1
|
Soliman ERS. Preserving the adaptive salt stress response activity of a tissue-specific promoter with modulating activity. J Genet Eng Biotechnol 2024; 22:100354. [PMID: 38494266 PMCID: PMC10941203 DOI: 10.1016/j.jgeb.2024.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The Arabidopsis "Redox Responsive Transcription Factor1" (RRTF1) promoter is transiently activated by salt stress in roots over 6 h period, followed by an adaptation phase during which its activity returns to baseline levels, even if the salt stress is prolonged. This enables the short-term production of genes that, while initially advantageous to the plant, will have long-term detrimental effects if expressed at high levels indefinitely. RESULTS In this paper, we demonstrate that the RRTF1 promoter salt adaption response is a dominant feature of the promoter, that cannot be overwritten by a strong enhancer. While maintaining the transient activation profile of the RRTF1 promoter, linking it to the 35S enhancer results in a significant boost of salt stress induction in roots. CONCLUSION The RRTF1 promoter's enhanced and still adaptable activity could become a useful tool in plant biotechnology.
Collapse
Affiliation(s)
- Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt.
| |
Collapse
|
2
|
Meddya S, Meshram S, Sarkar D, S R, Datta R, Singh S, Avinash G, Kumar Kondeti A, Savani AK, Thulasinathan T. Plant Stomata: An Unrealized Possibility in Plant Defense against Invading Pathogens and Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3380. [PMID: 37836120 PMCID: PMC10574665 DOI: 10.3390/plants12193380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.
Collapse
Affiliation(s)
- Sandipan Meddya
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Shweta Meshram
- School of Agriculture, Lovely Professional University, Phagwara 144411, India
| | - Deepranjan Sarkar
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow 226026, India;
| | - Rakesh S
- Department of Soil Science and Agricultural Chemistry, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar 736165, India;
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 61300 Brno, Czech Republic;
| | - Sachidanand Singh
- Department of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar 384315, India;
| | - Gosangi Avinash
- Department of Biochemistry, Punjab Agricultural University, Ludhiana 141027, India;
| | - Arun Kumar Kondeti
- Department of Agronomy, Acharya N.G. Ranga Agricultural University, Regional Agricultural Research Station, Nandyal 518502, India;
| | - Ajit Kumar Savani
- Department of Plant Pathology, Assam Agricultural University, Jorhat 785013, India;
| | - Thiyagarajan Thulasinathan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| |
Collapse
|
3
|
Kaźmierczak A, Tarkowská D, Plačková L, Doniak M, Doležal K. Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings. Sci Rep 2023; 13:11661. [PMID: 37468550 DOI: 10.1038/s41598-023-38641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Center of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
4
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
5
|
Kumar V, Kumar A, Tewari K, Garg NK, Changan SS, Tyagi A. Isolation and characterization of drought and ABA responsive promoter of a transcription factor encoding gene from rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1813-1831. [PMID: 36484033 PMCID: PMC9723047 DOI: 10.1007/s12298-022-01246-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Water deficit is a significant impediment to enhancing rice yield. Genetic engineering tools have enabled agriculture researchers to develop drought-tolerant cultivars of rice. A common strategy to achieve this involves expressing drought-tolerant genes driven by constitutive promoters such as CaMV35S. However, the use of constitutive promoters is often limited by the adverse effects it has on the growth and development of the plant. Additionally, it has been observed that monocot-derived promoters are more successful in driving gene expression in monocots than in dicots. Substitution of constitutive promoters with stress-inducible promoters is the currently used strategy to overcome this limitation. In the present study, a 1514 bp AP2/ERF promoter that drives the expression of a transcription factor was cloned and characterized from drought-tolerant Indian rice genotype N22. The AP2/ERF promoter was fused to the GUS gene (uidA) and transformed in Arabidopsis and rice plants. Histochemical GUS staining of transgenic Arabidopsis plants showed AP2/ERF promoter activity in roots, stems, and leaves. Water deficit stress and ABA upregulate promoter activity in transformed Arabidopsis and rice. Quantitative PCR for uidA expression confirmed induced GUS activity in Arabidopsis and rice. This study showed that water deficit inducible Os-AP2/ERF-N22 promoter can be used to overcome the limitations of constitutive promoters. Transformants overexpressing Os-AP2/ERF-N22 showed higher relative water content, membrane stability index, total chlorophyll content, chlorophyll stability index, wax content, osmotic potential, stomatal conductance, transpiration rate, photosynthetic rate and radical scavenging activity. Drought tolerant (N22) showed higher expression of Os-AP2/ERF-N22 than the susceptible (MTU1010) cultivar. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01246-9.
Collapse
Affiliation(s)
- Vaibhav Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Amresh Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research-National Institute for Plant Biotechnology, New Delhi, India
| | - Kalpana Tewari
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Basic Science Division, Indian Council of Agricultural Research-Indian Institute of Pulses Research, Kanpur, Uttar Pradesh India
| | - Nitin Kumar Garg
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Rajasthan Agricultural Research Institute (SKNAU Jobner), Durgapura, Jaipur India
| | - Sushil S. Changan
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
- Division of CPB and PHT, Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, India
| | - Aruna Tyagi
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Pan L, Berka M, Černý M, Novák J, Luklová M, Brzobohatý B, Saiz-Fernández I. Cytokinin Deficiency Alters Leaf Proteome and Metabolome during Effector-Triggered Immunity in Arabidopsis thaliana Plants. PLANTS 2022; 11:plants11162123. [PMID: 36015426 PMCID: PMC9415597 DOI: 10.3390/plants11162123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
Abstract
The involvement of cytokinins (CK) in biotic stresses has been recognized, while knowledge regarding the effects of CK deficiency on plant response against pathogens is less abundant. Thus, the purpose of this study was to reveal the effects of CK deficiency on proteomics and metabolomic responses of flg22-triggered immunity. We conducted a series of histochemical assays to investigate the activity of the downstream pathways caused by flg22, such as accumulation of ROS, induction of defence genes, and callose deposition, that occurred in Arabidopsis thaliana transgenic lines overexpressing the Hordeum vulgare CKX2 gene (HvCKX2), which are therefore CK-deficient. We also used GC and LC-MS-based technology to quantify variations in stress hormone levels and metabolomic and proteomic responses in flg22-treated HvCKX2 and wild-type Arabidopsis plants. We found that CK deficiency alters the flg22-triggered plant defence response, especially through induction of callose deposition, upregulation of defence response-related proteins, increased amino acid biosynthesis, and regulation of plant photosynthesis. We also indicated that JA might be an important contributor to immune response in plants deficient in CKs. The present study offers new evidence on the fundamental role of endogenous CK in the response to pathogens, as well as the possibility of altering plant biotic tolerance by manipulating CK pools.
