1
|
Selosse M, Alaux P, Deloche L, Delannoy E, Minasiewicz J, Tsiftsis S, Figura T, Martos F. Mixotrophy in orchids: facts, questions, and perspectives. THE NEW PHYTOLOGIST 2025; 246:1912-1921. [PMID: 40195594 PMCID: PMC12059541 DOI: 10.1111/nph.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/09/2025] [Indexed: 04/09/2025]
Abstract
While orchids germinate thanks to carbon from their symbiotic fungi, variable carbon exchanges exist between adult orchids and their mycorrhizal fungi. Although some truly autotrophic orchids reward their fungi with carbon at adulthood, some species remain achlorophyllous and fully dependent on fungal carbon (mycoheterotrophy). Others are photosynthetic but also import fungal carbon: The so-called mixotrophic (MX) orchids rely on fungi of diverse taxonomy and ecology. Here, we classify MX nutrition of orchids into three types. Type I mixotrophy associates with diverse Asco- and Basidiomycota that are either saprotrophic or ectomycorrhizal, entailing enrichment of the orchids in 2H, 13C, and 15N. The two other types associate with rhizoctonias, a polyphyletic assemblage of Basidiomycotas that is ancestrally mycorrhizal in orchids. Type II mixotrophy associates with rhizoctonias that secondarily evolved into saprotrophic or ectomycorrhizal ecology, and thus enrich the orchid in 2H, 13C, and 15N. Type III mixotrophy, which remains debated, associates with rhizoctonias that have retained their ancestral lifestyle, that is saprotrophic and/or endophytic in nonorchids, and only entail orchid enrichment in 2H and 15N. Based on a case study of achlorophyllous variants in Mediterranean Ophrys and on published data, we discuss the distinct nature and research perspectives of type III mixotrophy.
Collapse
Affiliation(s)
- Marc‐André Selosse
- Institut Systématique Évolution Biodiversité, Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskWita Stwosza 5980‐308GdanskPoland
- Institut Universitaire de FranceParisFrance
| | - Pierre‐Louis Alaux
- Institut Systématique Évolution Biodiversité, Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
| | - Lara Deloche
- Institut Systématique Évolution Biodiversité, Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
- Institute of Plant Sciences Paris‐Saclay (IPS2), Université Paris‐Saclay, CNRS, INRAEUniversité EvryGif sur Yvette91190France
- Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris Cité, CNRS, INRAEGif sur Yvette91190France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris‐Saclay (IPS2), Université Paris‐Saclay, CNRS, INRAEUniversité EvryGif sur Yvette91190France
- Institute of Plant Sciences Paris‐Saclay (IPS2)Université Paris Cité, CNRS, INRAEGif sur Yvette91190France
| | - Julita Minasiewicz
- Department of Plant Taxonomy and Nature ConservationUniversity of GdanskWita Stwosza 5980‐308GdanskPoland
| | - Spyros Tsiftsis
- Department of Forest and Natural Environment SciencesDemocritus University of ThraceGR‐66132DramaGreece
| | - Tomas Figura
- Institut Systématique Évolution Biodiversité, Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
- Department of Mycorrhizal SymbiosesInstitute of Botany, Czech Academy of SciencesLesní 32225243PrůhoniceCzech Republic
| | - Florent Martos
- Institut Systématique Évolution Biodiversité, Muséum National d'Histoire Naturelle, CNRSSorbonne UniversitéParisFrance
| |
Collapse
|
2
|
Lee YI, Zahn FE, Xie QY, Wu SH, Gebauer G. Diverse mycorrhizal associations and nutrition in Didymoplexis orchids. MYCORRHIZA 2025; 35:34. [PMID: 40285927 DOI: 10.1007/s00572-025-01208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Fully mycoheterotrophic (FMH) orchids rely entirely on mycorrhizal fungi for carbon and nutrients, with tropical Asian FMH orchids typically associating with saprotrophic fungi, though some known relationships also with ectomycorrhizal fungi, leaving much to learn about their fungal partners. Didymoplexis belongs to tribe Gastrodieae, which represents one of the largest fully mycoheterotrophic orchid lineages. Although mycorrhizal associations of its sister genus Gastrodia have been relatively well-studied, those of Didymoplexis remain largely unexplored. Here, we used molecular barcoding to analyze fungal associations and stable isotope analysis to elucidate the nutritional strategies of Didymoplexis micradenia, Didymoplexis pallens, and Didymoplexis siamensis in subtropical and tropical forests across Taiwan. In Didymoplexis pallens and Didymoplexis micradenia, most fungal partners were litter-decaying fungi (Mycena, Clitocybula, Marasmius, Gymnopus) with smaller contributions from ectomycorrhizal and rhizoctonia fungi. In Didymoplexis siamensis, ectomycorrhizal fungi dominated, particularly Sebacinales, however, with additional associations with wood-decaying Delicatula. The pattern of carbon and nitrogen isotope enrichments found for the three Didymoplexis species was in the typical range known for fully mycoheterotrophic orchids associated with litter- or wood-decaying fungi. 15N enrichments of all investigated Didymoplexis species distinguished from fully mycoheterotrophic orchids associated with ectomycorrhizal fungi. Despite its ectomycorrhizal association, Didymoplexis siamensis was weakly enriched in 15N and more enriched in 13C than found for exclusively ectomycorrhizal fully mycoheterotrophic orchids. Thus, Didymoplexis siamensis covered its carbon and nitrogen demand obviously through the additional association with wood-decaying Delicatula. These findings enhance our understanding of the diverse fungal associations and physiological ecology of Didymoplexis species in subtropical and tropical ecosystems.
