1
|
Nasr Esfahani M, Sonnewald U. Unlocking dynamic root phenotypes for simultaneous enhancement of water and phosphorus uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108386. [PMID: 38280257 DOI: 10.1016/j.plaphy.2024.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Phosphorus (P) and water are crucial for plant growth, but their availability is challenged by climate change, leading to reduced crop production and global food security. In many agricultural soils, crop productivity is confronted by both water and P limitations. The diminished soil moisture decreases available P due to reduced P diffusion, and inadequate P availability diminishes tissue water status through modifications in stomatal conductance and a decrease in root hydraulic conductance. P and water display contrasting distributions in the soil, with P being concentrated in the topsoil and water in the subsoil. Plants adapt to water- and P-limited environments by efficiently exploring localized resource hotspots of P and water through the adaptation of their root system. Thus, developing cultivars with improved root architecture is crucial for accessing and utilizing P and water from arid and P-deficient soils. To meet this goal, breeding towards multiple advantageous root traits can lead to better cultivars for water- and P-limited environments. This review discusses the interplay of P and water availability and highlights specific root traits that enhance the exploration and exploitation of optimal resource-rich soil strata while reducing metabolic costs. We propose root ideotype models, including 'topsoil foraging', 'subsoil foraging', and 'topsoil/subsoil foraging' for maize (monocot) and common bean (dicot). These models integrate beneficial root traits and guide the development of water- and P-efficient cultivars for challenging environments.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
2
|
Etana D, Nebiyu A. Response of common bean ( Phaseolus vulgaris L .) to lime and TSP fertilizer under acid soil. Heliyon 2023; 9:e15176. [PMID: 37101623 PMCID: PMC10123207 DOI: 10.1016/j.heliyon.2023.e15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
This study was design to investigate responses of four common bean (Polpole and Pantarkin, Deme and Nasir) varieties to four combinations of soil acidity treatments: lime and triple supper phosphate (TSP) fertilizer (+Lime, +TSP, +Lime + TSP, control) by using factorial randomized complete block design with sixteen treatments and three replications. The results of ANOVA showed statistically significant (p < 0.05) differences in interactions of common bean varieties and soil amendments, except shoot fresh weight. The highest root fresh and dry matters weight were obtained from Pantarkin (18.12 g) and Polpole (2.70 g) with interaction of the plot treated with lime and TSP fertilizer, respectively. The highest Leaf area index (6.50 and 5.17), yield (3.84 and 3.33 t ha-1), and hundred seed weight (51.21 and 18.46 g) recorded from Deme and Polpole varieties under buffered plots by lime and TSP fertilizers. The highest phosphorus use efficiency recorded from Deme (0.69) variety. The observed responses indicated improvements of acidity problems through buffering materials (lime) and common bean varieties such as Polpole and Deme which showed better tolerance than Pantarkin and Nasir varieties. These results demonstrate the importance of varietal responses and soil amendments as form of nutrients and buffering acidity for common bean production improvements in acid soil.
Collapse
Affiliation(s)
- Daba Etana
- Ethiopian Institute of Agricultural Research, Jimma Agricultural Research Center, P. O. Box 192, Jimma, Ethiopia
- Corresponding author.
| | - Amsalu Nebiyu
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| |
Collapse
|
3
|
Rangarajan H, Hadka D, Reed P, Lynch JP. Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:38-53. [PMID: 35426959 PMCID: PMC9544003 DOI: 10.1111/tpj.15774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 05/11/2023]
Abstract
Root phenotypes are avenues to the development of crop cultivars with improved nutrient capture, which is an important goal for global agriculture. The fitness landscape of root phenotypes is highly complex and multidimensional. It is difficult to predict which combinations of traits (phene states) will create the best performing integrated phenotypes in various environments. Brute force methods to map the fitness landscape by simulating millions of phenotypes in multiple environments are computationally challenging. Evolutionary optimization algorithms may provide more efficient avenues to explore high dimensional domains such as the root phenotypic space. We coupled the three-dimensional functional-structural plant model, SimRoot, to the Borg Multi-Objective Evolutionary Algorithm (MOEA) and the evolutionary search over several generations facilitated the identification of optimal root phenotypes balancing trade-offs across nutrient uptake, biomass accumulation, and root carbon costs in environments varying in nutrient availability. Our results show that several combinations of root phenes generate optimal integrated phenotypes where performance in one objective comes at the cost of reduced performance in one or more of the remaining objectives, and such combinations differed for mobile and non-mobile nutrients and for maize (a monocot) and bean (a dicot). Functional-structural plant models can be used with multi-objective optimization to identify optimal root phenotypes under various environments, including future climate scenarios, which will be useful in developing the more resilient, efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Patrick Reed
- Civil and Environmental EngineeringCornell UniversityIthacaNew YorkUSA
| | - Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
4
|
Nadeem M, Wu J, Ghaffari H, Kedir AJ, Saleem S, Mollier A, Singh J, Cheema M. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. FRONTIERS IN PLANT SCIENCE 2022; 13:804058. [PMID: 35371179 PMCID: PMC8965363 DOI: 10.3389/fpls.2022.804058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Being a macronutrient, phosphorus (P) is the backbone to complete the growth cycle of plants. However, because of low mobility and high fixation, P becomes the least available nutrient in podzolic soils; hence, enhancing phosphorus use efficiency (PUE) can play an important role in different cropping systems/crop production practices to meet ever-increasing demands in food, fiber, and fuel. Additionally, the rapidly decreasing mineral phosphate rocks/stocks forced to explore alternative resources and methods to enhance PUE either through improved seed P reserves and their remobilization, P acquisition efficiency (PAE), or plant's internal P utilization efficiency (IPUE) or both for sustainable P management strategies. The objective of this review article is to explore and document important domains to enhance PUE in crop plants grown on Podzol in a boreal agroecosystem. We have discussed P availabilities in podzolic soils, root architecture and morphology, root exudates, phosphate transporters and their role in P uptake, different contributors to enhance PAE and IPUE, and strategies to improve plant PUE in crops grown on podzolic soils deficient in P and acidic in nature.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Jiaxu Wu
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | | | - Amana Jemal Kedir
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shamila Saleem
- Department of Agriculture Extension, Government of Punjab, Khanewal, Pakistan
| | - Alain Mollier
- INRAE, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, France
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| |
Collapse
|
5
|
Ndoye MS, Burridge J, Bhosale R, Grondin A, Laplaze L. Root traits for low input agroecosystems in Africa: Lessons from three case studies. PLANT, CELL & ENVIRONMENT 2022; 45:637-649. [PMID: 35037274 DOI: 10.1111/pce.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In many regions across Africa, agriculture is largely based on low-input and small-holder farming systems that use little inorganic fertilisers and have limited access to irrigation and mechanisation. Improving agricultural practices and developing new cultivars adapted to these environments, where production already suffers from climate change, is a major priority for food security. Here, we illustrate how breeding for specific root traits could improve crop resilience in Africa using three case studies covering very contrasting low-input agroecosystems. We first review how greater basal root whorl number and longer and denser root hairs increased P acquisition efficiency and yield in common bean in South East Africa. We then discuss how water-saving strategies, root hair density and deep root growth could be targeted to improve sorghum and pearl millet yield in West Africa. Finally, we evaluate how breeding for denser root systems in the topsoil and interactions with arbuscular mycorrhizal fungi could be mobilised to optimise water-saving alternate wetting and drying practices in West African rice agroecosystems. We conclude with a discussion on how to evaluate the utility of root traits and how to make root trait selection feasible for breeders so that improved varieties can be made available to farmers through participatory approaches.
Collapse
Affiliation(s)
- Mame S Ndoye
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - James Burridge
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Alexandre Grondin
- CERAAS, Thies Escale, Thies, Senegal
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Laurent Laplaze
- LMI LAPSE, Centre de Recherche ISRA/IRD de Bel Air, Dakar, Senegal
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| |
Collapse
|
6
|
Lynch JP. Harnessing root architecture to address global challenges. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:415-431. [PMID: 34724260 PMCID: PMC9299910 DOI: 10.1111/tpj.15560] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 05/06/2023]
Abstract
Root architecture can be targeted in breeding programs to develop crops with better capture of water and nutrients. In rich nations, such crops would reduce production costs and environmental pollution and, in developing nations, they would improve food security and economic development. Crops with deeper roots would have better climate resilience while also sequestering atmospheric CO2 . Deeper rooting, which improves water and N capture, is facilitated by steeper root growth angles, fewer axial roots, reduced lateral branching, and anatomical phenotypes that reduce the metabolic cost of root tissue. Mechanical impedance, hypoxia, and Al toxicity are constraints to subsoil exploration. To improve topsoil foraging for P, K, and other shallow resources, shallower root growth angles, more axial roots, and greater lateral branching are beneficial, as are metabolically cheap roots. In high-input systems, parsimonious root phenotypes that focus on water capture may be advantageous. The growing prevalence of Conservation Agriculture is shifting the mechanical impedance characteristics of cultivated soils in ways that may favor plastic root phenotypes capable of exploiting low resistance pathways to the subsoil. Root ideotypes for many low-input systems would not be optimized for any one function, but would be resilient against an array of biotic and abiotic challenges. Root hairs, reduced metabolic cost, and developmental regulation of plasticity may be useful in all environments. The fitness landscape of integrated root phenotypes is large and complex, and hence will benefit from in silico tools. Understanding and harnessing root architecture for crop improvement is a transdisciplinary opportunity to address global challenges.