Collapse
Affiliation(s)
- Ling Pan
- College of Forestry, Hainan University, 58 Renmin Avenue, Haikou 570228, China
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
- Correspondence: (L.P.); (I.S.-F.)
| |
Collapse
|
7
|
Kameniarová M, Černý M, Novák J, Ondrisková V, Hrušková L, Berka M, Vankova R, Brzobohatý B. Light Quality Modulates Plant Cold Response and Freezing Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:887103. [PMID: 35755673 PMCID: PMC9221075 DOI: 10.3389/fpls.2022.887103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 05/04/2023]
Abstract
The cold acclimation process is regulated by many factors like ambient temperature, day length, light intensity, or hormonal status. Experiments with plants grown under different light quality conditions indicate that the plant response to cold is also a light-quality-dependent process. Here, the role of light quality in the cold response was studied in 1-month-old Arabidopsis thaliana (Col-0) plants exposed for 1 week to 4°C at short-day conditions under white (100 and 20 μmol m-2s-1), blue, or red (20 μmol m-2s-1) light conditions. An upregulated expression of CBF1, inhibition of photosynthesis, and an increase in membrane damage showed that blue light enhanced the effect of low temperature. Interestingly, cold-treated plants under blue and red light showed only limited freezing tolerance compared to white light cold-treated plants. Next, the specificity of the light quality signal in cold response was evaluated in Arabidopsis accessions originating from different and contrasting latitudes. In all but one Arabidopsis accession, blue light increased the effect of cold on photosynthetic parameters and electrolyte leakage. This effect was not found for Ws-0, which lacks functional CRY2 protein, indicating its role in the cold response. Proteomics data confirmed significant differences between red and blue light-treated plants at low temperatures and showed that the cold response is highly accession-specific. In general, blue light increased mainly the cold-stress-related proteins and red light-induced higher expression of chloroplast-related proteins, which correlated with higher photosynthetic parameters in red light cold-treated plants. Altogether, our data suggest that light modulates two distinct mechanisms during the cold treatment - red light-driven cell function maintaining program and blue light-activated specific cold response. The importance of mutual complementarity of these mechanisms was demonstrated by significantly higher freezing tolerance of cold-treated plants under white light.
Collapse
Affiliation(s)
- Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Jan Novák
| | - Vladěna Ondrisková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Lenka Hrušková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Prague, Czechia
| | - Bretislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
8
|
Liu DD, Wang JY, Tang RJ, Chen JD, Liu Z, Chen L, Yao MZ, Ma CL. Transcriptomic and Metabolomic Analyses Provide Insights Into an Aberrant Tissue of Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2021; 12:730651. [PMID: 34589106 PMCID: PMC8474014 DOI: 10.3389/fpls.2021.730651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most important economic crops with multiple mutants. Recently, we found a special tea germplasm that has an aberrant tissue on its branches. To figure out whether this aberrant tissue is associated with floral bud (FB) or dormant bud (DB), we performed tissue section, transcriptome sequencing, and metabolomic analysis of these tissues. Longitudinal sections indicated the aberrant tissue internal structure was more like a special bud (SB), but was similar to that of DB. Transcriptome data analysis showed that the number of heterozygous and homozygous SNPs was significantly different in the aberrant tissue compared with FB and DB. Further, by aligning the unmapped sequences of the aberrant tissue to the Non-Redundant Protein Sequences (NR) database, we observed that 36.13% of unmapped sequences were insect sequences, which suggested that the aberrant tissue might be a variation of dormant bud tissue influenced by the interaction of tea plants and insects or pathogens. Metabolomic analysis showed that the differentially expressed metabolites (DEMs) between the aberrant tissue and DB were significantly enriched in the metabolic pathways of biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Subsequently, we analyzed the differentially expressed genes (DEGs) in the above mentioned two tissues, and the results indicated that photosynthetic capacity in the aberrant tissue was reduced, whereas the ethylene, salicylic acid and jasmonic acid signaling pathways were activated. We speculated that exogenous infection induced programmed cell death (PCD) and increased the lignin content in dormant buds of tea plants, leading to the formation of this aberrant tissue. This study advanced our understanding of the interaction between plants and insects or pathogens, providing important clues about biotic stress factors and key genes that lead to mutations and formation of the aberrant tissue.
Collapse
Affiliation(s)
- Ding-Ding Liu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jun-Ya Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Rong-Jin Tang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie-Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen Liu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-Zhe Yao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
10
|
Bharath P, Gahir S, Raghavendra AS. Abscisic Acid-Induced Stomatal Closure: An Important Component of Plant Defense Against Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:615114. [PMID: 33746999 PMCID: PMC7969522 DOI: 10.3389/fpls.2021.615114] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) is a stress hormone that accumulates under different abiotic and biotic stresses. A typical effect of ABA on leaves is to reduce transpirational water loss by closing stomata and parallelly defend against microbes by restricting their entry through stomatal pores. ABA can also promote the accumulation of polyamines, sphingolipids, and even proline. Stomatal closure by compounds other than ABA also helps plant defense against both abiotic and biotic stress factors. Further, ABA can interact with other hormones, such as methyl jasmonate (MJ) and salicylic acid (SA). Such cross-talk can be an additional factor in plant adaptations against environmental stresses and microbial pathogens. The present review highlights the recent progress in understanding ABA's multifaceted role under stress conditions, particularly stomatal closure. We point out the importance of reactive oxygen species (ROS), reactive carbonyl species (RCS), nitric oxide (NO), and Ca2+ in guard cells as key signaling components during the ABA-mediated short-term plant defense reactions. The rise in ROS, RCS, NO, and intracellular Ca2+ triggered by ABA can promote additional events involved in long-term adaptive measures, including gene expression, accumulation of compatible solutes to protect the cell, hypersensitive response (HR), and programmed cell death (PCD). Several pathogens can counteract and try to reopen stomata. Similarly, pathogens attempt to trigger PCD of host tissue to their benefit. Yet, ABA-induced effects independent of stomatal closure can delay the pathogen spread and infection within leaves. Stomatal closure and other ABA influences can be among the early steps of defense and a crucial component of plants' innate immunity response. Stomatal guard cells are quite sensitive to environmental stress and are considered good model systems for signal transduction studies. Further research on the ABA-induced stomatal closure mechanism can help us design strategies for plant/crop adaptations to stress.
Collapse
|
11
|
Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. FRONTIERS IN PLANT SCIENCE 2020; 10:1777. [PMID: 32140160 PMCID: PMC7042306 DOI: 10.3389/fpls.2019.01777] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 12/19/2019] [Indexed: 05/05/2023]
Abstract
It has been recognized that cytokinins are plant hormones that influence not only numerous aspects of plant growth, development and physiology, including cell division, chloroplast differentiation and delay of senescence but the interaction with other organisms, including pathogens. Cytokinins are not only produced by plants but are also by other prokaryotic and eukaryotic organism such as bacteria, fungi, microalgae and insects. Notably, cytokinins are produced both by pathogenic and also beneficial microbes and are known to induce resistance in plants against pathogen infections. In this review the contrasting role of cytokinin for the defence and susceptibility of plants against bacterial and fungal pathogen and pest insects is assessed. We also discuss the cross talk of cytokinins with other phytohormones and the underlying mechanism involved in enhancing plant immunity against pathogen infections and explore possible practical applications in crop plant production.