Collapse
Affiliation(s)
- Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan.
| | - Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
- Department of Ecology of Fungi, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Qiao-Yi Xie
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Hui Wu
- Forest Ecology Division, Taiwan Forestry Research Institute, Taipei, 10066, Taiwan
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| |
Collapse
|
3
|
Yagi R, Haraguchi TF, Tayasu I, Suetsugu K. Do exchangeable hydrogens affect the evaluation of partial mycoheterotrophy in orchids? Insights from δ 2H analysis in bulk, α-cellulose, and cellulose nitrate samples. THE NEW PHYTOLOGIST 2024; 243:2430-2441. [PMID: 39081019 DOI: 10.1111/nph.19998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024]
Abstract
To evaluate the nutritional modes of orchids associated with 'rhizoctonia' fungi, analyses of hydrogen (δ2H), carbon (δ13C), and nitrogen (δ15N) stable isotope ratios are usually adopted. However, previous studies have not fully accounted for exchangeable hydrogens, which could affect these evaluations. Here, we performed standard δ13C, δ15N, and δ2H analyses on bulk samples. Additionally, we conducted δ2H analysis on α-cellulose and cellulose nitrate samples to investigate whether the heterogeneity of exchangeable hydrogens among plant species influences the assessment of nutritional modes. The δ2H of orchids were consistently higher than those of surrounding autotrophic plants, irrespective of the three pretreatments. Although the rhizoctonia-associated orchid exhibited lower δ13C, its δ2H was higher than those of the autotrophs. Notably, among all response variables, δ15N and δ2H exhibited high abilities for discriminating the nutritional modes of rhizoctonia-associated orchids. These results indicate that a time-efficient bulk sample analysis is an effective method for evaluating plant nutritional modes, as the heterogeneity of exchangeable hydrogens does not significantly impact the estimation. Using δ15N and δ2H benefits the assessment of partial mycoheterotrophy among rhizoctonia-associated orchids.
Collapse
Affiliation(s)
- Ryuta Yagi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Takashi F Haraguchi
- Biodiversity Research Center, Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 10-4 Koyamotomachi, Neyagawa, Osaka, 572-0088, Japan
| | - Ichiro Tayasu
- Research Institute of Humanity and Nature, 457-4, Motoyama, Kamigamo, Kyoto, 603-8047, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
4
|
Zahn FE, Jiang H, Lee YI, Gebauer G. Mode of carbon gain and fungal associations of Neuwiedia malipoensis within the evolutionarily early-diverging orchid subfamily Apostasioideae. ANNALS OF BOTANY 2024; 134:511-520. [PMID: 38912975 PMCID: PMC11341671 DOI: 10.1093/aob/mcae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/22/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS The earliest-diverging orchid lineage, Apostasioideae, consists only of two genera: Apostasia and Neuwiedia. Previous reports of Apostasia nipponica indicated a symbiotic association with an ectomycorrhiza-forming Ceratobasidiaceae clade and partial utilization of fungal carbon during the adult stage. However, the trophic strategy of Neuwiedia throughout its development remains unidentified. To further improve our understanding of mycoheterotrophy in the Apostasioideae, this study focused on Neuwiedia malipoensis examining both the mycorrhizal association and the physiological ecology of this orchid species across various development stages. METHODS We identified the major mycorrhizal fungi of N. malipoensis protocorm, leafy seedling and adult stages using molecular barcoding. To reveal nutritional resources utilized by N. malipoensis, we compared stable isotope natural abundances (δ13C, δ15N, δ2H, δ18O) of different developmental stages with those of autotrophic reference plants. KEY RESULTS Protocorms exhibited an association with saprotrophic Ceratobasidiaceae rather than ectomycorrhiza-forming Ceratobasidiaceae and the 13C signature was characteristic of their fully mycoheterotrophic nutrition. Seedlings and adults were predominantly associated with saprotrophic fungi belonging to the Tulasnellaceae. While 13C and 2H stable isotope data revealed partial mycoheterotrophy of seedlings, it is unclear to what extent the fungal carbon supply is reduced in adult N. malipoensis. However, the 15N enrichment of mature N. malipoensis suggests partially mycoheterotrophic nutrition. Our data indicated a transition in mycorrhizal partners during ontogenetic development with decreasing dependency of N. malipoensis on fungal nitrogen and carbon. CONCLUSIONS The divergence in mycorrhizal partners between N. malipoensis and A. nipponica indicates different resource acquisition strategies and allows various habitat options in the earliest-diverging orchid lineage, Apostasioideae. While A. nipponica relies on the heterotrophic carbon gain from its ectomycorrhizal fungal partner and thus on forest habitats, N. malipoensis rather relies on own photosynthetic carbon gain as an adult, allowing it to establish in habitats as widely distributed as those where Rhizoctonia fungi occur.
Collapse
Affiliation(s)
- Franziska E Zahn
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Hong Jiang
- Yunnan Laboratory for Conservation of Rare, Endangered & Endemic Forest Plants, National Forestry and Grassland Administration, Yunnan Academy of Forestry and Grassland, Kunming 650201, Yunnan, People’s Republic of China
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental (BayCEER), University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
5
|
Yagame T, Figura T, Tanaka E, Selosse MA, Yukawa T. Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae). MYCORRHIZA 2024; 34:19-31. [PMID: 38381148 DOI: 10.1007/s00572-024-01138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ13C enrichment was significantly higher with both fungal isolates, whereas δ15N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.
Collapse
Affiliation(s)
- Takahiro Yagame
- The Mt. Fuji Institute for Nature and Biology, Showa University, 4562 Kamiyoshida, Fujiyoshida, Yamashi, 403-0005, Japan.
- Division of Academic Resources and Specimens, Hokkaido University Museum, Kita 10-jo, Nishi 8-chome, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, 25243, Průhonice, Czechia
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP, 39, 57 rue Cuvier, F-75005, Paris, France
| | - Eiji Tanaka
- Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP, 39, 57 rue Cuvier, F-75005, Paris, France
- University of Gdańsk, Faculty of Biology, Department of Vertebrate Ecology and Zoology; ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France, Paris, France
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| |
Collapse
|
6
|
Suetsugu K, Ohta T, Tayasu I. Partial mycoheterotrophy in the leafless orchid Eulophia zollingeri specialized on wood-decaying fungi. MYCORRHIZA 2024; 34:33-44. [PMID: 38520554 DOI: 10.1007/s00572-024-01136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024]
Abstract
Although the absence of normal leaves is often considered a sign of full heterotrophy, some plants remain at least partially autotrophic despite their leafless habit. Leafless orchids with green stems and capsules probably represent a late evolutionary stage toward full mycoheterotrophy and serve as valuable models for understanding the pathways leading to this nutritional strategy. In this study, based on molecular barcoding and isotopic analysis, we explored the physiological ecology of the leafless orchid Eulophia zollingeri, which displays green coloration, particularly during its fruiting phase. Although previous studies had shown that E. zollingeri, in its adult stage, is associated with Psathyrellaceae fungi and exhibits high 13C isotope signatures similar to fully mycoheterotrophic orchids, it remained uncertain whether this symbiotic relationship is consistent throughout the orchid's entire life cycle and whether the orchid relies exclusively on mycoheterotrophy for its nutrition during the fruiting season. Our study has demonstrated that E. zollingeri maintains a specialized symbiotic relationship with Psathyrellaceae fungi throughout all life stages. However, isotopic analysis and chlorophyll data have shown that the orchid also engages in photosynthesis to meet its carbon needs, particularly during the fruiting stage. This research constitutes the first discovery of partial mycoheterotrophy in leafless orchids associated with saprotrophic non-rhizoctonia fungi.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan.