Collapse
Affiliation(s)
- Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
7
|
Lopez G, Ahmadi SH, Amelung W, Athmann M, Ewert F, Gaiser T, Gocke MI, Kautz T, Postma J, Rachmilevitch S, Schaaf G, Schnepf A, Stoschus A, Watt M, Yu P, Seidel SJ. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1067498. [PMID: 36684760 PMCID: PMC9846339 DOI: 10.3389/fpls.2022.1067498] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/12/2022] [Indexed: 05/10/2023]
Abstract
Plant root traits play a crucial role in resource acquisition and crop performance when soil nutrient availability is low. However, the respective trait responses are complex, particularly at the field scale, and poorly understood due to difficulties in root phenotyping monitoring, inaccurate sampling, and environmental conditions. Here, we conducted a systematic review and meta-analysis of 50 field studies to identify the effects of nitrogen (N), phosphorous (P), or potassium (K) deficiencies on the root systems of common crops. Root length and biomass were generally reduced, while root length per shoot biomass was enhanced under N and P deficiency. Root length decreased by 9% under N deficiency and by 14% under P deficiency, while root biomass was reduced by 7% in N-deficient and by 25% in P-deficient soils. Root length per shoot biomass increased by 33% in N deficient and 51% in P deficient soils. The root-to-shoot ratio was often enhanced (44%) under N-poor conditions, but no consistent response of the root-to-shoot ratio to P-deficiency was found. Only a few K-deficiency studies suited our approach and, in those cases, no differences in morphological traits were reported. We encountered the following drawbacks when performing this analysis: limited number of root traits investigated at field scale, differences in the timing and severity of nutrient deficiencies, missing data (e.g., soil nutrient status and time of stress), and the impact of other conditions in the field. Nevertheless, our analysis indicates that, in general, nutrient deficiencies increased the root-length-to-shoot-biomass ratios of crops, with impacts decreasing in the order deficient P > deficient N > deficient K. Our review resolved inconsistencies that were often found in the individual field experiments, and led to a better understanding of the physiological mechanisms underlying root plasticity in fields with low nutrient availability.
Collapse
Affiliation(s)
- Gina Lopez
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Gina Lopez, ; Sabine Julia Seidel,
| | - Seyed Hamid Ahmadi
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Water Engineering Department, School of Agriculture, Shiraz University, Shiraz, Iran
- Drought Research Center, Shiraz University, Shiraz, Iran
| | - Wulf Amelung
- Soil Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Miriam Athmann
- Organic Farming and Cropping Systems, University of Kassel, Witzenhausen, Germany
| | - Frank Ewert
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Directorate, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Thomas Gaiser
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Martina I. Gocke
- Soil Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Timo Kautz
- Crop Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Johannes Postma
- Institute of Bio-Geosciences (IBG-2, Plant Sciences), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Shimon Rachmilevitch
- Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Gabriel Schaaf
- Plant Nutrition Group, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Andrea Schnepf
- Institute for Bio- and Geosciences (IBG-3, Agrosphere), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alixandrine Stoschus
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Michelle Watt
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, VIC, Australia
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Sabine Julia Seidel
- Crop Science, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- *Correspondence: Gina Lopez, ; Sabine Julia Seidel,
| |
Collapse
|
8
|
Chen W, Zhou M, Zhao M, Chen R, Tigabu M, Wu P, Li M, Ma X. Transcriptome analysis provides insights into the root response of Chinese fir to phosphorus deficiency. BMC PLANT BIOLOGY 2021; 21:525. [PMID: 34758730 PMCID: PMC8579613 DOI: 10.1186/s12870-021-03245-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Phosphorus is one of the essential elements for plant growth and development, but available phosphorus (Pi) content in many soil types is low. As a fast-growing tree species for timber production, Chinese fir is in great demand of Pi, and the lack of Pi in soil restricts the increase of productivity of Chinese fir plantation. Root morphology and the synthesis and secretion of organic acids play an important role in the uptake of phosphorus, but the molecular mechanisms of Chinese fir root responses to Pi deficiency are largely unexplored. In this study, seedlings of Yang 061 clone were grown under three Pi supply levels (0, 5 and 10 mg·L-1 P) and morphological attributes, organic acid content and enzyme activity were measured. The transcriptome data of Chinese fir root system were obtained and the expression levels of phosphorus responsive genes and organic acid synthesis related genes on citric acid and glyoxylate cycle pathway were determined. RESULTS We annotated 50,808 Unigenes from the transcriptome of Chinese fir roots. Among differentially expressed genes, seven genes of phosphate transporter family and 17 genes of purple acid phosphatase family were up-regulated by Pi deficiency, two proteins of SPX domain were up-regulated and one was down-regulated. The metabolic pathways of the citric acid and glyoxylate cycle pathway were mapped, and the expression characteristics of the related Unigenes under different phosphorus treatments were analyzed. The genes involved in malic acid and citric acid synthesis were up-regulated, and the activities of the related enzymes were significantly enhanced under long-term Pi stress. The contents of citric acid and malic acid in the roots of Chinese fir increased after 30 days of Pi deficiency. CONCLUSION Chinese fir roots showed increased expression of genes related with phosphorus starvation, citrate and malate synthesis genes, increased content of organic acids, and enhanced activities of related enzymes under Pi deficiency. The results provide a new insight for revealing the molecular mechanism of adaption to Pi deficiency and the pathway of organic acid synthesis in Chinese fir roots.
Collapse
Affiliation(s)
- Wanting Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
| | - Mengyan Zhou
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mingzhen Zhao
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ranhong Chen
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mulualem Tigabu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
- Southern Swedish Forest Research Center, Faculty of Forest Science, Swedish University of Agricultural Sciences, PO Box 49, Alnarp, SE-230 53, Uppsala, Sweden
| | - Pengfei Wu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China
| | - Ming Li
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China.
| | - Xiangqing Ma
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Chinese Fir Engineering and Technological Research Center, National Forestry and Grassland Administration, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
9
|
Kumar J, Sen Gupta D, Djalovic I, Kumar S, Siddique KHM. Root-omics for drought tolerance in cool-season grain legumes. PHYSIOLOGIA PLANTARUM 2021; 172:629-644. [PMID: 33314181 DOI: 10.1111/ppl.13313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Root traits can be exploited to increase the physiological efficiency of crop water use under drought. Root length, root hairs, root branching, root diameter, and root proliferation rate are genetically defined traits that can help to improve the water productivity potential of crops. Recently, high-throughput phenotyping techniques/platforms have been used to screen the germplasm of major cool-season grain legumes for root traits and their impact on different physiological processes, including nutrient uptake and yield potential. Advances in omics approaches have led to the dissection of genomic, proteomic, and metabolomic structures of these traits. This knowledge facilitates breeders to improve the water productivity and nutrient uptake of cultivars under limited soil moisture conditions in major cool-season grain legumes that usually face terminal drought. This review discusses the advances in root traits and their potential for developing drought-tolerant cultivars in cool-season grain legumes.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Ivica Djalovic
- Maize Department, Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | - Shiv Kumar
- Biodiversity and Crop Improvement Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
10
|
Rao S, Armstrong R, Silva-Perez V, Tefera AT, Rosewarne GM. Pulse Root Ideotype for Water Stress in Temperate Cropping System. PLANTS 2021; 10:plants10040692. [PMID: 33916833 PMCID: PMC8067327 DOI: 10.3390/plants10040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Pulses are a key component of crop production systems in Southern Australia due to their rotational benefits and potential profit margins. However, cultivation in temperate cropping systems such as that of Southern Australia is limited by low soil water availability and subsoil constraints. This limitation of soil water is compounded by the irregular rainfall, resulting in the absence of plant available water at depth. An increase in the productivity of key pulses and expansion into environments and soil types traditionally considered marginal for their growth will require improved use of the limited soil water and adaptation to sub soil constrains. Roots serve as the interface between soil constraints and the whole plant. Changes in root system architecture (RSA) can be utilised as an adaptive strategy in achieving yield potential under limited rainfall, heterogenous distribution of resources and other soil-based constraints. The existing literature has identified a “‘Steep, Deep and Cheap” root ideotype as a preferred RSA. However, this idiotype is not efficient in a temperate system where plant available water is limited at depth. In addition, this root ideotype and other root architectural studies have focused on cereal crops, which have different structures and growth patterns to pulses due to their monocotyledonous nature and determinant growth habit. The paucity of pulse-specific root architectural studies warrants further investigations into pulse RSA, which should be combined with an examination of the existing variability of known genetic traits so as to develop strategies to alleviate production constraints through either tolerance or avoidance mechanisms. This review proposes a new model of root system architecture of “Wide, Shallow and Fine” roots based on pulse roots in temperate cropping systems. The proposed ideotype has, in addition to other root traits, a root density concentrated in the upper soil layers to capture in-season rainfall before it is lost due to evaporation. The review highlights the potential to achieve this in key pulse crops including chickpea, lentil, faba bean, field pea and lupin. Where possible, comparisons to determinate crops such as cereals have also been made. The review identifies the key root traits that have shown a degree of adaptation via tolerance or avoidance to water stress and documents the current known variability that exists in and amongst pulse crops setting priorities for future research.