Collapse
Affiliation(s)
- Saqib Saleem Akhtar
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mengistu F. Mekureyaw
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chandana Pandey
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
12
|
Berka M, Luklová M, Dufková H, Berková V, Novák J, Saiz-Fernández I, Rashotte AM, Brzobohatý B, Černý M. Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli. FRONTIERS IN PLANT SCIENCE 2020; 11:590337. [PMID: 33250914 PMCID: PMC7673457 DOI: 10.3389/fpls.2020.590337] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Cytokinin is a phytohormone involved in the regulation of diverse developmental and physiological processes in plants. Its potential in biotechnology and for development of higher-yield and more resilient plants has been recognized, yet the molecular mechanisms behind its action are far from understood. In this report, the roots of barley seedlings were explored as a new source to reveal as yet unknown cytokinin-responsive proteins for crop improvement. Here we found significant differences reproducibly observed for 178 proteins, for which some of the revealed cytokinin-responsive pathways were confirmed in metabolome analysis, including alterations phenylpropanoid pathway, amino acid biosynthesis and ROS metabolism. Bioinformatics analysis indicated a significant overlap between cytokinin response and response to abiotic stress. This was confirmed by comparing proteome and metabolome profiles in response to drought, salinity or a period of temperature stress. The results illustrate complex abiotic stress response in the early development of model crop plant and confirm an extensive crosstalk between plant hormone cytokinin and response to temperature stimuli, water availability or salinity stress.
Collapse
Affiliation(s)
- Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Hana Dufková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- *Correspondence: Martin Černý,
| |
Collapse
|
13
|
Bashandy SR, Abd‐Alla MH, Bagy MMK. Biological Nitrogen Fixation and Biofertilizers as Ideal Potential Solutions for Sustainable Agriculture. INTEGRATING GREEN CHEMISTRY AND SUSTAINABLE ENGINEERING 2019:343-396. [DOI: 10.1002/9781119509868.ch12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Ullah C, Unsicker SB, Reichelt M, Gershenzon J, Hammerbacher A. Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. FRONTIERS IN PLANT SCIENCE 2019; 10:1441. [PMID: 31803202 PMCID: PMC6873352 DOI: 10.3389/fpls.2019.01441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/16/2019] [Indexed: 05/08/2023]
Abstract
Flavan-3-ols including the monomeric catechin and the polymeric proanthocyanidins (PAs) are abundant phenolic metabolites in poplar (Populus spp.) previously described to protect leaves against pathogen infection. However, it is not known whether stems are also defended in this way. Here we investigated flavan-3-ol accumulation, activity, and the regulation of formation in black poplar (P. nigra) stems after infection by a newly described fungal stem pathogen, Plectosphaerella populi, which forms canker-like lesions in stems. We showed that flavan-3-ol contents increased in P. populi-infected black poplar stems over the course of infection compared to non-infected controls. Transcripts of leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes involved in the last steps of flavan-3-ol biosynthesis were also upregulated upon fungal infection indicating de novo biosynthesis. Amending culture medium with catechin and PAs reduced the mycelial growth of P. populi, suggesting that these metabolites act as anti-pathogen defenses in poplar in vivo. Among the hormones, salicylic acid (SA) was higher in P. populi-infected tissues compared to the non-infected controls over the course of infection studied, while jasmonic acid (JA) and JA-isoleucine (JA-Ile) levels were higher than controls only at the early stages of infection. Interestingly, cytokinins (CKs) were also upregulated in P. populi-infected stems. Poplar saplings treated with CK showed decreased levels of flavan-3-ols and SA in stems suggesting a negative association between CK and flavan-3-ol accumulation. Taken together, the sustained upregulation of SA in correlation with catechin and PA accumulation suggests that this is the dominant hormone inducing the formation of antifungal flavan-3-ols during P. populi infection of poplar stems.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Chhana Ullah,
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Almuth Hammerbacher
- Department of Zoology and Entomology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis. Int J Mol Sci 2018; 19:E4045. [PMID: 30558142 PMCID: PMC6321018 DOI: 10.3390/ijms19124045] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined.
Collapse
Affiliation(s)
- Martin Hönig
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Lucie Plíhalová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Alexandra Husičková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jaroslav Nisler
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University & Institute of Experimental Botany ASCR, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
16
|
Galkin E, Dalal A, Evenko A, Fridman E, Kan I, Wallach R, Moshelion M. Risk-management strategies and transpiration rates of wild barley in uncertain environments. PHYSIOLOGIA PLANTARUM 2018; 164:412-428. [PMID: 30084486 DOI: 10.1111/ppl.12814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Regulation of the rate of transpiration is an important part of plants' adaptation to uncertain environments. Stomatal closure is the most common response to severe drought. By closing their stomata, plants reduce transpiration to better their odds of survival under dry conditions. Under mild to moderate drought conditions, there are several possible transpiration patterns that balance the risk of lost productivity with the risk of water loss. Here, we hypothesize that plant ecotypes that have evolved in environments characterized by unstable patterns of precipitation will display a wider range of patterns of transpiration regulation along with other quantitative physiological traits (QPTs), compared to ecotypes from less variable environments. We examined five accessions of wild barley (Hordeum vulgare ssp. spontaneum) from different locations in Israel (the B1K collection) with annual rainfall levels ranging from 100 to 900 mm, along with one domesticated line (cv. Morex). We measured several QPTs and morphological traits of these accessions under well-irrigated conditions, under drought stress and during recovery from drought. Our results revealed a correlation between precipitation-certainty conditions and QPT plasticity. Specifically, accessions from stable environments (very wet or very dry locations) were found to take greater risks in their water-balance regulation than accessions from areas in which rainfall is less predictable. Notably, less risk-taking genotypes recovered more quickly than more risk-taking ones once irrigation was resumed. We discuss the relationships between environment, polymorphism, physiological plasticity and fitness, and suggest a general risk-taking model in which transpiration-rate plasticity is negatively correlated with population polymorphism.
Collapse
Affiliation(s)
- Eyal Galkin
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| | - Ahan Dalal
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| | - Alex Evenko
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| | - Eyal Fridman
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan, P.O. Box 6, 50250, Israel
| | - Iddo Kan
- Faculty of Agriculture, Food and Environment, Department of Environmental Economics and Management, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| | - Rony Wallach
- Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, P.O. Box 12, 76100, Israel
| |
Collapse
|
17
|
Zhang C, Zheng H, Wu X, Xu H, Han K, Peng J, Lu Y, Lin L, Xu P, Wu X, Li G, Chen J, Yan F. Genome-wide identification of new reference genes for RT-qPCR normalization in CGMMV-infected Lagenaria siceraria. PeerJ 2018; 6:e5642. [PMID: 30345167 PMCID: PMC6188008 DOI: 10.7717/peerj.5642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023] Open
Abstract
Lagenaria siceraria is an economically important cucurbitaceous crop, but suitable reference genes (RGs) to use when the plants are infected by cucumber green mottle mosaic virus (CGMMV) have not been determined. Sixteen candidate RGs of both leaf and fruit and 18 candidate RGs mostly from separate RNA-Seq datasets of bottle gourd leaf or fruit were screened and assessed by RT-qPCR. The expression stability of these genes was determined and ranked using geNorm, NormFinder, BestKeeper and RefFinder. Comprehensive analysis resulted in the selection of LsCYP, LsH3, and LsTBP as the optimal RGs for bottle gourd leaves, and LsP4H, LsADP, and LsTBP for fruits. LsWD, LsGAPDH, and LsH3 were optimal for use in both leaves and fruits under the infection of CGMMV. Isopentenyl transferase (IPT) and DNA-directed RNA polymerase (DdRP) were used to validate the applicability of the most stable identified RGs from bottle gourd in response to CGMMV. All the candidate RGs performed in RT-qPCR consistently with the data from the transcriptome database. The results demonstrated that LsWD, LsGAPDH and LsH3 were the most suitable internal RGs for the leaf, and LsH3, LsGAPDH, LsP4H and LsCYP for the fruit.
