion in C2C12. Likewise, propranolol ameliorates tumour exosomes-associated cachectic wasting through upregulating the PPARγ expression. In summary, we have demonstrated that the transfer of miR-155 from exosomes acts as an oncogenic signal reprograming systemic energy metabolism and leading to cancer-associated cachexia in breast cancer.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Qian Yang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shan Zhu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Lijun Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Juan Wu
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Changhua Wang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- CONTACT Shengrong Sun ; Juanjuan Li Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, 238 Ziyang Road, Wuhan, Hubei Province 430060, P. R. China
| |
Collapse
|
38
|
Mallard J, Gagez AL, Baudinet C, Herbinet A, Maury J, Bernard PL, Cartron G. C-Reactive Protein Level: A Key Predictive Marker of Cachexia in Lymphoma and Myeloma Patients. J Hematol 2019; 8:55-59. [PMID: 32300444 PMCID: PMC7153683 DOI: 10.14740/jh536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cachexia is defined as an involuntary loss of weight, characterized by a loss of skeletal muscle mass with or without fat mass loss. It increases mortality risk and decreases quality of life in patients with lymphoma or myeloma. Early markers of cachexia are not identified. The objective of this work was to identify risk factor of cachexia in a cohort of patients with hematological malignancies to develop strategies to prevent cachexia and its consequences. Methods Clinical and biological parameters were collected before and at the end of the treatment. Quantification of weight loss during cachexia was performed by the method of Martin. Clinical responses to treatment of patients with lymphoma or myeloma were monitored. Results Thirty-eight percent of the 145 patients enrolled were cachectic at the end of treatment. Classical prognostic disease scores at the time of diagnosis seemed to be not associated with cachexia observed at the end of treatment. Only C-reactive protein (CRP) > 54 mg/L seemed to be a risk factor of cachexia (P = 0.023, odds ratio (OR): 5.94 (1.55 - 39.14), confidence interval (CI): 1.55 - 39.14). Those results were confirmed by bootstrap analysis. Conclusion This study highlights that high CRP level at diagnosis seems to be a risk factor for cachexia during treatment, permitting to identify patients at risk and in future to implement preventive strategies.
Collapse
Affiliation(s)
- Joris Mallard
- V@Si SAS, Research and Development Department, Montpellier University, 93 Plan de la Prairie, 34270 Saint-Mathieu-de-Treviers, France.,Sports Sciences Unity, University of Montpellier, 700 Avenue du Pic Saint-Loup, 34090 Montpellier, France
| | - Anne-Laure Gagez
- Department of Clinical Hematology, Montpellier University Hospitality, 80 Avenue Augustin Fliche, 34090 Montpellier, France
| | - Cedric Baudinet
- V@Si SAS, Research and Development Department, Montpellier University, 93 Plan de la Prairie, 34270 Saint-Mathieu-de-Treviers, France
| | - Aline Herbinet
- V@Si SAS, Research and Development Department, Montpellier University, 93 Plan de la Prairie, 34270 Saint-Mathieu-de-Treviers, France
| | - Jonathan Maury
- V@Si SAS, Research and Development Department, Montpellier University, 93 Plan de la Prairie, 34270 Saint-Mathieu-de-Treviers, France
| | - Pierre Louis Bernard
- Sports Sciences Unity, University of Montpellier, 700 Avenue du Pic Saint-Loup, 34090 Montpellier, France.,Euromov Laboratory, Montpellier University, 700 Avenue du Pic Saint-Loup, 34090 Montpellier, France
| | - Guillaume Cartron
- Department of Clinical Hematology, Montpellier University Hospitality, 80 Avenue Augustin Fliche, 34090 Montpellier, France.,CNRS UMR 5235, University of Montpellier, Montpellier, France
| |
Collapse
|
39
|
Sturgeon KM, Mathis KM, Rogers CJ, Schmitz KH, Waning DL. Cancer- and Chemotherapy-Induced Musculoskeletal Degradation. JBMR Plus 2019; 3:e10187. [PMID: 30918923 PMCID: PMC6419610 DOI: 10.1002/jbm4.10187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mobility in advanced cancer patients is a major health care concern and is often lost in advanced metastatic cancers. Erosion of mobility is a major component in determining quality of life but also starts a process of loss of muscle and bone mass that further devastates patients. In addition, treatment options become limited in these advanced cancer patients. Loss of bone and muscle occurs concomitantly. Advanced cancers that are metastatic to bone often lead to bone loss (osteolytic lesions) but may also lead to abnormal deposition of new bone (osteoblastic lesions). However, in both cases there is a disruption to normal bone remodeling and radiologic evidence of bone loss. Many antitumor therapies can also lead to loss of bone in cancer survivors. Bone loss releases cytokines (TGFβ) stored in the mineralized matrix that can act on skeletal muscle and lead to weakness. Likewise, loss of skeletal muscle mass leads to reduced bone mass and quality via mechanical and endocrine signals. Collectively these interactions are termed bone-muscle cross-talk, which has garnered much attention recently as a prime target for musculoskeletal health. Pharmacological approaches as well as nutrition and exercise can improve muscle and bone but have fallen short in the context of advanced cancers and cachexia. This review highlights our current knowledge of these interventions and discusses the difficulties in treating severe musculoskeletal deficits with the emphasis on improving not only bone mass and muscle size but also functional outcomes. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kathleen M Sturgeon