Collapse
|
11
|
Tajima R. Importance of individual root traits to understand crop root system in agronomic and environmental contexts. BREEDING SCIENCE 2021; 71:13-19. [PMID: 33762872 PMCID: PMC7973490 DOI: 10.1270/jsbbs.20095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/11/2020] [Indexed: 05/29/2023]
Abstract
Resource acquisition, one of the major functions of roots, can contribute to crop growth and mitigating environmental impacts. The spatio-temporal distribution of roots in the soil in relation to the dynamics of the soil resources is critical in resource acquisition. Root distribution is determined by root system development. The root system consists of many individual roots of different types and ages. Each individual root has specific development, resource acquisition, and transport traits, which change with root growth. The integration of individual root traits in the root system could exhibit crop performance in the various environments via root distribution in the soil. However, the relationship between individual root traits and the pattern of root distribution is complicated. To understand this complicated relationship, we need to evaluate enormous numbers of individual root traits and understand the relationship between individual root development and root distribution as well as the integrated functions of individual root traits along with dynamics of resources in the soil.
Collapse
Affiliation(s)
- Ryosuke Tajima
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi 989-6711, Japan
| |
Collapse
|
12
|
Rangarajan H, Lynch JP. A Comparative Analysis of Quantitative Metrics of Root Architecture. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:6953197. [PMID: 33851135 PMCID: PMC8028844 DOI: 10.34133/2021/6953197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/22/2021] [Indexed: 05/08/2023]
Abstract
High throughput phenotyping is important to bridge the gap between genotype and phenotype. The methods used to describe the phenotype therefore should be robust to measurement errors, relatively stable over time, and most importantly, provide a reliable estimate of elementary phenotypic components. In this study, we use functional-structural modeling to evaluate quantitative phenotypic metrics used to describe root architecture to determine how they fit these criteria. Our results show that phenes such as root number, root diameter, and lateral root branching density are stable, reliable measures and are not affected by imaging method or plane. Metrics aggregating multiple phenes such as total length, total volume, convex hull volume, and bushiness index estimate different subsets of the constituent phenes; they however do not provide any information regarding the underlying phene states. Estimates of phene aggregates are not unique representations of underlying constituent phenes: multiple phenotypes having phenes in different states could have similar aggregate metrics. Root growth angle is an important phene which is susceptible to measurement errors when 2D projection methods are used. Metrics that aggregate phenes which are complex functions of root growth angle and other phenes are also subject to measurement errors when 2D projection methods are used. These results support the hypothesis that estimates of phenes are more useful than metrics aggregating multiple phenes for phenotyping root architecture. We propose that these concepts are broadly applicable in phenotyping and phenomics.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Strock CF, Burridge JD, Niemiec MD, Brown KM, Lynch JP. Root metaxylem and architecture phenotypes integrate to regulate water use under drought stress. PLANT, CELL & ENVIRONMENT 2021; 44:49-67. [PMID: 32839986 DOI: 10.1111/pce.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/30/2020] [Accepted: 08/16/2020] [Indexed: 05/06/2023]
Abstract
At the genus and species level, variation in root anatomy and architecture may interact to affect strategies of drought avoidance. To investigate this idea, root anatomy and architecture of the drought-sensitive common bean (Phaseolus vulgaris) and drought-adapted tepary bean (Phaseolus acutifolius) were analyzed in relation to water use under terminal drought. Intraspecific variation for metaxylem anatomy and axial conductance was found in the roots of both species. Genotypes with high-conductance root metaxylem phenotypes acquired and transpired more water per unit leaf area, shoot mass, and root mass than genotypes with low-conductance metaxylem phenotypes. Interspecific variation in root architecture and root depth was observed where P. acutifolius has a deeper distribution of root length than P. vulgaris. In the deeper-rooted P. acutifolius, genotypes with high root conductance were better able to exploit deep soil water than genotypes with low root axial conductance. Contrastingly, in the shallower-rooted P. vulgaris, genotypes with low root axial conductance had improved water status through conservation of soil moisture for sustained water capture later in the season. These results indicate that metaxylem morphology interacts with root system depth to determine a strategy of drought avoidance and illustrate synergism among architectural and anatomical phenotypes for root function.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - James D Burridge
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Miranda D Niemiec
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen M Brown
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
14
|
Haus MJ, Wang W, Jacobs JL, Peplinski H, Chilvers MI, Buell CR, Cichy K. Root Crown Response to Fungal Root Rot in Phaseolus vulgaris Middle American × Andean Lines. PLANT DISEASE 2020; 104:3135-3142. [PMID: 33079631 DOI: 10.1094/pdis-05-20-0956-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fusarium root rot (FRR) is a global limiter of dry bean (Phaseolus vulgaris L.) production. In common bean and other legumes, resistance to FRR is related to both root development and root architecture, providing a breeding strategy for FRR resistance. Here, we describe the relationships between root traits and FRR disease symptoms. Using "shovelomics" techniques, a subset of recombinant inbred lines was phenotyped for root architecture traits and disease symptoms across three Michigan fields, including one field with artificially increased Fusarium brasiliense disease pressure. At the early growth stages, stem diameter, basal root number, and distribution of hypocotyl-borne adventitious roots were all significantly related to FRR disease scores. These results demonstrate that root architecture is a component of resistance to FRR in the field at early growth stages (first expanded trifoliate) complementing previous studies that evaluated root traits at later developmental stages (flowering, pod fill, etc.). Correlation matrices of root traits indicate that resistant and susceptible lines have statistically different root systems and show that basal root number is a key feature in resistant root systems while adventitious root distribution is an important feature in susceptible root systems. Based on the results of this study, selection for increased basal root number, increased adventitious root number, and even distribution of adventitious roots in early growth stages (first expanded trifoliate) would positively impact resistance to FRR.
Collapse
Affiliation(s)
- Miranda J Haus
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Weijia Wang
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Janette L Jacobs
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Hannah Peplinski
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Department of Community Sustainability, Michigan State University, East Lansing, MI 48824
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| | - Karen Cichy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
- USDA-ARS, Sugarbeet and Bean Research, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
15
|
van der Bom FJT, Williams A, Bell MJ. Root architecture for improved resource capture: trade-offs in complex environments. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5752-5763. [PMID: 32667996 DOI: 10.1093/jxb/eraa324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Root architecture is a promising breeding target for developing resource-efficient crops. Breeders and plant physiologists have called for root ideotypes that have narrow, deep root systems for improved water and nitrate capture, or wide, shallower root systems for better uptake of less mobile topsoil nutrients such as phosphorus. Yet evidence of relationships between root architecture and crop yield is limited. Many studies focus on the response to a single constraint, despite the fact that crops are frequently exposed to multiple soil constraints. For example, in dryland soils under no-till management, topsoil nutrient stratification is an emergent profile characteristic, leading to spatial separation of water and nutrients as the soil profile dries. This results in spatio-temporal trade-offs between efficient resource capture and pre-defined root ideotypes developed to counter a single constraint. We believe there is need to identify and better understand trade-offs involved in the efficient capture of multiple, spatially disjunct soil resources. Additionally, how these trade-offs interact with genotype (root architecture), environment (soil constraints), and management (agronomy) are critical unknowns. We argue that identifying root traits that enable efficient capture of multiple soil resources under fluctuating environmental constraints is a key step towards meeting the challenges of global food security.