Collapse
Affiliation(s)
- Chenhua Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongying Zheng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyang Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Heng Xu
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kelei Han
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiejun Peng
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuwen Lu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Lin
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pei Xu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohua Wu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guojing Li
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Yan
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Černý M, Habánová H, Berka M, Luklová M, Brzobohatý B. Hydrogen Peroxide: Its Role in Plant Biology and Crosstalk with Signalling Networks. Int J Mol Sci 2018; 19:E2812. [PMID: 30231521 PMCID: PMC6163176 DOI: 10.3390/ijms19092812] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 12/30/2022] Open
Abstract
Hydrogen peroxide (H₂O₂) is steadily gaining more attention in the field of molecular biology research. It is a major REDOX (reduction⁻oxidation reaction) metabolite and at high concentrations induces oxidative damage to biomolecules, which can culminate in cell death. However, at concentrations in the low nanomolar range, H₂O₂ acts as a signalling molecule and in many aspects, resembles phytohormones. Though its signalling network in plants is much less well characterized than are those of its counterparts in yeast or mammals, accumulating evidence indicates that the role of H₂O₂-mediated signalling in plant cells is possibly even more indispensable. In this review, we summarize hydrogen peroxide metabolism in plants, the sources and sinks of this compound and its transport via peroxiporins. We outline H₂O₂ perception, its direct and indirect effects and known targets in the transcriptional machinery. We focus on the role of H₂O₂ in plant growth and development and discuss the crosstalk between it and phytohormones. In addition to a literature review, we performed a meta-analysis of available transcriptomics data which provided further evidence for crosstalk between H₂O₂ and light, nutrient signalling, temperature stress, drought stress and hormonal pathways.
Collapse
Affiliation(s)
- Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Hana Habánová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Brno Ph.D. Talent, South Moravian Centre for International Mobility, 602 00 Brno, Czech Republic.
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 613 00 Brno, Czech Republic.
| |
Collapse
|
19
|
Pavlů J, Novák J, Koukalová V, Luklová M, Brzobohatý B, Černý M. Cytokinin at the Crossroads of Abiotic Stress Signalling Pathways. Int J Mol Sci 2018; 19:ijms19082450. [PMID: 30126242 PMCID: PMC6121657 DOI: 10.3390/ijms19082450] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/13/2023] Open
Abstract
Cytokinin is a multifaceted plant hormone that plays major roles not only in diverse plant growth and development processes, but also stress responses. We summarize knowledge of the roles of its metabolism, transport, and signalling in responses to changes in levels of both macronutrients (nitrogen, phosphorus, potassium, sulphur) and micronutrients (boron, iron, silicon, selenium). We comment on cytokinin's effects on plants' xenobiotic resistance, and its interactions with light, temperature, drought, and salinity signals. Further, we have compiled a list of abiotic stress-related genes and demonstrate that their expression patterns overlap with those of cytokinin metabolism and signalling genes.
Collapse
Affiliation(s)
- Jaroslav Pavlů
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Vladěna Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Markéta Luklová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Institute of Biophysics AS CR, 612 00 Brno, Czech Republic.
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
- Phytophthora Research Centre, Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Sørensen JL, Benfield AH, Wollenberg RD, Westphal K, Wimmer R, Nielsen MR, Nielsen KF, Carere J, Covarelli L, Beccari G, Powell J, Yamashino T, Kogler H, Sondergaard TE, Gardiner DM. The cereal pathogen Fusarium pseudograminearum produces a new class of active cytokinins during infection. MOLECULAR PLANT PATHOLOGY 2018; 19:1140-1154. [PMID: 28802024 PMCID: PMC6638160 DOI: 10.1111/mpp.12593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 05/02/2023]
Abstract
The fungal pathogen Fusarium pseudograminearum causes important diseases of wheat and barley. During a survey of secondary metabolites produced by this fungus, a novel class of cytokinins, herein termed Fusarium cytokinins, was discovered. Cytokinins are known for their growth-promoting and anti-senescence activities, and the production of a cytokinin mimic by what was once considered as a necrotrophic pathogen that promotes cell death and senescence challenges the simple view that this pathogen invades its hosts by employing a barrage of lytic enzymes and toxins. Through genome mining, a gene cluster in the F. pseudograminearum genome for the production of Fusarium cytokinins was identified and the biosynthetic pathway was established using gene knockouts. The Fusarium cytokinins could activate plant cytokinin signalling, demonstrating their genuine hormone mimicry. In planta analysis of the transcriptional response to one Fusarium cytokinin suggests extensive reprogramming of the host environment by these molecules, possibly through crosstalk with defence hormone signalling pathways.
Collapse
Affiliation(s)
- Jens Laurids Sørensen
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220, Denmark
- Department of Chemistry and BioscienceAalborg UniversityEsbjerg6700, Denmark
| | - Aurelie H. Benfield
- Queensland Bioscience PrecinctCommonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and FoodBrisbane4067, Australia
| | | | - Klaus Westphal
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and BioscienceAalborg UniversityAalborg9220, Denmark
| | - Mikkel Rank Nielsen
- Department of Chemistry and BioscienceAalborg UniversityEsbjerg6700, Denmark
| | - Kristian Fog Nielsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. Lyngby2800, Denmark
| | - Jason Carere
- Queensland Bioscience PrecinctCommonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and FoodBrisbane4067, Australia
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugia06121, Italy
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental SciencesUniversity of PerugiaPerugia06121, Italy
| | - Jonathan Powell
- Queensland Bioscience PrecinctCommonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and FoodBrisbane4067, Australia
| | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of AgricultureNagoya University, Furocho, Chikusa‐kuNagoya464‐8601, Japan
| | - Herbert Kogler
- Institute for Biological Interfaces 4, Magnetic Resonance, Karlsruhe Institute of TechnologyKarlsruhe76021, Germany
| | | | - Donald Max Gardiner
- Queensland Bioscience PrecinctCommonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture and FoodBrisbane4067, Australia
| |
Collapse
|
21
|
Visser M, Cook G, Burger JT, Maree HJ. In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virol J 2017; 14:200. [PMID: 29058618 PMCID: PMC5651572 DOI: 10.1186/s12985-017-0871-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Small RNA (sRNA) associated gene regulation has been shown to play a significant role during plant-pathogen interaction. In commercial citrus orchards co-infection of Citrus tristeza virus (CTV) and viroids occur naturally. METHODS A next-generation sequencing-based approach was used to study the sRNA and transcriptional response in grapefruit to the co-infection of CTV and Citrus dwarfing viroid. RESULTS The co-infection resulted in a difference in the expression of a number of sRNA species when comparing healthy and infected plants; the majority of these were derived from transcripts processed in a phased manner. Several RNA transcripts were also differentially expressed, including transcripts derived from two genes, predicted to be under the regulation of sRNAs. These genes are involved in plant hormone systems; one in the abscisic acid, and the other in the cytokinin regulatory pathway. Additional analysis of virus- and viroid-derived small-interfering RNAs (siRNAs) showed areas on the pathogen genomes associated with increased siRNA synthesis. Most interestingly, the starting position of the p23 silencing suppressor's sub-genomic RNA generated a siRNA hotspot on the CTV genome. CONCLUSIONS This study showed the involvement of various genes, as well as endogenous and exogenous RNA-derived sRNA species in the plant-defence response. The results highlighted the role of sRNA-directed plant hormone regulation during biotic stress, as well as a counter-response of plants to virus suppressors of RNA-silencing.