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| | - Tamihisa Ohta
- Faculty of Science, Academic Assembly, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, 457-4 Motoyama Kamigamo, Kita-Ku, Kyoto, 603-8047, Japan
| |
Collapse
|
7
|
Suetsugu K. A novel nursery pollination system between a mycoheterotrophic orchid and mushroom-feeding flies. Ecology 2023; 104:e4152. [PMID: 37610832 DOI: 10.1002/ecy.4152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
- Institute for Advanced Research, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse MA. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC PLANT BIOLOGY 2023; 23:422. [PMID: 37700257 PMCID: PMC10496321 DOI: 10.1186/s12870-023-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Collapse
Affiliation(s)
- Julita Minasiewicz
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland.
| | - Adrian Zwolicki
- Faculty of Biology, Department of Vertebrate Ecology and Zoology, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Tomáš Figura
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, Prague, 12844, Czech Republic
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| | - Alžběta Novotná
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institute of Microbiology ASCR, Vídeňská, Praha, 1083, 142 20, Czech Republic
| | - Melissa F Bocayuva
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
| | - Jana Jersáková
- Faculty of Science, University of South Bohemia, Branišovská, České Budějovice, 1760, 37005, Czech Republic
| | - Marc-André Selosse
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Department of Microbiology, Viçosa Federal University (UFV), P. H. Rolfs Street, Viçosa, Minas Gerais, CEP: 36570-900, Brazil
- Evolution, Biodiversité (ISYEB), Institut de Systématique, Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, Paris, CP 39, F-75005, France
| |
Collapse
|
9
|
Suetsugu K, Matsubayashi J. Foliar chlorophyll concentration modulates the degree of fungal exploitation in a rhizoctonia-associated orchid. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4204-4213. [PMID: 35312761 DOI: 10.1093/jxb/erac124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Some green orchids obtain carbon from both mycobionts and photosynthesis at the adult stage. Intriguingly, these orchids can produce albino and, in rare cases, variegated phenotypes. Here, we studied a Platanthera hondoensis population with green, variegated, and albino individuals. Although its closely related Platanthera species are usually associated with non-ectomycorrhizal rhizoctonias, and several studies have failed to find evidence of trophic plasticity in rhizoctonia-associated orchids, variegated and albino P. hondoensis must possess a higher fungal dependency than green P. hondoensis. Therefore, we investigated whether (i) P. hondoensis is associated with non-ectomycorrhizal rhizoctonias and (ii) the degree of mycoheterotrophy (using 13C abundance as a proxy) correlates with the foliar chlorophyll concentration. High-throughput DNA sequencing revealed that all P. hondoensis phenotypes were dominantly associated with a rhizoctonia from Ceratobasidiaceae belonging to a clade distinct from recognized ectomycorrhizal clades. Regression analysis revealed a positive linear relationship between foliar chlorophyll concentration and the degree of mycoheterotrophy. This study strongly suggests that rhizoctonia-associated P. hondoensis can dynamically adjust fungal exploitation in response to photosynthetic carbon levels. Since rhizoctonia is the most common orchid mycorrhizal partner, trophic plasticity may be a widespread adaptive trait in green orchids.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jun Matsubayashi
- Department of Integrated Science and Engineering for Sustainable Societies, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
10
|
Yagame T, Lallemand F, Selosse MA, Funabiki E, Yukawa T. Mycobiont diversity and first evidence of mixotrophy associated with Psathyrellaceae fungi in the chlorophyllous orchid Cremastra variabilis. JOURNAL OF PLANT RESEARCH 2021; 134:1213-1224. [PMID: 34405353 DOI: 10.1007/s10265-021-01337-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Mixotrophy (MX, also called partial mycoheterotrophy) in plants is characterized by isotopic abundances that differ from those of autotrophs. Previous studies have evaluated mycoheterotrophy in MX plants associated with fungi of similar ecological characteristics, but little is known about the differences in the relative abundances of 13C and 15N in an orchid species that associates with several different mycobionts species. Since the chlorophyllous orchid Cremastra variabilis Nakai associates with various fungi with different ecologies, we hypothesized that it may change its relative abundances of 13C and 15N depending on the associated mycobionts. We investigated mycobiont diversity in the chlorophyllous orchid C. variabilis together with the relative abundance of 13C and 15N and morphological underground differentiation (presence or absence of a mycorhizome with fungal colonization). Rhizoctonias (Tulasnellaceae, Ceratobasidiaceae, Sebacinales) were detected as the main mycobionts. High differences in δ13C values (- 34.7 to - 27.4 ‰) among individuals were found, in which the individuals associated with specific Psathyrellaceae showed significantly high relative abundance of 13C. In addition, Psathyrellaceae fungi were always detected on individuals with mycorhizomes. In the present study, MX orchid association with non-rhizoctonia saprobic fungi was confirmed, and the influence of mycobionts on morphological development and on relative abundance of 13C and 15N was discovered. Cremastra variabilis may increase opportunities to gain nutrients from diverse partners, in a bet-hedging plasticity that allows colonization of various environmental conditions.