Collapse
Affiliation(s)
- Frederik J T van der Bom
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Alwyn Williams
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| | - Michael J Bell
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
16
|
Schneider HM, Lynch JP. Should Root Plasticity Be a Crop Breeding Target? FRONTIERS IN PLANT SCIENCE 2020; 11:546. [PMID: 32499798 PMCID: PMC7243933 DOI: 10.3389/fpls.2020.00546] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 05/18/2023]
Abstract
Root phenotypic plasticity has been proposed as a target for the development of more productive crops in variable environments. However, the plasticity of root anatomical and architectural responses to environmental cues is highly complex, and the consequences of these responses for plant fitness are poorly understood. We propose that root phenotypic plasticity may be beneficial in natural or low-input systems in which the availability of soil resources is spatiotemporally dynamic. Crop ancestors and landraces were selected with multiple stresses, competition, significant root loss and heterogenous resource distribution which favored plasticity in response to resource availability. However, in high-input agroecosystems, the value of phenotypic plasticity is unclear, since human management has removed many of these constraints to root function. Further research is needed to understand the fitness landscape of plastic responses including understanding the value of plasticity in different environments, environmental signals that induce plastic responses, and the genetic architecture of plasticity before it is widely adopted in breeding programs. Phenotypic plasticity has many potential ecological, and physiological benefits, but its costs and adaptive value in high-input agricultural systems is poorly understood and merits further research.
Collapse
Affiliation(s)
| | - Jonathan P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
17
|
Berny Mier y Teran JC, Konzen ER, Medina V, Palkovic A, Ariani A, Tsai SM, Gilbert ME, Gepts P. Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.). ANNALS OF BOTANY 2019; 124:917-932. [PMID: 30596881 PMCID: PMC6881220 DOI: 10.1093/aob/mcy221] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/14/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wild crop relatives have been potentially subjected to stresses on an evolutionary time scale prior to domestication. Among these stresses, drought is one of the main factors limiting crop productivity and its impact is likely to increase under current scenarios of global climate change. We sought to determine to what extent wild common bean (Phaseolus vulgaris) exhibited adaptation to drought stress, whether this potential adaptation is dependent on the climatic conditions of the location of origin of individual populations, and to what extent domesticated common bean reflects potential drought adaptation. METHODS An extensive and diverse set of wild beans from across Mesoamerica, along with a set of reference Mesoamerican domesticated cultivars, were evaluated for root and shoot traits related to drought adaptation. A water deficit experiment was conducted by growing each genotype in a long transparent tube in greenhouse conditions so that root growth, in addition to shoot growth, could be monitored. RESULTS Phenotypic and landscape genomic analyses, based on single-nucleotide polymorphisms, suggested that beans originating from central and north-west Mexico and Oaxaca, in the driest parts of their distribution, produced more biomass and were deeper-rooted. Nevertheless, deeper rooting was correlated with less root biomass production relative to total biomass. Compared with wild types, domesticated types showed a stronger reduction and delay in growth and development in response to drought stress. Specific genomic regions were associated with root depth, biomass productivity and drought response, some of which showed signals of selection and were previously related to productivity and drought tolerance. CONCLUSIONS The drought tolerance of wild beans consists in its stronger ability, compared with domesticated types, to continue growth in spite of water-limited conditions. This study is the first to relate bean response to drought to environment of origin for a diverse selection of wild beans. It provides information that needs to be corroborated in crosses between wild and domesticated beans to make it applicable to breeding programmes.
Collapse
Affiliation(s)
- Jorge C Berny Mier y Teran
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| | - Enéas R Konzen
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brasil
| | - Viviana Medina
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| | - Antonia Palkovic
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| | - Andrea Ariani
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| | - Siu M Tsai
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brasil
| | - Matthew E Gilbert
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| | - P Gepts
- University of California, Department of Plant Sciences/Mail Stop 1, Section of Crop & Ecosystem Sciences, Davis, CA, USA
| |
Collapse
|
18
|
Lorts C, Lynch JP, Brown KM. Parental effects and provisioning under drought and low phosphorus stress in common bean. Food Energy Secur 2019. [DOI: 10.1002/fes3.192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Claire Lorts
- Department of Plant Science The Pennsylvania State University University Park PA USA
| | - Jonathan P. Lynch
- Department of Plant Science The Pennsylvania State University University Park PA USA
| | - Kathleen M. Brown
- Department of Plant Science The Pennsylvania State University University Park PA USA
| |
Collapse
|
19
|
Bouain N, Korte A, Satbhai SB, Nam HI, Rhee SY, Busch W, Rouached H. Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation. PLoS Genet 2019; 15:e1008392. [PMID: 31693663 PMCID: PMC6834251 DOI: 10.1371/journal.pgen.1008392] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using Arabidopsis thaliana accessions, we analyzed RGR variation under combinatorial mineral nutrient deficiencies involving phosphorus (P), iron (Fe), and zinc (Zn). While -P stimulated early RGR of most accessions, -Fe or -Zn reduced it. The combination of either -P-Fe or -P-Zn led to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, root growth responses of the reference accession Columbia (Col-0) were not representative of the species under -P nor -Zn. Using a systems approach that combines GWAS, network-based candidate identification, and reverse genetic screen, we identified new genes that regulate root growth in -P-Fe: VIM1, FH6, and VDAC3. Our findings provide a framework to systematically identifying favorable allelic variations to improve root growth, and to better understand how plants sense and respond to multiple environmental cues. Plants thrive in highly heterogenous soils. How they compute a multitude of contrasting stimuli and mount an adaptive response without a centralized information processing unit is an intriguing question. For instance, below ground, roots can sense and respond to the single or multiple nutrient stresses, and adjust its growth rate accordingly. Nevertheless, the genetic architecture of root growth responses under single and combined stress remains poorly understood. To fill this gap in our understanding about such crucial phenomenon for plant survival, we explored the natural variation of root growth rate (RGR) in Arabidopsis grown under single and combined nutritional stress, including deficiencies of iron (-Fe), zinc (-Zn), phosphate and iron (-P-Fe) and phosphate and zinc (-P-Zn). Our GWAS revealed distinct genetic architectures underlying root growth responses to single or combined nutrient stresses. By integrating GWAS and coexpression networks, we identified and validated genes controlling the variation of root growth to combined nutrient-deficiency, namely VARIANT IN METHYLATION 1, FORMIN-LIKE-PROTEIN-6 and VOLTAGE-DEPENDENT ANION-SELECTIVE CHANNEL PROTEIN 3. Our findings provide a framework to accelerate future research aiming at better understanding how plants sense and respond to multiple environmental inputs, and promise to help designing new agronomical and biotechnological strategies to improve root growth.
Collapse
Affiliation(s)
- Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Arthur Korte
- Evolutionary Genomics, Center for Computational and Theoretical Biology (CCTB), University Würzburg, Würzburg, Germany
| | - Santosh B. Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Hye-In Nam
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
- * E-mail: (SYR); (WB); (HR)
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (SYR); (WB); (HR)
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- * E-mail: (SYR); (WB); (HR)
| |
Collapse
|
20
|
Lynch JP. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture. THE NEW PHYTOLOGIST 2019; 223:548-564. [PMID: 30746704 DOI: 10.1111/nph.15738] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/29/2019] [Indexed: 05/22/2023]
Abstract
Nutrient-efficient crops are a solution to the two grand challenges of modern agriculture: improving food security while reducing environmental impacts. The primary challenges are (1) nitrogen (N) and phosphorus (P) efficiency; (2) potassium (K), calcium (Ca), and magnesium (Mg) efficiency for acid soils; and (3) iron (Fe) and zinc (Zn) efficiency for alkaline soils. Root phenotypes are promising breeding targets for each of these. The Topsoil Foraging ideotype is beneficial for P capture and should also be useful for capture of K, Ca, and Mg in acid soils. The Steep, Cheap, and Deep ideotype for subsoil foraging is beneficial for N and water capture. Fe and Zn capture can be improved by targeting mechanisms of metal mobilization in the rhizosphere. Root hairs and phenes that reduce the metabolic cost of soil exploration should be prioritized in breeding programs. Nutrient-efficient crops should provide benefits at all input levels. Although our current understanding is sufficient to deploy root phenotypes for improved nutrient capture in crop breeding, this complex topic does not receive the resources it merits in either applied or basic plant biology. Renewed emphasis on these topics is needed in order to develop the nutrient-efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA, 16802, USA
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| |
Collapse
|
21
|
The Key Role of Variety and Method of Sowing Selection in Pea Roots’ Parameters Development under Sustainable Practice. SUSTAINABILITY 2019. [DOI: 10.3390/su11071824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The selection of varieties is extremely important for decreasing fertilizer consumption. However, little attention is devoted to assessing the effectiveness of row spacing in tandem with types of varieties of pea on root development in the context of limited nutrition. As essential knowledge in this area is lacking, a study was conducted with two objectives using an ordinal regression model. (i): To determine whether qualitative variables (cultivar, fertilization, and row spacing) or quantitative variables (root parameters) affect the root dry mass density, and (ii): To assess the variation in root architecture of two pea cultivars (fodder vs. edible type) grown under different P supply levels (0, 45, and 90 kg P2O5) and row spacing (narrow—15 cm—and wide—30 cm). The ordinal regression model showed that row spacing and cultivar type are meaningful predictors of root dry mass density (RDMD). The root dry mass density increased at wider row spacing in the fodder pea cultivar. As root surface area density (RSAD) and SRL-specific root length (SRL) most accurately describe root mass, it was concluded that the cultivar type and row spacing are crucial factors for increasing root plasticity, which can improve soil utilization.