Collapse
Affiliation(s)
- Marike Visser
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Glynnis Cook
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Nelspruit, South Africa
| | - Johan T. Burger
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| | - Hans J. Maree
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij: Institute for Deciduous Fruit, Vines and Wine, Stellenbosch, South Africa
| |
Collapse
|
22
|
Pilarska M, Skowron E, Pietraś R, Krupinska K, Niewiadomska E. Changes in lipid peroxidation in stay-green leaves of tobacco with senescence-induced synthesis of cytokinins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:161-167. [PMID: 28641138 DOI: 10.1016/j.plaphy.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2023]
Abstract
The involvement of reactive oxygen species (ROS) in the progress of leaf senescence has long been suggested, but there are contrasting results to either support or deny the positive correlation between the senescence progression and the level of ROS-triggered lipid peroxidation. The inconsistency among reported results can partly be attributed to the poor specificity of the most commonly employed colorimetric assay and changes in the ratio of dry weight/fresh weight during leaf senescence. In this study we determined the end-product of lipid peroxidation malondialdehyde (MDA) by GS-MS, and analyzed its changes during senescence of tobacco leaves as calculated on dry weight basis. In leaves of the wild type plants the MDA level did not change during senescence. In the mutant PSAG12::IPT leaves stayed green because of the elevated synthesis of cytokinins, but the MDA level was much higher in comparison to WT when leaves of the same age were compared. These results clearly show that lipid peroxidation is not associated with leaf senescence, at least in tobacco. This GS-MS method can be used to judge the involvement of lipid peroxidation in senescence in other species.
Collapse
Affiliation(s)
- Maria Pilarska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland
| | - Ernest Skowron
- Institute of Biology, The Jan Kochanowski University, Świętokrzyska 15, 25-406 Kielce, Poland
| | - Rafał Pietraś
- Department of Medical Chemistry, Faculty of Pharmacy, Medical University Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Ewa Niewiadomska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.
| |
Collapse
|
23
|
Li W, Li C, Sun J, Peng M. Metabolomic, Biochemical, and Gene Expression Analyses Reveal the Underlying Responses of Resistant and Susceptible Banana Species during Early Infection with Fusarium oxysporum f. sp. cubense. PLANT DISEASE 2017; 101:534-543. [PMID: 30677364 DOI: 10.1094/pdis-09-16-1245-re] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Banana (Musa spp.) is an important staple and economic fruit crop, especially in Africa, Southeast Asia, and Latin America. The wilt disease caused by Fusarium oxysporum f. sp. cubense, especially F. oxysporum f. sp. cubense strain TR4, is disastrous for banana production. Banana plants infected by F. oxysporum f. sp. cubense TR4 gradually die from leaf blight or vascular rot. There is no efficient method to control this disease, and the underlying response of banana plants to F. oxysporum f. sp. cubense remains unknown. In this study, the responses of an economically important banana cultivar, the F. oxysporum f. sp. cubense-susceptible 'BX', and a wild banana relative, the F. oxysporum f. sp. cubense-resistant Musa yunnanensis ('YN'), to F. oxysporum f. sp. cubense infection were investigated using metabolomic, biochemical, and molecular biological methods. Numerous metabolomic compounds, including defense-responsive signaling molecules, phytohormones, phenolics, and antioxidants, were identified through metabolomic analysis. Changes in salicylic acid (SA), methyl-jasmonic acid, abscisic acid (ABA), cytokinin, 3-indoleacetic acid, gibberellic acid, and total phenolic levels were detected using liquid chromatography-mass spectrometry and the Folin-Ciocalteu method. The expression levels of genes involved in the biosynthesis of some defense-responsive compounds were studied through quantitative real-time polymerase chain reaction. The results revealed that the resistant YN had a larger change in SA content and a lower ABA level throughout the early infection period, compared with the levels in BX. The susceptible BX had a lower phenolic content. The resistant YN also expressed pathogenesis-related (PR) genes, especially PR1, PR4, PR5-1, and PDF2.2, at higher levels than the susceptible BX. These dynamic metabolic and gene-expression profiles from susceptible and resistant banana during the early stage of F. oxysporum f. sp. cubense infection increase our understanding of the complex interaction response between this crop and its pathogen.
Collapse
Affiliation(s)
- Wenbin Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Chunqiang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Jianbo Sun
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| |
Collapse
|
24
|
Conforte AJ, Guimarães-Dias F, Neves-Borges AC, Bencke-Malato M, Felix-Whipps D, Alves-Ferreira M. Isolation and characterization of a promoter responsive to salt, osmotic and dehydration stresses in soybean. Genet Mol Biol 2017; 40:226-237. [PMID: 28350037 PMCID: PMC5452143 DOI: 10.1590/1678-4685-gmb-2016-0052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
Drought stress is the main limiting factor of soybean yield. Currently, genetic
engineering has been one important tool in the development of drought-tolerant
cultivars. A widely used strategy is the fusion of genes that confer tolerance under
the control of the CaMV35S constitutive promoter; however,
stress-responsive promoters would constitute the best alternative to the generation
of drought-tolerant crops. We characterized the promoter of α-galactosidase soybean
(GlymaGAL) gene that was previously identified as highly
up-regulated by drought stress. The β-glucuronidase (GUS) activity
of Arabidopsis transgenic plants bearing 1000- and 2000-bp fragments of the
GlymaGAL promoter fused to the uidA gene was
evaluated under air-dried, polyethylene glycol (PEG) and salt stress treatments.
After 24 h of air-dried and PEG treatments, the pGAL-2kb led to an
increase in GUS expression in leaf and root samples when compared to
the control samples. These results were corroborated by qPCR expression analysis of
the uidA gene. The pGAL-1kb showed no difference in
GUS activity between control and treated samples. The
pGAL-2kb promoter was evaluated in transgenic soybean roots,
leading to an increase in EGFP expression under air-dried treatment.
Our data indicates that pGAL-2kb could be a useful tool in
developing drought-tolerant cultivars by driving gene expression.