Collapse
Affiliation(s)
- Takahiro Yagame
- Mizuho Town Museum, 316-5 Komagata Fujiyama, Mizuho, Nishitama, Tokyo, Japan.
| | - Felix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005, Paris, France
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Eriko Funabiki
- The Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-minami, Tottori, 680-8553, Japan
| | - Tomohisa Yukawa
- Tsukuba Botanical Garden, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
| |
Collapse
|
11
|
Leonardi M, Iotti M, Mello A, Vizzini A, Paz-Conde A, Trappe J, Pacioni G. Typification of the Four Most Investigated and Valuable Truffles: Tuber aestivum Vittad., T. borchii Vittad., T. magnatum Picco and T. melanosporum Vittad. CRYPTOGAMIE MYCOL 2021. [DOI: 10.5252/cryptogamie-mycologie2021v42a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marco Leonardi
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| | - Mirco Iotti
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| | - Antonietta Mello
- Istituto per la Protezione Sostenibile delle Piante, CNR, Viale P.A. Mattioli 25, 10125 Torino (Italy)
| | | | | | - James Trappe
- Oregon State University, Department of Botany and Plant Pathology, Corvallis, Oregon 97331 (United States)
| | - Giovanni Pacioni
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila (Italy)
| |
Collapse
|
12
|
Wang D, Jacquemyn H, Gomes SIF, Vos RA, Merckx VSFT. Symbiont switching and trophic mode shifts in Orchidaceae. THE NEW PHYTOLOGIST 2021; 231:791-800. [PMID: 33932029 PMCID: PMC8252101 DOI: 10.1111/nph.17414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 05/15/2023]
Abstract
Mycorrhizal fungi are central to the biology of land plants. However, to what extent mycorrhizal shifts - broad evolutionary transitions in root-associated fungal symbionts - are related to changes in plant trophic modes remains poorly understood. We built a comprehensive DNA dataset of Orchidaceae fungal symbionts and a dated plant molecular phylogeny to test the hypothesis that shifts in orchid trophic modes follow a stepwise pattern, from autotrophy over partial mycoheterotrophy (mixotrophy) to full mycoheterotrophy, and that these shifts are accompanied by switches in fungal symbionts. We estimate that at least 17 independent shifts from autotrophy towards full mycoheterotrophy occurred in orchids, mostly through an intermediate state of partial mycoheterotrophy. A wide range of fungal partners was inferred to occur in the roots of the common ancestor of this family, including 'rhizoctonias', ectomycorrhizal, and wood- or litter-decaying saprotrophic fungi. Phylogenetic hypothesis tests further show that associations with ectomycorrhizal or saprotrophic fungi were most likely a prerequisite for evolutionary shifts towards full mycoheterotrophy. We show that shifts in trophic mode often coincided with switches in fungal symbionts, suggesting that the loss of photosynthesis selects for different fungal communities in orchids. We conclude that changes in symbiotic associations and ecophysiological traits are tightly correlated throughout the diversification of orchids.
Collapse
Affiliation(s)
- Deyi Wang
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population BiologyKU LeuvenKasteelpark Arenberg 31, HeverleeLeuven3001Belgium
| | - Sofia I. F. Gomes
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Rutger A. Vos
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Institute of BiologyLeiden UniversityLeiden2333 BEthe Netherlands
| | - Vincent S. F. T. Merckx
- Naturalis Biodiversity CenterLeiden2332 AAthe Netherlands
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdam1098 XHthe Netherlands
| |
Collapse
|
13
|
Giesemann P, Rasmussen HN, Gebauer G. Partial mycoheterotrophy is common among chlorophyllous plants with Paris-type arbuscular mycorrhiza. ANNALS OF BOTANY 2021; 127:645-653. [PMID: 33547798 PMCID: PMC8052919 DOI: 10.1093/aob/mcab003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/08/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS An arbuscular mycorrhiza is a mutualistic symbiosis with plants as carbon providers for fungi. However, achlorophyllous arbuscular mycorrhizal species are known to obtain carbon from fungi, i.e. they are mycoheterotrophic. These species all have the Paris type of arbuscular mycorrhiza. Recently, two chlorophyllous Paris-type species proved to be partially mycoheterotrophic. In this study, we explore the frequency of this condition and its association with Paris-type arbuscular mycorrhiza. METHODS We searched for evidence of mycoheterotrophy in all currently published 13C, 2H and 15N stable isotope abundance patterns suited for calculations of enrichment factors, i.e. isotopic differences between neighbouring Paris- and Arum-type species. We found suitable data for 135 plant species classified into the two arbuscular mycorrhizal morphotypes. KEY RESULTS About half of the chlorophyllous Paris-type species tested were significantly enriched in 13C and often also enriched in 2H and 15N, compared with co-occurring Arum-type species. Based on a two-source linear mixing model, the carbon gain from the fungal source ranged between 7 and 93 % with ferns > horsetails > seed plants. The seed plants represented 13 families, many without a previous record of mycoheterotrophy. The 13C-enriched chlorophyllous Paris-type species were exclusively herbaceous perennials, with a majority of them thriving on shady forest ground. CONCLUSIONS Significant carbon acquisition from fungi appears quite common and widespread among Paris-type species, this arbuscular mycorrhizal morphotype probably being a pre-condition for developing varying degrees of mycoheterotrophy.