Collapse
|
22
|
Sofi PA, Djanaguiraman M, Siddique KHM, Prasad PVV. Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0429-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhao J, Sykacek P, Bodner G, Rewald B. Root traits of European Vicia faba cultivars-Using machine learning to explore adaptations to agroclimatic conditions. PLANT, CELL & ENVIRONMENT 2018; 41:1984-1996. [PMID: 28857245 DOI: 10.1111/pce.13062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 05/23/2023]
Abstract
Faba bean (Vicia faba L.) is an important source of protein, but breeding for increased yield stability and stress tolerance is hampered by the scarcity of phenotyping information. Because comparisons of cultivars adapted to different agroclimatic zones improve our understanding of stress tolerance mechanisms, the root architecture and morphology of 16 European faba bean cultivars were studied at maturity. Different machine learning (ML) approaches were tested in their usefulness to analyse trait variations between cultivars. A supervised, that is, hypothesis-driven, ML approach revealed that cultivars from Portugal feature greater and coarser but less frequent lateral roots at the top of the taproot, potentially enhancing water uptake from deeper soil horizons. Unsupervised clustering revealed that trait differences between northern and southern cultivars are not predominant but that two cultivar groups, independently from major and minor types, differ largely in overall root system size. Methodological guidelines on how to use powerful ML methods such as random forest models for enhancing the phenotypical exploration of plants are given.
Collapse
Affiliation(s)
- Jiangsan Zhao
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Tulln an der Donau, Austria
| | - Peter Sykacek
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Tulln an der Donau, Austria
| | - Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430, Tulln an der Donau, Austria
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), 1190, Tulln an der Donau, Austria
| |
Collapse
|
24
|
Rangarajan H, Postma JA, Lynch JP. Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean. ANNALS OF BOTANY 2018; 122:485-499. [PMID: 29982363 PMCID: PMC6110351 DOI: 10.1093/aob/mcy092] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/04/2018] [Indexed: 05/02/2023]
Abstract
Background and Aims Root architecture is a primary determinant of soil resource acquisition. We hypothesized that root architectural phenes will display both positive and negative interactions with each other for soil resource capture because of competition for internal resources and functional trade-offs in soil exploration. Methods We employed the functional-structural plant model SimRoot to explore how interactions among architectural phenes in common bean determine the acquisition of phosphate and nitrate, two key soil resources contrasting in mobility. We evaluated the utility of basal root whorl number (BRWN) when basal root growth angle, hypocotyl-borne roots and lateral root branching density (LRBD) were varied, under varying availability of phosphate and nitrate. Key Results Three basal root whorls were optimal in most phenotypes. This optimum shifted towards greater values when LRBD decreased and to smaller numbers when LRBD increased. The maximum biomass accumulated for a given BRWN phenotype in a given limiting nutrient scenario depended upon root growth angle. Under phosphorus stress shallow phenotypes grew best, whereas under nitrate stress fanned phenotypes grew best. The effect of increased hypocotyl-borne roots depended upon BRWN as well as the limiting nutrient. Greater production of axial roots due to BRWN or hypocotyl-borne roots reduced rooting depth, leading to reduced biomass under nitrate-limiting conditions. Increased BRWN as well as greater LRBD increased root carbon consumption, resulting in reduced shoot biomass. Conclusions We conclude that the utility of a root architectural phenotype is determined by whether the constituent phenes are synergistic or antagonistic. Competition for internal resources and trade-offs for external resources result in multiple phenotypes being optimal under a given nutrient regime. We also find that no single phenotype is optimal across contrasting environments. These results have implications for understanding plant evolution and also for the breeding of more stress-tolerant crop phenotypes.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, Tyson Building, University Park, PA, USA
| | | | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, Tyson Building, University Park, PA, USA
| |
Collapse
|
25
|
Cai Z, Cheng Y, Xian P, Ma Q, Wen K, Xia Q, Zhang G, Nian H. Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean, through fine mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1715-1728. [PMID: 29754326 DOI: 10.1007/s00122-018-3109-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE Map-based cloning identified GmHAD1, a gene which encodes a HAD-like acid phosphatase, associated with soybean tolerance to low phosphorus stress. Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Plants may adapt to low phosphorus (LP) conditions via changes to root morphology, including the number, length, orientation, and branching of the principal root classes. To elucidate the genetic mechanisms for LP tolerance in soybean, quantitative trait loci (QTL) related to root morphology responses to LP were identified via hydroponic experiments. In total, we identified 14 major loci associated with these traits in a RIL population. The log-likelihood scores ranged from 2.81 to 7.43, explaining 4.23-13.98% of phenotypic variance. A major locus on chromosome 08, named qP8-2, was co-localized with an important P efficiency QTL (qPE8), containing phosphatase genes GmACP1 and GmACP2. Another major locus on chromosome 10 named qP10-2 explained 4.80-13.98% of the total phenotypic variance in root morphology. The qP10-2 contains GmHAD1, a gene which encodes an acid phosphatase. In the transgenic soybean hairy roots, GmHAD1 overexpression increased P efficiency by 8.4-16.5% relative to the control. Transgenic Arabidopsis plants had higher biomass than wild-type plants across both short- and long-term P reduction. These results suggest that GmHAD1, an acid phosphatase gene, improved the utilization of organic phosphate by soybean and Arabidopsis plants.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
26
|
Colombi T, Torres LC, Walter A, Keller T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth - A vicious circle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:1026-1035. [PMID: 29898511 DOI: 10.1016/j.scitotenv.2018.01.129] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/13/2018] [Accepted: 01/13/2018] [Indexed: 05/13/2023]
Abstract
Water is the most limiting resource for global crop production. The projected increase of dry spells due to climate change will further increase the problem of water limited crop yields. Besides low water abundance and availability, water limitations also occur due to restricted water accessibility. Soil penetration resistance, which is largely influenced by soil moisture, is the major soil property regulating root elongation and water accessibility. Until now the interactions between soil penetration resistance, root system properties, water uptake and crop productivity are rarely investigated. In the current study we quantified how interactive effects between soil penetration resistance, root architecture and water uptake affect water accessibility and crop productivity in the field. Maize was grown on compacted and uncompacted soil that was either tilled or remained untilled after compaction, which resulted in four treatments with different topsoil penetration resistance. Higher topsoil penetration resistance caused root systems to be shallower. This resulted in increased water uptake from the topsoil and hence topsoil drying, which further increased the penetration resistance in the uppermost soil layer. As a consequence of this feedback, root growth into deeper soil layers, where water would have been available, was reduced and plant growth decreased. Our results demonstrate that soil penetration resistance, root architecture and water uptake are closely interrelated and thereby determine the potential of plants to access soil water pools. Hence, these interactions and their feedbacks on water accessibility and crop productivity have to be accounted for when developing strategies to alleviate water limitations in cropping systems.
Collapse
Affiliation(s)
- Tino Colombi
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Uppsala, Sweden; Agroscope, Department of Agroecology and Environment, Zurich, Switzerland; ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland.
| | - Lorena Chagas Torres
- University of São Paulo, Department of Soil and Plant Nutrition, Piracicaba, SP, Brazil
| | - Achim Walter
- ETH Zurich, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Thomas Keller
- Swedish University of Agricultural Sciences, Department of Soil and Environment, Uppsala, Sweden; Agroscope, Department of Agroecology and Environment, Zurich, Switzerland
| |
Collapse
|
27
|
Sun B, Gao Y, Lynch JP. Large Crown Root Number Improves Topsoil Foraging and Phosphorus Acquisition. PLANT PHYSIOLOGY 2018; 177:90-104. [PMID: 29618638 PMCID: PMC5933112 DOI: 10.1104/pp.18.00234] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 05/22/2023]
Abstract
Suboptimal phosphorus (P) availability is a primary constraint to plant growth on Earth. We tested the hypothesis that maize (Zea mays) genotypes with large crown root number (CN) will have shallower rooting depth and improved P acquisition from low-P soils. Maize recombinant inbred lines with contrasting CN were evaluated under suboptimal P availability in greenhouse mesocosms and the field. Under P stress in mesocosms, the large-CN phenotype had 48% greater root respiration, 24% shallower rooting depth, 32% greater root length density in the topsoil, 37% greater leaf P concentration, 48% greater leaf photosynthesis, 33% greater stomatal conductance, and 44% greater shoot biomass than the small-CN phenotype. Under P stress in the field, the large-CN phenotype had 32% shallower rooting depth, 51% greater root length density in the topsoil, 44% greater leaf P concentration, 18% greater leaf photosynthesis, 21% greater stomatal conductance, 23% greater shoot biomass at anthesis, and 28% greater yield than the small-CN phenotype. These results support the hypothesis that large CN improves plant P acquisition from low-P soils by reducing rooting depth and increasing topsoil foraging. The large-CN phenotype merits consideration as a selection target to improve P capture in maize and possibly other cereal crops.