Collapse
Affiliation(s)
| | - Fábia Guimarães-Dias
- Department of Genetics. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Anna Cristina Neves-Borges
- Department of Botany. Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro, RJ, Brazil
| | - Marta Bencke-Malato
- Department of Genetics. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Durvalina Felix-Whipps
- Department of Genetics. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Márcio Alves-Ferreira
- Department of Genetics. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Modulating the Levels of Plant Hormone Cytokinins at the Host-Pathogen Interface. Methods Mol Biol 2017. [PMID: 28265994 DOI: 10.1007/978-1-4939-6831-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytokinins are adenine and non-adenine derived heterogeneous class of regulatory molecules that participate in almost every aspect of plant biology. They also affect plant defense responses as well as help microbial pathogens to establish pathogenesis. The functional approaches that ensure desired and subtle modulations in the levels of plant cytokinins are highly instrumental in assessing their functions in plant immunity. Here, we describe a detailed working protocol regarding the enhanced production of cytokinins from plants that harbor isopentenyltransferase (IPT) enzyme gene under the control of 4xJERE (jasmonic acid and elicitor-responsive element) pathogen-inducible promoter. Our devised expression system is a context-dependent solution when it comes to investigating host-pathogen interactions under the modulated conditions of plant cytokinins.
Collapse
|
26
|
Arnaud D, Lee S, Takebayashi Y, Choi D, Choi J, Sakakibara H, Hwang I. Cytokinin-Mediated Regulation of Reactive Oxygen Species Homeostasis Modulates Stomatal Immunity in Arabidopsis. THE PLANT CELL 2017; 29:543-559. [PMID: 28254779 PMCID: PMC5385949 DOI: 10.1105/tpc.16.00583] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/12/2017] [Accepted: 02/27/2017] [Indexed: 05/20/2023]
Abstract
Stomata play an important role in preinvasive defense responses by limiting pathogen entry into leaves. Although the stress hormones salicylic acid (SA) and abscisic acid (ABA) are known to regulate stomatal immunity, the role of growth promoting hormones is far from understood. Here, we show that in Arabidopsis thaliana, cytokinins (CKs) function in stomatal defense responses. The cytokinin receptor HISTIDINE KINASE3 (AHK3) and RESPONSE REGULATOR2 (ARR2) promote stomatal closure triggered by pathogen-associated molecular pattern (PAMP) and resistance to Pseudomonas syringae pv tomato bacteria. Importantly, the cytokinin trans-zeatin induces stomatal closure and accumulation of reactive oxygen species (ROS) in guard cells through AHK3 and ARR2 in an SA-dependent and ABA-independent manner. Using pharmacological and reverse genetics approaches, we found that CK-mediated stomatal responses involve the apoplastic peroxidases PRX4, PRX33, PRX34, and PRX71, but not the NADPH oxidases RBOHD and RBOHF. Moreover, ARR2 directly activates the expression of PRX33 and PRX34, which are required for SA- and PAMP-triggered ROS production. Thus, the CK signaling pathway regulates ROS homeostasis in guard cells, which leads to enhanced stomatal immunity and plant resistance to bacteria.
Collapse
Affiliation(s)
- Dominique Arnaud
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seungchul Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
27
|
Albrecht T, Argueso CT. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. ANNALS OF BOTANY 2017; 119:725-735. [PMID: 27864225 PMCID: PMC5379597 DOI: 10.1093/aob/mcw211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 08/31/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Perception and activation of plant immunity require a remarkable level of signalling plasticity and control. In Arabidopsis and other plant species, constitutive defence activation leads to resistance to a broad spectrum of biotrophic pathogens, but also frequently to stunted growth and reduced seed set. Plant hormones are important integrators of the physiological responses that influence the outcome of plant-pathogen interactions. SCOPE We review the mechanisms by which the plant hormone cytokinin regulates both plant growth and response to pathogens, and how cytokinins may connect these two processes, ultimately affecting the growth trade-offs observed in plant immunity.
Collapse
Affiliation(s)
| | - Cristiana T. Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
28
|
Schäfer M, Meldau S. Real-Time Genetic Manipulations of the Cytokinin Pathway: A Tool for Laboratory and Field Studies. Methods Mol Biol 2017; 1569:127-139. [PMID: 28265993 DOI: 10.1007/978-1-4939-6831-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although many established tools for cytokinin (CK) pathway manipulations are well suitable for the analysis of molecular interactions, their use on a whole plant scale is often limited by the induction of severe developmental defects. To circumvent this problem, different methods were developed that allow for a more precise manipulation of the CK pathway. Here we present one of these systems, the pOp6/LhGR system for chemically inducible gene expression. This system allows regulation on a spatial, temporal, and quantitative scale and therefore provides a superior tool for analyzing the role of CKs in the interactions of plants with their environment. The pOp6/LhGR system was tested for RNAi-mediated gene silencing and heterologous gene expression and was successfully used for CK pathway manipulations in different model organisms (Arabidopsis thaliana, Nicotiana tabaccum, Nicotiana attenuata, Citrus sinensis × C. trifoliate). Here we describe specific aspects of the screening procedure and present an experimental setup that can not only be used in the laboratory but is also applicable under field conditions.
Collapse
Affiliation(s)
- Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str.8, 07745, Jena, Germany
| | - Stefan Meldau
- Research & Development, KWS SAAT SE, Grimsehlstrasse 31, 37574, Einbeck, Germany.
| |
Collapse
|
29
|
Dani KGS, Fineschi S, Michelozzi M, Loreto F. Do cytokinins, volatile isoprenoids and carotenoids synergically delay leaf senescence? PLANT, CELL & ENVIRONMENT 2016; 39:1103-11. [PMID: 26729201 DOI: 10.1111/pce.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/06/2015] [Accepted: 12/16/2015] [Indexed: 05/09/2023]
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Istituto per lo Studio degli Ecosistemi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, 2109, New South Wales, Australia
| | - Silvia Fineschi
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Marco Michelozzi
- Istituto di Bioscienze e Biorisorse, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185, Roma, Italy
| |
Collapse
|
30
|
Skalák J, Černý M, Jedelský P, Dobrá J, Ge E, Novák J, Hronková M, Dobrev P, Vanková R, Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2861-73. [PMID: 27049021 PMCID: PMC4861028 DOI: 10.1093/jxb/erw129] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins (CKs) are phytohormones regulating plant growth and development as well as response to the environment. In order to evaluate their function in heat stress (HS) responses, the effect of CK elevation was determined during three types of HS - targeted to shoots, targeted to roots and applied to the whole plant. The early (30min) and longer term (3h) responses were followed at the hormonal, transcriptomic and proteomic levels in Arabidopsis transformants with dexamethasone-inducible expression of the CK biosynthetic gene isopentenyltransferase (ipt) and the corresponding wild-type (Col-0). Combination of hormonal and phenotypic analyses showed transient up-regulation of the CK/abscisic acid ratio, which controls stomatal aperture, to be more pronounced in the transformant. HS responses of the root proteome and Rubisco-immunodepleted leaf proteome were followed using 2-D gel electrophoresis and MALDI-TOF/TOF. More than 100 HS-responsive proteins were detected, most of them being modulated by CK increase. Proteome and transcriptome analyses demonstrated that CKs have longer term positive effects on the stress-related proteins and transcripts, as well as on the photosynthesis-related ones. Transient accumulation of CKs and stimulation of their signal transduction in tissue(s) not exposed to HS indicate that they are involved in plant stress responses.