Collapse
Affiliation(s)
- Philipp Giesemann
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| | - Hanne N Rasmussen
- University of Copenhagen, Institute of Geosciences and Natural Resources, Rolighedsvej, Frederiksberg C, Denmark
| | - Gerhard Gebauer
- University of Bayreuth, Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), Bayreuth, Germany
| |
Collapse
|
14
|
Jacquemyn H, Brys R, Waud M, Evans A, Figura T, Selosse MA. Mycorrhizal Communities and Isotope Signatures in Two Partially Mycoheterotrophic Orchids. FRONTIERS IN PLANT SCIENCE 2021; 12:618140. [PMID: 33633765 PMCID: PMC7901878 DOI: 10.3389/fpls.2021.618140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
Partial mycoheterotrophy, the ability of plants to obtain carbon from fungi throughout their life cycle in combination with photosynthesis, appears to be more common within the Plant Kingdom than previously anticipated. Recent studies using stable isotope analyses have indicated that isotope signatures in partially mycoheterotrophic plants vary widely among species, but the relative contributions of family- or species-specific characteristics and the identity of the fungal symbionts to the observed differences remain unclear. Here, we investigated in detail mycorrhizal communities and isotopic signatures in four co-occurring terrestrial orchids (Platanthera chlorantha, Epipactis helleborine, E. neglecta and the mycoheterotrophic Neottia nidus-avis). All investigated species were mycorrhizal generalists (i.e., associated with a large number of fungi simultaneously), but mycorrhizal communities differed significantly between species. Mycorrhizal communities associating with the two Epipactis species consisted of a wide range of fungi belonging to different families, whereas P. chlorantha and N. nidus-avis associated mainly with Ceratobasidiaceae and Sebacinaceae species, respectively. Isotopic signatures differed significantly between both Epipactis species, with E. helleborine showing near autotrophic behavior and E. neglecta showing significant enrichment in both carbon and nitrogen. No significant differences in photosynthesis and stomatal conductance were observed between the two partially mycoheterotrophic orchids, despite significant differences in isotopic signatures. Our results demonstrate that partially mycoheterotrophic orchids of the genus Epipactis formed mycorrhizas with a wide diversity of fungi from different fungal families, but variation in mycorrhizal community composition was not related to isotope signatures and thus transfer of C and N to the plant. We conclude that the observed differences in isotope signatures between E. helleborine and E. neglecta cannot solely be explained by differences in mycorrhizal communities, but most likely reflect a combination of inherent physiological differences and differences in mycorrhizal communities.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rein Brys
- Research Institute for Forest and Nature, Geraardsbergen, Belgium
| | - Michael Waud
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Alexandra Evans
- Department of Biology, Plant Conservation and Population Biology, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
15
|
Suetsugu K, Matsubayashi J. Evidence for mycorrhizal cheating in Apostasia nipponica, an early-diverging member of the Orchidaceae. THE NEW PHYTOLOGIST 2021; 229:2302-2310. [PMID: 33118174 DOI: 10.1111/nph.17049] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/23/2020] [Indexed: 05/12/2023]
Abstract
Most land plants, from liverworts to angiosperms, form mutualistic mycorrhizal symbioses with fungal partners. However, several plants known as mycoheterotrophs exploit fungal partners by reversing the polarity of carbon movement, which usually moves from plant to fungus. We investigated the physiological ecology of a photosynthetic orchid, Apostasia nipponica, which belongs to the first branching group within the Orchidaceae, to improve our understanding of mycoheterotrophic evolution in orchids. The fungal symbionts and nutrition modes of A. nipponica were investigated using molecular barcoding and carbon-13 (13 C) and nitrogen-15 (15 N) measurements, respectively. Community profiling based on a metabarcoding technique revealed that A. nipponica associates with specific Ceratobasidium spp. within ectomycorrhizas-forming clades, whereas isotope analysis revealed that A. nipponica was similar to fully mycoheterotrophic orchids in its 13 C signature and was even more enriched in 15 N than most of the fully mycoheterotrophic orchids that exploit ectomycorrhizal fungi. Our molecular and mass-spectrometric approaches demonstrated, for the first time, that a member of the Apostasioideae, the earliest-diverging lineage of the Orchidaceae, gains carbon through both photosynthesis and fungal cheating (i.e. partial mycoheterotrophy) during the adult stage.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Jun Matsubayashi
- Department of Integrated Science and Engineering for Sustainable Societies, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
16
|
Zeng X, Ni Z, Diao H, Jiang K, Hu C, Shao L, Huang W. Root Endophytic Fungal Community and Carbon and Nitrogen Stable Isotope Patterns Differ among Bletilla Species (Orchidaceae). J Fungi (Basel) 2021; 7:69. [PMID: 33498277 PMCID: PMC7909265 DOI: 10.3390/jof7020069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Orchids of the genus Bletilla are well-known ornamental plants and sources of traditional medicine in Asia that rely on the symbiotic relationship with root endophytic fungi throughout their whole life cycle. However, little is known about their fungal partners, infection pattern, and pathways of carbon gain. We investigated carbon and nitrogen stable isotope patterns in different organs of three Bletilla species, identified the root endophytic fungal community composition, and determined mycorrhizal colonization rates. The three Bletilla species were comprised by a polyphyletic group which belongs to different trophic modes, such as saprotroph, pathotroph, and symbiotroph; however, the dominant species and their abundances varied among Bletilla spp. Mycorrhizal infection rates also varied among Bletilla species, with B. striata (65% ± 25%) being significantly higher than those of B. formosana (35% ± 16%) and B. ochracea (22% ± 13%). Compared with surrounding autotrophic plants, all Bletilla spp. were significantly enriched in 13C with B. striata to a significantly higher level than other two Bletilla species. Among different organs, stems had higher δ13C values, while leaves and flowers had higher δ15N and total N content values across all three species. Our results indicate that the symbiotic relationship of Bletilla and its root endophytic fungi is not strictly specific. Although mycorrhizal infection rates were highly variable, the three Bletilla species had the same infection pattern with hyphae penetrating the cortex cell by the pathway cell. Different Bletilla species have different strategies for C allocation among plant organs. These findings provide new insights into the ecological adaptation of orchids and will contribute to Bletilla germplasm conservation and sustainable utilization.
Collapse
Affiliation(s)
- Xinhua Zeng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ziyi Ni
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
| | - Haixin Diao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
| | - Kai Jiang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Chao Hu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Li Shao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
| | - Weichang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (Z.N.); (H.D.); (K.J.); (C.H.); (L.S.)