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
| | - Katlynn M Mathis
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
| | - Connie J Rogers
- Penn State Cancer InstituteHersheyPAUSA
- Department of Nutritional SciencesPenn State College of Health and Human DevelopmentUniversity ParkPAUSA
| | - Kathryn H Schmitz
- Department of Public Health SciencePenn State College of MedicineHersheyPAUSA
- Penn State Cancer InstituteHersheyPAUSA
- Department of Physical Medicine and RehabilitationPenn State College of MedicineHersheyPAUSA
| | - David L Waning
- Penn State Cancer InstituteHersheyPAUSA
- Department of Cellular and Molecular PhysiologyPenn State College of MedicineHersheyPAUSA
| |
Collapse
|
40
|
Penna F, Ballarò R, Beltrà M, De Lucia S, García Castillo L, Costelli P. The Skeletal Muscle as an Active Player Against Cancer Cachexia. Front Physiol 2019; 10:41. [PMID: 30833900 PMCID: PMC6387914 DOI: 10.3389/fphys.2019.00041] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
The management of cancer patients is frequently complicated by the occurrence of cachexia. This is a complex syndrome that markedly impacts on quality of life as well as on tolerance and response to anticancer treatments. Loss of body weight, wasting of both adipose tissue and skeletal muscle and reduced survival rates are among the main features of cachexia. Skeletal muscle wasting has been shown to depend, mainly at least, on the induction of protein degradation rates above physiological levels. Such hypercatabolic pattern is driven by overactivation of different intracellular proteolytic systems, among which those dependent on ubiquitin-proteasome and autophagy. Selective rather than bulk degradation of altered proteins and organelles was also proposed to occur. Within the picture described above, the muscle is frequently considered a sort of by-stander tissue where external stimuli, directly or indirectly, can poise protein metabolism toward a catabolic setting. By contrast, several observations suggest that the muscle reacts to the wasting drive imposed by cancer growth by activating different compensatory strategies that include anabolic capacity, the activation of autophagy and myogenesis. Even if muscle response is eventually ill-fated, its occurrence supports the idea that in the presence of appropriate treatments the development of cancer-induced wasting might not be an ineluctable event in tumor hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Costelli
- Department of Clinical and Biological Sciences, Interuniversity Institute of Myology, University of Turin, Turin, Italy
| |
Collapse
|
41
|
Montalvo RN, Counts BR, Carson JA. Understanding sex differences in the regulation of cancer-induced muscle wasting. Curr Opin Support Palliat Care 2018; 12:394-403. [PMID: 30102621 PMCID: PMC6239206 DOI: 10.1097/spc.0000000000000380] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We highlight evidence for sexual dimorphism in preclinical and clinical studies investigating the cause and treatment of cancer cachexia. RECENT FINDINGS Cancer cachexia is unintended bodyweight loss occurring with cancer, and skeletal muscle wasting is a critical predictor of negative outcomes in the cancer patient. Skeletal muscle exhibits sexual dimorphism in fiber type, function, and regeneration capacity. Sex differences have been implicated in skeletal muscle metabolism, mitochondrial function, immune response to injury, and myogenic stem cell regulation. All of these processes have the potential to be involved in cancer-induced muscle wasting. Unfortunately, the vast majority of published studies examining cancer cachexia in preclinical models or cancer patients either have not accounted for sex in their design or have exclusively studied males. Preclinical studies have established that ovarian function and estradiol can affect skeletal muscle function, metabolism and mass; ovarian function has also been implicated in the sensitivity of circulating inflammatory cytokines and the progression of cachexia. SUMMARY Females and males have unique characteristics that effect skeletal muscle's microenvironment and intrinsic signaling. These differences provide a strong rationale for distinct causes for cancer cachexia development and treatment in males and females.
Collapse
Affiliation(s)
- Ryan N Montalvo
- Department of Exercise Science, University of South Carolina, Public Health Research Center, Columbia, USA
| | | | | |
Collapse
|
42
|
Montalvo RN, Hardee JP, VanderVeen BN, Carson JA. Resistance Exercise's Ability to Reverse Cancer-Induced Anabolic Resistance. Exerc Sport Sci Rev 2018; 46:247-253. [PMID: 30001273 DOI: 10.1249/jes.0000000000000159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle has the dynamic capability to modulate protein turnover in response to anabolic stimuli, such as feeding and contraction. We propose that anabolic resistance, the suppressed ability to induce protein synthesis, is central to cancer-induced muscle wasting. Furthermore, we propose that resistance exercise training has the potential to attenuate or treat cancer-induced anabolic resistance through improvements in oxidative metabolism.
Collapse
Affiliation(s)
| | | | | | - James A Carson
- Department of Exercise Science and.,Center for Colon Cancer Research, University of South Carolina, Columbia, SC
| |
Collapse
|