Collapse
Affiliation(s)
- Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Petr Jedelský
- Laboratory of MS, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague, Czech Republic
| | - Jana Dobrá
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Eva Ge
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Marie Hronková
- Institute of Plant Molecular Biology, Biology Centre AS CR, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany AS CR, Rozvojová 263, 165 02 Praha, Czech Republic
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and Mendel University in Brno, CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
31
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
32
|
Rice Xa21 primed genes and pathways that are critical for combating bacterial blight infection. Sci Rep 2015; 5:12165. [PMID: 26184504 PMCID: PMC4505318 DOI: 10.1038/srep12165] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/12/2015] [Indexed: 01/12/2023] Open
Abstract
Rice bacterial blight (BB) is a devastating rice disease. The Xa21 gene confers a broad and persistent resistance against BB. We introduced Xa21 into Oryza sativa L ssp indica (rice 9311), through multi-generation backcrossing, and generated a nearly isogenic, blight-resistant 9311/Xa21 rice. Using next-generation sequencing, we profiled the transcriptomes of both varieties before and within four days after infection of bacterium Xanthomonas oryzae pv. oryzae. The identified differentially expressed (DE) genes and signaling pathways revealed insights into the functions of Xa21. Surprisingly, before infection 1,889 genes on 135 of the 316 signaling pathways were DE between the 9311/Xa21 and 9311 plants. These Xa21-mediated basal pathways included mainly those related to the basic material and energy metabolisms and many related to phytohormones such as cytokinin, suggesting that Xa21 triggered redistribution of energy, phytohormones and resources among essential cellular activities before invasion. Counter-intuitively, after infection, the DE genes between the two plants were only one third of that before the infection; other than a few stress-related pathways, the affected pathways after infection constituted a small subset of the Xa21-mediated basal pathways. These results suggested that Xa21 primed critically important genes and signaling pathways, enhancing its resistance against bacterial infection.
Collapse
|
33
|
Li YJ, Wang B, Dong RR, Hou BK. AtUGT76C2, an Arabidopsis cytokinin glycosyltransferase is involved in drought stress adaptation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:157-67. [PMID: 26025529 DOI: 10.1016/j.plantsci.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 05/20/2023]
Abstract
The Arabidopsis uridine diphosphate (UDP)-glycosyltransferase 76C2 (UGT76C2), a member of family 1 UGTs, is described as a cytokinin glycosyltransferase. In this study, we demonstrate a novel role of UGT76C2 in response to water deficit. QRT-PCR assay identified that the expression of this gene was downregulated by drought, osmotic stress and abscisic acid (ABA). Compared with wild type (WT) plants, transgenic lines ectopically expressing UGT76C2 exhibited reduced tolerance to ABA and osmotic stress during postgermination growth, while enhanced adaptation to drought stress at mature stage. Consistently, the ugt76c2 mutant plants showed opposite responses to these conditions. To explore the possible mechanisms of UGT76C2 contributing to drought stress adaptation, six stress inducible genes including DREB2A, RD22, RD29B, LEA, COR47 and KIN1 were detected, which showed significant upregulation in UGT76C2 overexpression plants under drought stress. Besides, five cytokinin marker genes AHK2, AHK3, AHK4, ARR1 and ARR2 were also evaluated, which showed less induced in UGT76C2 overexpression plants in response to drought stress. Our results reveal that UGT76C2, as a cytokinin glycosyltransferase, is involved in the plant response to drought stress and might represent novel cues in abiotic stress adaptation.
Collapse
Affiliation(s)
- Yan-jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong 250100, PR China
| | - Bo Wang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong 250100, PR China; Institute of Applied Chemistry and Biological Engineering, Weifang Engineering Vocational College, Weifang, Shandong 262500, PR China
| | - Rui-rui Dong
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong 250100, PR China
| | - Bing-kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Science, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
34
|
Novák J, Černý M, Pavlů J, Zemánková J, Skalák J, Plačková L, Brzobohatý B. Roles of proteome dynamics and cytokinin signaling in root to hypocotyl ratio changes induced by shading roots of Arabidopsis seedlings. PLANT & CELL PHYSIOLOGY 2015; 56:1006-18. [PMID: 25700275 DOI: 10.1093/pcp/pcv026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 05/20/2023]
Abstract
In nature, root systems of most terrestrial plants are protected from light exposure by growing in a dark soil environment. Hence, in vitro cultivation in transparent Petri dishes leads to physiological perturbations, but the mechanisms underlying root-mediated light perception and responses have not been fully elucidated. Thus, we compared Arabidopsis thaliana seedling development in transparent and darkened Petri dishes at low light intensity (20 µmol m(-2) s(-1)), allowing us to follow (inter alia) hypocotyl elongation, which is an excellent process for studying interactions of signals involved in the regulation of growth and developmental responses. To obtain insights into molecular events underlying differences in seedling growth under these two conditions, we employed liquid chromatography-mass spectrometry (LC-MS) shotgun proteomics (available via the PRIDE deposit PXD001612). In total, we quantified the relative abundances of peptides representing 1,209 proteins detected in all sample replicates of LC-MS analyses. Comparison of MS spectra after manual validation revealed 48 differentially expressed proteins. Functional classification, analysis of available gene expression data and literature searches revealed alterations associated with root illumination (inter alia) in autotrophic CO2 fixation, C compound and carbohydrate metabolism, and nitrogen metabolism. The results also indicate a previously unreported role for cytokinin plant hormones in the escape-tropism response to root illumination. We complemented these results with reverse transcription followed by quantitative PCR (RT-qPCR), chlorophyll fluorescence and detailed cytokinin signaling analyses, detecting in the latter a significant increase in the activity of the cytokinin two-component signaling cascade in roots and implicating the cytokinin receptor AHK3 as the major mediator of root to hypocotyl signaling in responses to root illumination.
Collapse
Affiliation(s)
- Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic These authors contributed equally to this work
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic These authors contributed equally to this work
| | - Jaroslav Pavlů
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Jana Zemánková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Jan Skalák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators & Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science of Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|
35
|
Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 2015; 290:1899-910. [PMID: 25893418 DOI: 10.1007/s00438-015-1046-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/25/2022]
Abstract
Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.