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
17
|
Truffles: Biodiversity, Ecological Significances, and Biotechnological Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zeng X, Diao H, Ni Z, Shao L, Jiang K, Hu C, Huang Q, Huang W. Temporal Variation in Community Composition of Root Associated Endophytic Fungi and Carbon and Nitrogen Stable Isotope Abundance in Two Bletilla Species (Orchidaceae). PLANTS (BASEL, SWITZERLAND) 2020; 10:E18. [PMID: 33374219 PMCID: PMC7824424 DOI: 10.3390/plants10010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Mycorrhizae are an important energy source for orchids that may replace or supplement photosynthesis. Most mature orchids rely on mycorrhizae throughout their life cycles. However, little is known about temporal variation in root endophytic fungal diversity and their trophic functions throughout whole growth periods of the orchids. In this study, the community composition of root endophytic fungi and trophic relationships between root endophytic fungi and orchids were investigated in Bletilla striata and B. ochracea at different phenological stages using stable isotope natural abundance analysis combined with molecular identification analysis. We identified 467 OTUs assigned to root-associated fungal endophytes, which belonged to 25 orders in 10 phyla. Most of these OTUs were assigned to saprotroph (143 OTUs), pathotroph-saprotroph (63 OTUs) and pathotroph-saprotroph-symbiotroph (18 OTUs) using FunGuild database. Among these OTUs, about 54 OTUs could be considered as putative species of orchid mycorrhizal fungi (OMF). For both Bletilla species, significant temporal variation was observed in the diversity of root endophytic fungi. The florescence and emergence periods had higher fungal community richness of total species and endemic species than did other periods. Both Bletilla species were dominated by Agaricomycetes and Basidiomycota fungi throughout the whole year; however, their abundances varied between two Bletilla species and among phenological stages. Meanwhile, the ranges of 13C and 15N natural abundance were also highly dynamic across all growth stages of Bletilla species. Compared with the surrounding autotrophic plants, significant 13C enrichments (ε13C) were found across all phenological stages, while significant 15N enrichment in the florescence period and strong 15N depletion during the fruiting period were found for both Bletilla species. We can deduce that both Bletilla species obtained carbon from root endophytic fungi during the whole year. Additionally, the temporal varying tendency of root endophytic fungal diversity was consistent with 13C enrichments, which was also accord with the nutritional requirement of plant.
Collapse
Affiliation(s)
- Xinhua Zeng
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Haixin Diao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Ziyi Ni
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Li Shao
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Kai Jiang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Chao Hu
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
| | - Qingjun Huang
- Shanghai Institute of Technology, Shanghai 201418, China;
| | - Weichang Huang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Chenshan Botanical Garden, Shanghai 201620, China; (X.Z.); (H.D.); (Z.N.); (L.S.); (K.J.); (C.H.)
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Klink S, Giesemann P, Hubmann T, Pausch J. Stable C and N isotope natural abundances of intraradical hyphae of arbuscular mycorrhizal fungi. MYCORRHIZA 2020; 30:773-780. [PMID: 32840665 PMCID: PMC7591432 DOI: 10.1007/s00572-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2020] [Indexed: 05/29/2023]
Abstract
Data for stable C and N isotope natural abundances of arbuscular mycorrhizal (AM) fungi are currently sparse, as fungal material is difficult to access for analysis. So far, isotope analyses have been limited to lipid compounds associated with fungal membranes or storage structures (biomarkers), fungal spores and soil hyphae. However, it remains unclear whether any of these components are an ideal substitute for intraradical AM hyphae as the functional nutrient trading organ. Thus, we isolated intraradical hyphae of the AM fungus Rhizophagus irregularis from roots of the grass Festuca ovina and the legume Medicago sativa via an enzymatic and a mechanical approach. In addition, extraradical hyphae were isolated from a sand-soil mix associated with each plant. All three approaches revealed comparable isotope signatures of R. irregularis hyphae. The hyphae were 13C- and 15N-enriched relative to leaves and roots irrespective of the plant partner, while they were enriched only in 15N compared with soil. The 13C enrichment of AM hyphae implies a plant carbohydrate source, whereby the enrichment was likely reduced by an additional plant lipid source. The 15N enrichment indicates the potential of AM fungi to gain nitrogen from an organic source. Our isotope signatures of the investigated AM fungus support recent findings for mycoheterotrophic plants which are suggested to mirror the associated AM fungi isotope composition. Stable isotope natural abundances of intraradical AM hyphae as the functional trading organ for bi-directional carbon-for-mineral nutrient exchanges complement data on spores and membrane biomarkers.
Collapse
Affiliation(s)
- Saskia Klink
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Philipp Giesemann
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Timo Hubmann
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Johanna Pausch
- Department of Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
20
|
Shao SC, Luo Y, Jacquemyn H. Co-Cultures of Mycorrhizal Fungi Do Not Increase Germination and Seedling Development in the Epiphytic Orchid Dendrobium nobile. FRONTIERS IN PLANT SCIENCE 2020; 11:571426. [PMID: 33193505 PMCID: PMC7644947 DOI: 10.3389/fpls.2020.571426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Orchids are highly dependent on mycorrhizal fungi for seed germination and subsequent growth to a seedling as they provide essential carbon, water, and mineral nutrients to developing seeds. Although there is mounting evidence that orchid seeds are often colonized by multiple fungi simultaneously, most in vitro germination experiments focus on mycorrhizal monocultures and little is known about how mycorrhizal assemblages affect seed germination and growth of seedlings. In this study, we compared the effects of mycorrhizal monocultures and co-cultures on seed germination and seedling growth of the epiphytic orchid Dendrobium nobile. In situ baiting was used to isolate mycorrhizal fungi from protocorms for germination experiments. Germination experiments were conducted under two light regimes for 90 days. In total, five fungal strains were isolated from protocorms of D. nobile, indicating that the species was not highly specific to its fungal partners. Four strains (JC-01, JC-02, JC-04, and JC-05) belonged to the Serendipitaceae and one (JC-03) to the Tulasnellaceae. In vitro germination experiments showed that germination percentages were higher under light-dark conditions than under complete dark conditions, supporting previous findings that light facilitates germination in epiphytic orchids. While all strains were able to induce protocorm formation and growth into the seedling stage, large differences between fungal strains were observed. Co-cultures did not result in significantly higher seed germination percentages and seedling development than monocultures. Taken together, these results demonstrate that effects of fungal assemblages are not predictable from those of component species, and that more work is needed to better understand the role of fungal assemblages determining seed germination and subsequent growth under natural conditions.