Collapse
Affiliation(s)
- Baoru Sun
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun 130024, Jilin Province, China
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun 130024, Jilin Province, China
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
28
|
VELHO LUISP, MELO RITACDE, BERNARDY JOÃOPEDROF, GRIGOLO SIBILA, GUIDOLIN ALTAMIRF, COIMBRA JEFFERSONL. Root distribution and its association with bean growth habit. AN ACAD BRAS CIENC 2018; 90:1837-1844. [DOI: 10.1590/0001-3765201820170341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/20/2017] [Indexed: 11/21/2022] Open
|
29
|
Hanlon MT, Ray S, Saengwilai P, Luthe D, Lynch JP, Brown KM. Buffered delivery of phosphate to Arabidopsis alters responses to low phosphate. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1207-1219. [PMID: 29304231 PMCID: PMC6019003 DOI: 10.1093/jxb/erx454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/28/2017] [Indexed: 05/21/2023]
Abstract
Arabidopsis has been reported to respond to phosphate (Pi) stress by arresting primary root growth and increasing lateral root branching. We developed a system to buffer Pi availability to Arabidopsis in gel media systems by charging activated aluminum oxide particles with low and sufficient concentrations of Pi, based on previous work in horticultural and sand culture systems. This system more closely mimics soil chemistry and results in different growth and transcriptional responses to Pi stress compared with plants grown in standard gel media. Low Pi availability in buffered medium results in reduced root branching and preferential investment of resources in axial root growth. Root hair length and density, known responses to Pi stress, increase in low-buffered Pi medium. Plants grown under buffered Pi conditions have different gene expression profiles of canonical Pi stress response genes as compared with their unbuffered counterparts. The system also eliminates known complications with iron (Fe) nutrition. The growth responses of Arabidopsis supplied with buffered Pi indicate that the widely accepted low-Pi phenotype is an artifact of the standard gel-based growth system. Buffering Pi availability through the method presented here will improve the utility and accuracy of gel studies by more closely approximating soil conditions.
Collapse
Affiliation(s)
- Meredith T Hanlon
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Swayamjit Ray
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Patompong Saengwilai
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Rachadhavi, Bangkok, Thailand
| | - Dawn Luthe
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Kathleen M Brown
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
30
|
Strock CF, Morrow de la Riva L, Lynch JP. Reduction in Root Secondary Growth as a Strategy for Phosphorus Acquisition. PLANT PHYSIOLOGY 2018; 176:691-703. [PMID: 29118249 PMCID: PMC5761805 DOI: 10.1104/pp.17.01583] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 05/02/2023]
Abstract
We tested the hypothesis that reduced root secondary growth of dicotyledonous species improves phosphorus acquisition. Functional-structural modeling in SimRoot indicates that, in common bean (Phaseolus vulgaris), reduced root secondary growth reduces root metabolic costs, increases root length, improves phosphorus capture, and increases shoot biomass in low-phosphorus soil. Observations from the field and greenhouse confirm that, under phosphorus stress, resource allocation is shifted from secondary to primary root growth, genetic variation exists for this response, and reduced secondary growth improves phosphorus capture from low-phosphorus soil. Under low phosphorus in greenhouse mesocosms, genotypes with reduced secondary growth had 39% smaller root cross-sectional area, 60% less root respiration, 27% greater root length, 78% greater shoot phosphorus content, and 68% greater shoot mass than genotypes with advanced secondary growth. In the field under low phosphorus, these genotypes had 43% smaller root cross-sectional area, 32% greater root length, 58% greater shoot phosphorus content, and 80% greater shoot mass than genotypes with advanced secondary growth. Secondary growth eliminated arbuscular mycorrhizal associations as cortical tissue was destroyed. These results support the hypothesis that reduced root secondary growth is an adaptive response to low phosphorus availability and merits investigation as a potential breeding target.
Collapse
Affiliation(s)
- Christopher F Strock
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | | | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
31
|
Colombi T, Walter A. Genetic Diversity under Soil Compaction in Wheat: Root Number as a Promising Trait for Early Plant Vigor. FRONTIERS IN PLANT SCIENCE 2017; 8:420. [PMID: 28400783 PMCID: PMC5368237 DOI: 10.3389/fpls.2017.00420] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/13/2017] [Indexed: 05/25/2023]
Abstract
Soil compaction of arable land, caused by heavy machinery constitutes a major threat to agricultural soils in industrialized countries. The degradation of soil structure due to compaction leads to decreased (macro-) porosity resulting in increased mechanical impedance, which adversely affects root growth and crop productivity. New crop cultivars, with root systems that are adapted to conditions of increased soil strength, are needed to overcome the limiting effects of soil compaction on plant growth. This study aimed (i) to quantify the genetic diversity of early root system development in wheat and to relate this to shoot development under different soil bulk densities and (ii) to test whether root numbers are suitable traits to assess the genotypic tolerance to soil compaction. Fourteen wheat genotypes were grown for 3 weeks in a growth chamber under low (1.3 g cm-3), moderate (1.45 g cm-3), and high soil bulk density (1.6 g cm-3). Using X-ray computed tomography root system development was quantified in weekly intervals, which was complemented by weekly measurements of plant height. The development of the root system, quantified via the number of axial and lateral roots was strongly correlated (0.78 < r < 0.88, p < 0.01) to the development of plant height. Furthermore, significant effects (p < 0.01) of the genotype on root system development and plant vigor traits were observed. Under moderate soil strength final axial and lateral root numbers were significantly correlated (0.57 < r < 0.84, p < 0.05) to shoot dry weight. Furthermore, broad-sense heritability of axial and lateral root number was higher than 50% and comparable to values calculated for shoot traits. Our results showed that there is genetic diversity in wheat with respect to root system responses to increased soil strength and that root numbers are suitable indicators to explain the responses and the tolerance to such conditions. Since root numbers are heritable and can be assessed at high throughput rates under laboratory and field conditions, root number is considered a promising trait for screening toward compaction tolerant varieties.
Collapse
Affiliation(s)
- Tino Colombi
- Institute of Agricultural Sciences ETH ZurichZurich, Switzerland
| | | |
Collapse
|
32
|
Polania J, Poschenrieder C, Rao I, Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2017; 29:143-154. [PMID: 33552846 PMCID: PMC7797623 DOI: 10.1007/s40626-017-0090-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Drought stress limits growth and yield of crops, particularly under smallholder production systems with minimal use of inputs and edaphic limitations such as nitrogen (N) deficiency. The development of genotypes adapted to these conditions through genetic improvement is an important strategy to address this limitation. The identification of morpho-physiological traits associated with drought resistance contributes to increasing the efficiency of breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool was evaluated. A greenhouse study using soil cylinders was conducted to determine root vigor traits (total root length and fine root production) under drought stress. Two field trials were conducted to determinate grain yield, symbiotic nitrogen fixation (SNF) ability and other shoot traits under drought stress. Field data on grain yield and other shoot traits measured under drought were related with the greenhouse data on root traits under drought conditions to test the relationships between shoot traits and root traits. Response of root vigor to drought stress appeared to be related with ideotypes of water use (water savers and water spenders). The water spender ideotypes presented deeper root system, while the water saver ideotypes showed a relatively shallower root system. Increase in SNF ability under drought stress was associated with greater values of mean root diameter while greater acquisition of N from soil was associated with finer root system. We identified seven common bean lines (SEA 15, NCB 280, SCR 16, SMC 141, BFS 29, BFS 67 and SER 119) that showed greater root vigor under drought stress in the greenhouse and higher values of grain yield under drought stress in the field. These lines could serve as parents for improving drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
- e-mail:
| | - Charlotte Poschenrieder
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Idupulapati Rao
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Stephen Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
33
|
Zhao J, Bodner G, Rewald B. Phenotyping: Using Machine Learning for Improved Pairwise Genotype Classification Based on Root Traits. FRONTIERS IN PLANT SCIENCE 2016; 7:1864. [PMID: 27999587 PMCID: PMC5138212 DOI: 10.3389/fpls.2016.01864] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/25/2016] [Indexed: 05/29/2023]
Abstract
Phenotyping local crop cultivars is becoming more and more important, as they are an important genetic source for breeding - especially in regard to inherent root system architectures. Machine learning algorithms are promising tools to assist in the analysis of complex data sets; novel approaches are need to apply them on root phenotyping data of mature plants. A greenhouse experiment was conducted in large, sand-filled columns to differentiate 16 European Pisum sativum cultivars based on 36 manually derived root traits. Through combining random forest and support vector machine models, machine learning algorithms were successfully used for unbiased identification of most distinguishing root traits and subsequent pairwise cultivar differentiation. Up to 86% of pea cultivar pairs could be distinguished based on top five important root traits (Timp5) - Timp5 differed widely between cultivar pairs. Selecting top important root traits (Timp) provided a significant improved classification compared to using all available traits or randomly selected trait sets. The most frequent Timp of mature pea cultivars was total surface area of lateral roots originating from tap root segments at 0-5 cm depth. The high classification rate implies that culturing did not lead to a major loss of variability in root system architecture in the studied pea cultivars. Our results illustrate the potential of machine learning approaches for unbiased (root) trait selection and cultivar classification based on rather small, complex phenotypic data sets derived from pot experiments. Powerful statistical approaches are essential to make use of the increasing amount of (root) phenotyping information, integrating the complex trait sets describing crop cultivars.