Collapse
Affiliation(s)
- Naghmeh Nejat
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia.
| | - David M Cahill
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Ganesan Vadamalai
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia
| | - Mark Ziemann
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Neda Naderali
- Institute of Tropical Agriculture, University of Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
36
|
Sheikh AH, Raghuram B, Eschen-Lippold L, Scheel D, Lee J, Sinha AK. Agroinfiltration by cytokinin-producing Agrobacterium sp. strain GV3101 primes defense responses in Nicotiana tabacum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1175-85. [PMID: 25054409 DOI: 10.1094/mpmi-04-14-0114-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transient infiltrations in tobacco are commonly used in plant studies, but the host response to different disarmed Agrobacterium strains is not fully understood. The present study shows that pretreatment with disarmed Agrobacterium tumefaciens GV3101 primes the defense response to subsequent infection by Pseudomonas syringae in Nicotiana tabacum. The presence of a trans-zeatin synthase (tzs) gene in strain GV3101 may be partly responsible for the priming response, as the tzs-deficient Agrobacterium sp. strain LBA4404 only weakly imparts such responses. Besides inducing the expression of defense-related genes like PR-1 and NHL10, GV3101 pretreatment increased the expression of tobacco mitogen-activated protein kinase (MAPK) pathway genes like MEK2, WIPK (wound-induced protein kinase), and SIPK (salicylic acid-induced protein kinase). Furthermore, the GV3101 strain showed a stronger effect than the LBA4404 strain in activating phosphorylation of the tobacco MAPK, WIPK and SIPK, which presumably prime the plant immune machinery. Lower doses of exogenously applied cytokinins increased the activation of MAPK, while higher doses decreased the activation, suggesting a balanced level of cytokinins is required to generate defense response in planta. The current study serves as a cautionary warning for plant researchers over the choice of Agrobacterium strains and their possible consequences on subsequent pathogen-related studies.
Collapse
|
37
|
Cerný M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B. Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:1641-55. [PMID: 24393122 DOI: 10.1111/pce.12270] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants must sense environmental conditions and adjust their growth and development processes accordingly, through adaptive responses regulated by various internal factors, including hormones. A key environmental factor is temperature, but temperature-sensing mechanisms are not fully understood despite intense research. We investigated proteomic responses to temperature shocks (15 min cold or heat treatments) with and without exogenous applications of cytokinin in Arabidopsis. Image and mass spectrometric analysis of the two-dimensionally separated proteins detected 139 differentially regulated spots, in which 148 proteins were identified, most of which have not been previously linked to temperature perception. More than 70% of the temperature-shock response proteins were modulated by cytokinin, mostly in a similar manner as heat shock. Data mining of previous transcriptomic datasets supported extensive interactions between temperature and cytokinin signalling. The biological significance of this finding was tested by assaying an independent growth response of Arabidopsis seedlings to heat stress: hypocotyl elongation. This response was strongly inhibited in mutants with deficiencies in cytokinin signalling or endogenous cytokinin levels. Thus, cytokinins may directly participate in heat signalling in plants. Finally, large proportions of both temperature-shock and cytokinin responsive proteomes co-localize to the chloroplast, which might therefore host a substantial proportion of the temperature response machinery.
Collapse
Affiliation(s)
- Martin Cerný
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i and CEITEC - Central European Institute of Technology, Mendel University in Brno, CZ-613 00, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
38
|
Mochizuki S, Jikumaru Y, Nakamura H, Koiwai H, Sasaki K, Kamiya Y, Ichikawa H, Minami E, Nishizawa Y. Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2307-18. [PMID: 24663342 PMCID: PMC4036501 DOI: 10.1093/jxb/eru110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root formation is dependent on meristematic activity and is influenced by nitrogen supply. We have previously shown that ubiquitin ligase, EL5, in rice (Oryza sativa) is involved in the maintenance of root meristematic viability. When mutant EL5 protein is overexpressed to dominantly inhibit the endogenous EL5 function in rice, primordial and meristematic necrosis ia observed. Here, we analysed the cause of root cell death in transgenic rice plants (mEL5) overexpressing EL5V162A, which encodes a partly inactive ubiquitin ligase. The mEL5 mutants showed increased sensitivity to nitrogen that was reflected in the inhibition of root formation. Treatment of mEL5 with nitrate or nitrite caused meristematic cell death accompanied by browning. Transcriptome profiling of whole roots exhibited overlaps between nitrite-responsive genes in non-transgenic (NT) rice plants and genes with altered basal expression levels in mEL5. Phytohormone profiling of whole roots revealed that nitrite treatment increased cytokinin levels, but mEL5 constitutively contained more cytokinin than NT plants and showed increased sensitivity to exogenous cytokinin. More superoxide was detected in mEL5 roots after treatment with nitrite or cytokinin, and treatment with an inhibitor of superoxide production prevented mEL5 roots from both nitrite- and cytokinin-induced meristematic cell death. These results indicate a nitrogen-triggered pathway that leads to changes in root formation through the production of cytokinin and superoxide, on which EL5 acts to prevent meristematic cell death.
Collapse
Affiliation(s)
- Susumu Mochizuki
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yusuke Jikumaru
- Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hidemitsu Nakamura
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Hanae Koiwai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Keisuke Sasaki
- National Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| | - Yuji Kamiya
- Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Eiichi Minami
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan
| | - Yoko Nishizawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan Division of Plant Sciences, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602 Japan National Institute of Livestock and Grassland Science, Ikenodai 2, Tsukuba, Ibaraki, 305-0901 Japan
| |
Collapse
|
39
|
Černý M, Kuklová A, Hoehenwarter W, Fragner L, Novák O, Rotková G, Jedelský PL, Žáková K, Šmehilová M, Strnad M, Weckwerth W, Brzobohatý B. Proteome and metabolome profiling of cytokinin action in Arabidopsis identifying both distinct and similar responses to cytokinin down- and up-regulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4193-206. [PMID: 24064926 PMCID: PMC3808309 DOI: 10.1093/jxb/ert227] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, numerous developmental processes are controlled by cytokinin (CK) levels and their ratios to levels of other hormones. While molecular mechanisms underlying the regulatory roles of CKs have been intensely researched, proteomic and metabolomic responses to CK deficiency are unknown. Transgenic Arabidopsis seedlings carrying inducible barley cytokinin oxidase/dehydrogenase (CaMV35S>GR>HvCKX2) and agrobacterial isopentenyl transferase (CaMV35S>GR>ipt) constructs were profiled to elucidate proteome- and metabolome-wide responses to down- and up-regulation of CK levels, respectively. Proteome profiling identified >1100 proteins, 155 of which responded to HvCKX2 and/or ipt activation, mostly involved in growth, development, and/or hormone and light signalling. The metabolome profiling covered 79 metabolites, 33 of which responded to HvCKX2 and/or ipt activation, mostly amino acids, carbohydrates, and organic acids. Comparison of the data sets obtained from activated CaMV35S>GR>HvCKX2 and CaMV35S>GR>ipt plants revealed unexpectedly extensive overlaps. Integration of the proteomic and metabolomic data sets revealed: (i) novel components of molecular circuits involved in CK action (e.g. ribosomal proteins); (ii) previously unrecognized links to redox regulation and stress hormone signalling networks; and (iii) CK content markers. The striking overlaps in profiles observed in CK-deficient and CK-overproducing seedlings might explain surprising previously reported similarities between plants with down- and up-regulated CK levels.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Alena Kuklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Wolfgang Hoehenwarter
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- *Present address: Proteome Analysis Research Group, Leibniz Institute of Plant Biochemistry, D-06120 Halle, Germany
| | - Lena Fragner
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Ondřej Novák
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Gabriela Rotková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Petr L. Jedelský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Prague, Czech Republic
| | - Kateřina Žáková
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Mária Šmehilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Molecular Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology (MOSYS), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC–Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|