Collapse
Affiliation(s)
- Shi-Cheng Shao
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yan Luo
- Gardening and Horticulture Department, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Reiter N, Phillips RD, Swarts ND, Wright M, Holmes G, Sussmilch FC, Davis BJ, Whitehead MR, Linde CC. Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): implications for conservation. ANNALS OF BOTANY 2020; 126:943-955. [PMID: 32574356 PMCID: PMC7539350 DOI: 10.1093/aob/mcaa116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/18/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS In orchid conservation, quantifying the specificity of mycorrhizal associations, and establishing which orchid species use the same fungal taxa, is important for sourcing suitable fungi for symbiotic propagation and selecting sites for conservation translocation. For Caladenia subgenus Calonema (Orchidaceae), which contains 58 threatened species, we ask the following questions. (1) How many taxa of Serendipita mycorrhizal fungi do threatened species of Caladenia associate with? (2) Do threatened Caladenia share orchid mycorrhizal fungi with common Caladenia? (3) How geographically widespread are mycorrhizal fungi associated with Caladenia? METHODS Fungi were isolated from 127 Caladenia species followed by DNA sequencing of the internal transcibed spacer (ITS) sequence locus. We used a 4.1-6 % sequence divergence cut-off range to delimit Serendipita operational taxonomic units (OTUs). We conducted trials testing the ability of fungal isolates to support germination and plant growth. A total of 597 Serendipita isolates from Caladenia, collected from across the Australian continent, were used to estimate the geographic range of OTUs. KEY RESULTS Across the genus, Caladenia associated with ten OTUs of Serendipita (Serendipitaceae) mycorrhizal fungi. Specificity was high, with 19 of the 23 threatened Caladenia species sampled in detail associating solely with OTU A, which supported plants from germination to adulthood. The majority of populations of Caladenia associated with one OTU per site. Fungal sharing was extensive, with 62 of the 79 Caladenia sampled in subgenus Calonema associating with OTU A. Most Serendipita OTUs were geographically widespread. CONCLUSIONS Mycorrhizal fungi can be isolated from related common species to propagate threatened Caladenia. Because of high specificity of most Caladenia species, only small numbers of OTUs typically need to be considered for conservation translocation. When selecting translocation sites, the geographic range of the fungi is not a limiting factor, and using related Caladenia species to infer the presence of suitable fungal OTUs may be feasible.
Collapse
Affiliation(s)
- Noushka Reiter
- Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, Victoria, Australia
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, Australia
| | - Ryan D Phillips
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kattidj Close Kings Park, WA, Australia
| | - Nigel D Swarts
- Royal Tasmanian Botanical Gardens, Queens Domain, Hobart, Tasmania, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Magali Wright
- Royal Tasmanian Botanical Gardens, Queens Domain, Hobart, Tasmania, Australia
| | - Gareth Holmes
- Royal Botanic Gardens Victoria, Corner of Ballarto Road and Botanic Drive, Cranbourne, Victoria, Australia
| | - Frances C Sussmilch
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kattidj Close Kings Park, WA, Australia
| | - Belinda J Davis
- Kings Park Science, Department of Biodiversity Conservation and Attractions, Kattidj Close Kings Park, WA, Australia
| | - Michael R Whitehead
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Celeste C Linde
- Ecology and Evolution, Research School of Biology, ANU College of Science, RN Robertson Building, 46 Sullivans Creek Road, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
22
|
Puliga F, Illice M, Iotti M, Baldo D, Zambonelli A. Tuber iranicum, sp. nov., a truffle species belonging to the Excavatum clade. Mycologia 2020; 112:932-940. [PMID: 32730126 DOI: 10.1080/00275514.2020.1783181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Truffles in the genus Tuber are hypogeus fungi that have a worldwide distribution. Despite this, knowledge about their diversity in the Middle East is very limited. In recent years, large quantities of truffles have been imported from Iran for being sold in Italy. While analyzing certain commercial batches of T. aestivum from Iran, we found some ascomata that resembled T. excavatum but had macro- and micromorphological features that were distinct from this species. They were subglobose, or depressed to slightly irregular, with a conspicuous basal cavity, grayish brown, brown, or pinkish gray, with a minutely papillose peridium. The gleba was pinkish gray in youth, brown at maturity, marbled with cream branched veins. Ascospores were broadly ellipsoid, with an irregular reticulum and distinctive long crests along the longitudinal axis, up to 9 µm high. Analysis of internal transcribed spacer (ITS) and large subunit (LSU) rDNA sequences showed that these specimens form a monphyletic and well-supported taxon within the Excavatum clade. Morphological and molecular analyses supported the proposal of the new species T. iranicum.
Collapse
Affiliation(s)
- Federico Puliga
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44 , 40127, Bologna, Italy
| | - Mirko Illice
- Department of Public Health, Azienda Unità Sanitaria Locale di Bologna, Via Cimarosa 5/2, 40033, Casalecchio di Reno, Bologna, Italy
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, via Vetoio , 67100, Coppito, L'Aquila, Italy
| | - David Baldo
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44 , 40127, Bologna, Italy
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44 , 40127, Bologna, Italy
| |
Collapse
|
23
|
Giesemann P, Rasmussen HN, Liebel HT, Gebauer G. Discreet heterotrophs: green plants that receive fungal carbon through Paris-type arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2020; 226:960-966. [PMID: 31837155 DOI: 10.1111/nph.16367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Philipp Giesemann
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Hanne N Rasmussen
- Department of Geosciences and Nature Resource Management, Section of Forest, Nature and Biomass, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Copenhagen, Denmark
| | - Heiko T Liebel
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Biological Station Murnauer Moos, 82418, Murnau, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| |
Collapse
|
24
|
Shutoh K, Tajima Y, Matsubayashi J, Tayasu I, Kato S, Shiga T, Suetsugu K. Evidence for newly discovered albino mutants in a pyroloid: implication for the nutritional mode in the genus Pyrola. AMERICAN JOURNAL OF BOTANY 2020; 107:650-657. [PMID: 32304099 PMCID: PMC7216931 DOI: 10.1002/ajb2.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/04/2020] [Indexed: 05/31/2023]
Abstract
PREMISE Difficulties in comparing extremely divergent features in fully mycoheterotrophic plants with those in closely related chlorophyllous plants have complicated attempts to reveal the evolutionary patterns and processes of fully mycoheterotrophic plants. Albino mutants of partially mycoheterotrophic plants, generally observed in Orchidaceae, have provided an ideal model for investigating the evolution of mycoheterotrophy within similar genetic backgrounds. In 2018, we found a putative albino population of Pyrola (Ericaceae). Here we aimed to reveal the identity of the albino pyroloid and confirm its fully mycoheterotrophic status. METHODS To reveal the putative albino pyroloid's identity, we examined its morphology and sequenced its chloroplast DNA. In addition, we assessed the trophic status of the putative albino pyroloid by analyzing chlorophyll fluorescence, chlorophyll concentration, and natural 13 C and 15 N abundances. RESULTS We identified albino individuals as P. japonica-otherwise a partially mycoheterotrophic species. We confirmed their albino status by their considerably lower chlorophyll fluorescence and concentrations than those of sympatrically occurring chlorophyllous plants. 13 C abundance in the albino individuals was significantly higher than in the green individuals of P. japonica. CONCLUSIONS This first report of albino mutants from partially mycoheterotrophic species in angiosperms other than orchids will play a valuable role in further studies focused on mycoheterotrophy. For instance, their δ13 C and δ15 N values represent a reference for fully mycoheterotrophic plants in Pyrola. Our findings also indicate the strong dependence of some leafy Pyrola species on fungal C during their entire life cycle.