Collapse
Affiliation(s)
- Jiangsan Zhao
- Department of Forest and Soil Sciences, University of Natural Resources and Life SciencesVienna, Austria
| | - Gernot Bodner
- Division of Agronomy, Department of Crop Sciences, University of Natural Resources and Life SciencesVienna, Austria
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life SciencesVienna, Austria
| |
Collapse
|
34
|
Frosi G, Barros VA, Oliveira MT, Santos M, Ramos DG, Maia LC, Santos MG. Symbiosis with AMF and leaf P i supply increases water deficit tolerance of woody species from seasonal dry tropical forest. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:84-93. [PMID: 27875776 DOI: 10.1016/j.jplph.2016.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/05/2016] [Accepted: 11/05/2016] [Indexed: 05/08/2023]
Abstract
In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (Pi) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (Pi) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H2O and -H2O), 2 AMF levels (+AMF and -AMF) and 2Pi levels (+Pi and -Pi). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, Pi or AMF+Pi plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or Pi. After rehydration, those plants submitted to drought with AMF, Pi or AMF+Pi showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or Pi. However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, Pi or AMF+Pi increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis.
Collapse
Affiliation(s)
- Gabriella Frosi
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Vanessa A Barros
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Marciel T Oliveira
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Mariana Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Diego G Ramos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Leonor C Maia
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
| | - Mauro G Santos
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil.
| |
Collapse
|
35
|
Thomas CL, Alcock TD, Graham NS, Hayden R, Matterson S, Wilson L, Young SD, Dupuy LX, White PJ, Hammond JP, Danku JMC, Salt DE, Sweeney A, Bancroft I, Broadley MR. Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit. BMC PLANT BIOLOGY 2016; 16:214. [PMID: 27716103 PMCID: PMC5050600 DOI: 10.1186/s12870-016-0902-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/25/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. CONCLUSIONS High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.
Collapse
Affiliation(s)
- C. L. Thomas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - T. D. Alcock
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - N. S. Graham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - R. Hayden
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - S. Matterson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - L. Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - S. D. Young
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - L. X. Dupuy
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
| | - P. J. White
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA UK
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - J. P. Hammond
- School of Agriculture, Policy and Development and the Centre for Food Security, University of Reading, Whiteknights, PO Box 237, Reading, RG6 6AR UK
| | - J. M. C. Danku
- University of Aberdeen, Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU UK
| | - D. E. Salt
- University of Aberdeen, Institute of Biological and Environmental Sciences, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU UK
| | - A. Sweeney
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - I. Bancroft
- Department of Biology, University of York, Heslington, York, YO10 5DD UK
| | - M. R. Broadley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
36
|
Thomas CL, Graham NS, Hayden R, Meacham MC, Neugebauer K, Nightingale M, Dupuy LX, Hammond JP, White PJ, Broadley MR. High-throughput phenotyping (HTP) identifies seedling root traits linked to variation in seed yield and nutrient capture in field-grown oilseed rape (Brassica napus L.). ANNALS OF BOTANY 2016; 118:655-665. [PMID: 27052342 PMCID: PMC5055618 DOI: 10.1093/aob/mcw046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 05/02/2023]
Abstract
Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.
Collapse
Affiliation(s)
- C. L. Thomas
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - N. S. Graham
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - R. Hayden
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - M. C. Meacham
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - K. Neugebauer
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | - L. X. Dupuy
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - J. P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, PO Box 237, Reading RG6 6AR, UK and
| | - P. J. White
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - M. R. Broadley
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
37
|
Zhang Y, Thomas CL, Xiang J, Long Y, Wang X, Zou J, Luo Z, Ding G, Cai H, Graham NS, Hammond JP, King GJ, White PJ, Xu F, Broadley MR, Shi L, Meng J. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems. Sci Rep 2016; 6:33113. [PMID: 27624881 PMCID: PMC5021999 DOI: 10.1038/srep33113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/22/2016] [Indexed: 12/23/2022] Open
Abstract
A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and 'normal' phosphate (Pi) supply using a 'pouch and wick' system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica.
Collapse
Affiliation(s)
- Ying Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Catherine L. Thomas
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Jinxia Xiang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaohua Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziliang Luo
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Neil S. Graham
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Graham J. King
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
- Southern Cross Plant Science, Southern Cross University, Lismore NSW 2480, Australia
| | - Philip J. White
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Martin R. Broadley
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Dathe A, Postma JA, Postma-Blaauw MB, Lynch JP. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. ANNALS OF BOTANY 2016; 118:401-14. [PMID: 27474507 PMCID: PMC4998975 DOI: 10.1093/aob/mcw112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/02/2016] [Accepted: 04/29/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUNDS AND AIMS Crops with reduced requirement for nitrogen (N) fertilizer would have substantial benefits in developed nations, while improving food security in developing nations. This study employs the functional structural plant model SimRoot to test the hypothesis that variation in the growth angles of axial roots of maize (Zea mays L.) is an important determinant of N capture. METHODS Six phenotypes contrasting in axial root growth angles were modelled for 42 d at seven soil nitrate levels from 10 to 250 kg ha(-1) in a sand and a silt loam, and five precipitation regimes ranging from 0·5× to 1·5× of an ambient rainfall pattern. Model results were compared with soil N measurements of field sites with silt loam and loamy sand textures. KEY RESULTS For optimal nitrate uptake, root foraging must coincide with nitrate availability in the soil profile, which depends on soil type and precipitation regime. The benefit of specific root architectures for efficient N uptake increases with decreasing soil N content, while the effect of soil type increases with increasing soil N level. Extreme root architectures are beneficial under extreme environmental conditions. Extremely shallow root systems perform well under reduced precipitation, but perform poorly with ambient and greater precipitation. Dimorphic phenotypes with normal or shallow seminal and very steep nodal roots performed well in all scenarios, and consistently outperformed the steep phenotypes. Nitrate uptake increased under reduced leaching conditions in the silt loam and with low precipitation. CONCLUSIONS Results support the hypothesis that root growth angles are primary determinants of N acquisition in maize. With decreasing soil N status, optimal angles resulted in 15-50 % greater N acquisition over 42 d. Optimal root phenotypes for N capture varied with soil and precipitation regimes, suggesting that genetic selection for root phenotypes could be tailored to specific environments.
Collapse
Affiliation(s)
- A Dathe
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - J A Postma
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - M B Postma-Blaauw
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - J P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
39
|
Burridge J, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: High—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. FIELD CROPS RESEARCH 2016; 192:21-32. [PMID: 0 DOI: 10.1016/j.fcr.2016.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
40
|
Topp CN, Bray AL, Ellis NA, Liu Z. How can we harness quantitative genetic variation in crop root systems for agricultural improvement? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:213-25. [PMID: 26911925 DOI: 10.1111/jipb.12470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Root systems are a black box obscuring a comprehensive understanding of plant function, from the ecosystem scale down to the individual. In particular, a lack of knowledge about the genetic mechanisms and environmental effects that condition root system growth hinders our ability to develop the next generation of crop plants for improved agricultural productivity and sustainability. We discuss how the methods and metrics we use to quantify root systems can affect our ability to understand them, how we can bridge knowledge gaps and accelerate the derivation of structure-function relationships for roots, and why a detailed mechanistic understanding of root growth and function will be important for future agricultural gains.
Collapse
Affiliation(s)
| | - Adam L Bray
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Nathanael A Ellis
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| | - Zhengbin Liu
- Donald Danforth Plant Science Center, Saint Louis, Missouri 63132, USA
| |
Collapse
|
41
|
Steffens B, Rasmussen A. The Physiology of Adventitious Roots. PLANT PHYSIOLOGY 2016; 170:603-17. [PMID: 26697895 PMCID: PMC4734560 DOI: 10.1104/pp.15.01360] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 05/17/2023]
Abstract
Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3).
Collapse
Affiliation(s)
- Bianka Steffens
- Plant Physiology, Philipps University, 35043 Marburg, Germany (B.S.); andDivision of Plant and Crop Science, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (A.R.)
| | - Amanda Rasmussen
- Plant Physiology, Philipps University, 35043 Marburg, Germany (B.S.); andDivision of Plant and Crop Science, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom (A.R.)
| |
Collapse
|
42
|
Lynch JP, Wojciechowski T. Opportunities and challenges in the subsoil: pathways to deeper rooted crops. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2199-210. [PMID: 25582451 PMCID: PMC4986715 DOI: 10.1093/jxb/eru508] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 11/28/2014] [Indexed: 05/18/2023]
Abstract
Greater exploitation of subsoil resources by annual crops would afford multiple benefits, including greater water and N acquisition in most agroecosystems, and greater sequestration of atmospheric C. Constraints to root growth in the subsoil include soil acidity (an edaphic stress complex consisting of toxic levels of Al, inadequate levels of P and Ca, and often toxic levels of Mn), soil compaction, hypoxia, and suboptimal temperature. Multiple root phenes under genetic control are associated with adaptation to these constraints, opening up the possibility of breeding annual crops with root traits improving subsoil exploration. Adaptation to Al toxicity, hypoxia, and P deficiency are intensively researched, adaptation to soil hardness and suboptimal temperature less so, and adaptations to Ca deficiency and Mn toxicity are poorly understood. The utility of specific phene states may vary among soil taxa and management scenarios, interactions which in general are poorly understood. These traits and issues merit research because of their potential value in developing more productive, sustainable, benign, and resilient agricultural systems.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA IBG2, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich D-52445, Germany
| | | |
Collapse
|
43
|
Miguel MA, Postma JA, Lynch JP. Phene synergism between root hair length and basal root growth angle for phosphorus acquisition. PLANT PHYSIOLOGY 2015; 167:1430-9. [PMID: 25699587 PMCID: PMC4378183 DOI: 10.1104/pp.15.00145] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/08/2015] [Indexed: 05/18/2023]
Abstract
Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.
Collapse
Affiliation(s)
- Magalhaes Amade Miguel
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Johannes Auke Postma
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jonathan Paul Lynch
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
44
|
Hufnagel B, de Sousa SM, Assis L, Guimaraes CT, Leiser W, Azevedo GC, Negri B, Larson BG, Shaff JE, Pastina MM, Barros BA, Weltzien E, Rattunde HFW, Viana JH, Clark RT, Falcão A, Gazaffi R, Garcia AAF, Schaffert RE, Kochian LV, Magalhaes JV. Duplicate and conquer: multiple homologs of PHOSPHORUS-STARVATION TOLERANCE1 enhance phosphorus acquisition and sorghum performance on low-phosphorus soils. PLANT PHYSIOLOGY 2014; 166:659-77. [PMID: 25189534 PMCID: PMC4213096 DOI: 10.1104/pp.114.243949] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/01/2014] [Indexed: 05/02/2023]
Abstract
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.
Collapse
Affiliation(s)
- Barbara Hufnagel
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Sylvia M de Sousa
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Lidianne Assis
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Claudia T Guimaraes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Willmar Leiser
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Gabriel C Azevedo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Barbara Negri
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Brandon G Larson
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Jon E Shaff
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Maria Marta Pastina
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Beatriz A Barros
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Eva Weltzien
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Henry Frederick W Rattunde
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Joao H Viana
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Randy T Clark
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Alexandre Falcão
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Rodrigo Gazaffi
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Antonio Augusto F Garcia
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Robert E Schaffert
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Leon V Kochian
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| | - Jurandir V Magalhaes
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil (B.H., C.T.G., G.C.A., J.V.M.);Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, 35701-970, Brazil (B.H., S.M.d.S., L.A., C.T.G., G.C.A., B.N., M.M.P., B.A.B., J.H.V., R.E.S., J.V.M.);International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali (W.L., E.W., H.F.W.R.);Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany (W.L.);Departamento de Bioengenharia, Universidade Federal de São João del-Rei, Praça Sao Joao del-Rei, Minas Gerais, 36301-160, Brazil (B.N.);Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14850 (B.G.L., J.E.S., R.T.C., L.V.K.);University of Campinas, Campinas, Sao Paulo, 13083-852, Brazil (A.F.); andDepartamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Sao Paulo, 13400-970, Brazil (R.G., A.A.F.G.)
| |
Collapse
|
45
|
Oliveira MT, Medeiros CD, Frosi G, Santos MG. Different mechanisms drive the performance of native and invasive woody species in response to leaf phosphorus supply during periods of drought stress and recovery. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 82:66-75. [PMID: 24907526 DOI: 10.1016/j.plaphy.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/13/2014] [Indexed: 05/16/2023]
Abstract
The effects of drought stress and leaf phosphorus (Pi) supply on photosynthetic metabolism in woody tropical species are not known, and given the recent global environmental change models that forecast lower precipitation rates and periods of prolonged drought in tropical areas, this type of study is increasingly important. The effects of controlled drought stress and Pi supply on potted young plants of two woody species, Anadenanthera colubrina (native) and Prosopis juliflora (invasive), were determined by analyzing leaf photosynthetic metabolism, biochemical properties and water potential. In the maximum stress, both species showed higher leaf water potential (Ψl) in the treatment drought +Pi when compared with the respective control -Pi. The native species showed higher gas exchange under drought +Pi than under drought -Pi conditions, while the invasive species showed the same values between drought +Pi and -Pi. Drought affected the photochemical part of photosynthetic machinery more in the invasive species than in the native species. The invasive species showed higher leaf amino acid content and a lower leaf total protein content in both Pi treatments with drought. The two species showed different responses to the leaf Pi supply under water stress for several variables measured. In addition, the strong resilience of leaf gas exchange in the invasive species compared to the native species during the recovery period may be the result of higher efficiency of Pi use. The implications of this behavior for the success of this invasive species in semiarid environments are discussed.
Collapse
Affiliation(s)
- Marciel Teixeira Oliveira
- Departamento de Botânica, Laboratório de Ecofisiologia Vegetal, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Camila Dias Medeiros
- Departamento de Botânica, Laboratório de Ecofisiologia Vegetal, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Gabriella Frosi
- Departamento de Botânica, Laboratório de Ecofisiologia Vegetal, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil
| | - Mauro Guida Santos
- Departamento de Botânica, Laboratório de Ecofisiologia Vegetal, Universidade Federal de Pernambuco, Recife PE 50670-901, Brasil.
| |
Collapse
|
46
|
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:95-123. [PMID: 24579991 DOI: 10.1146/annurev-arplant-050213-035949] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.
Collapse
|
47
|
York LM, Nord EA, Lynch JP. Integration of root phenes for soil resource acquisition. FRONTIERS IN PLANT SCIENCE 2013; 4:355. [PMID: 24062755 PMCID: PMC3771073 DOI: 10.3389/fpls.2013.00355] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/23/2013] [Indexed: 05/17/2023]
Abstract
Suboptimal availability of water and nutrients is a primary limitation to plant growth in terrestrial ecosystems. The acquisition of soil resources by plant roots is therefore an important component of plant fitness and agricultural productivity. Plant root systems comprise a set of phenes, or traits, that interact. Phenes are the units of the plant phenotype, and phene states represent the variation in form and function a particular phene may take. Root phenes can be classified as affecting resource acquisition or utilization, influencing acquisition through exploration or exploitation, and in being metabolically influential or neutral. These classifications determine how one phene will interact with another phene, whether through foraging mechanisms or metabolic economics. Phenes that influence one another through foraging mechanisms are likely to operate within a phene module, a group of interacting phenes, that may be co-selected. Examples of root phene interactions discussed are: (1) root hair length × root hair density, (2) lateral branching × root cortical aerenchyma (RCA), (3) adventitious root number × adventitious root respiration and basal root growth angle (BRGA), (4) nodal root number × RCA, and (5) BRGA × root hair length and density. Progress in the study of phenes and phene interactions will be facilitated by employing simulation modeling and near-isophenic lines that allow the study of specific phenes and phene combinations within a common phenotypic background. Developing a robust understanding of the phenome at the organismal level will require new lines of inquiry into how phenotypic integration influences plant function in diverse environments. A better understanding of how root phenes interact to affect soil resource acquisition will be an important tool in the breeding of crops with superior stress tolerance and reduced dependence on intensive use of inputs.
Collapse
Affiliation(s)
- Larry M. York
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Eric A. Nord
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Jonathan P. Lynch
- Intercollege Program in Ecology, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|