Collapse
Affiliation(s)
- Kohtaroh Shutoh
- The Hokkaido University MuseumHokkaido UniversityKita 10, Nishi 8, Kita‐kuSapporoHokkaido060‐0810Japan
| | | | - Jun Matsubayashi
- Department of BiogeochemistryJapan Agency for Marine‐Earth Science and Technology2‐15 Natsushima‐choYokosukaKanagawa237‐0061Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature457‐4 Motoyama, KamigamoKita‐kuKyoto603‐8047Japan
| | - Syou Kato
- Faculty of EducationNiigata University2‐8050, IkarashiNishi‐kuNiigata950‐2181Japan
| | - Takashi Shiga
- Faculty of EducationNiigata University2‐8050, IkarashiNishi‐kuNiigata950‐2181Japan
| | - Kenji Suetsugu
- Graduate School of ScienceKobe University1‐1 Rokkodai, Nada‐kuKobeHyogo657‐8501Japan
| |
Collapse
|
25
|
Schneider-Maunoury L, Deveau A, Moreno M, Todesco F, Belmondo S, Murat C, Courty PE, Jąkalski M, Selosse MA. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. THE NEW PHYTOLOGIST 2020; 225:2542-2556. [PMID: 31733103 DOI: 10.1111/nph.16321] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/30/2019] [Indexed: 05/27/2023]
Abstract
Serendipitous findings and studies on Tuber species suggest that some ectomycorrhizal fungi, beyond their complex interaction with ectomycorrhizal hosts, also colonise roots of nonectomycorrhizal plants in a loose way called endophytism. Here, we investigate endophytism of T. melanosporum and T. aestivum. We visualised endophytic T. melanosporum hyphae by fluorescent in situ hybridisation on nonectomycorrhizal plants. For the two Tuber species, microsatellite genotyping investigated the endophytic presence of the individuals whose mating produced nearby ascocarps. We quantified the expression of four T. aestivum genes in roots of endophyted, non-ectomycorrhizal plants. Tuber melanosporum hyphae colonised the apoplast of healthy roots, confirming endophytism. Endophytic Tuber melanosporum and T. aestivum contributed to nearby ascocarps, but only as maternal parents (forming the flesh). Paternal individuals (giving only genes found in meiotic spores of ascocarps) were not detected. Gene expression of T. aestivum in non-ectomycorrhizal plants confirmed a living status. Tuber species, and likely other ectomycorrhizal fungi found in nonectomycorrhizal plant roots in this study, can be root endophytes. This is relevant for the ecology (brûlé formation) and commercial production of truffles. Evolutionarily speaking, endophytism may be an ancestral trait in some ectomycorrhizal fungi that evolved from root endophytes.
Collapse
Affiliation(s)
- Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Aurélie Deveau
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Myriam Moreno
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
| | - Flora Todesco
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Simone Belmondo
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Claude Murat
- INRA, UMR IAM, Laboratory of Excellence ARBRE, Université de Lorraine, 54000, Nancy, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 17 rue Sully, 21000, Dijon, France
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (ISYEB - UMR 7205 - CNRS, MNHN, SU, EPHE), Muséum national d'Histoire naturelle, 57 rue Cuvier, 75005, Paris, France
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
26
|
May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, Figura T, Minasiewicz J, Selosse MA. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. MYCORRHIZA 2020; 30:51-61. [PMID: 31965295 DOI: 10.1007/s00572-020-00932-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/10/2020] [Indexed: 05/04/2023]
Abstract
Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.
Collapse
Affiliation(s)
- Michał May
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marcin Jąkalski
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Alžběta Novotná
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Jennifer Dietel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, D-89081, Ulm, Germany
| | - Félix Lallemand
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44, Prague, Czech Republic
| | - Julita Minasiewicz
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marc-André Selosse
- Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 39, 57 rue Cuvier, F-75005, Paris, France.
| |
Collapse
|
27
|
Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. MYCORRHIZA 2020; 30:5-22. [PMID: 31982950 DOI: 10.1007/s00572-020-00934-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/17/2020] [Indexed: 05/03/2023]
Abstract
Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.
Collapse
Affiliation(s)
- Quentin Favre-Godal
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France.
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Lorène Gourguillon
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| | - Sonia Lordel-Madeleine
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France
| | - Katia Gindro
- Agroscope, Swiss Federal Research Station, Plant Protection, 60 Route de Duiller, PO Box, 1260, Nyon, Switzerland
| | - Patrick Choisy
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| |
Collapse
|
28
|
Sramkó G, Paun O, Brandrud MK, Laczkó L, Molnár A, Bateman RM. Iterative allogamy-autogamy transitions drive actual and incipient speciation during the ongoing evolutionary radiation within the orchid genus Epipactis (Orchidaceae). ANNALS OF BOTANY 2019; 124:481-497. [PMID: 31231754 PMCID: PMC6798847 DOI: 10.1093/aob/mcz103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/19/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS The terrestrial orchid genus Epipactis has become a model system for the study of speciation via transitions from allogamy to autogamy, but close phylogenetic relationships have proven difficult to resolve through Sanger sequencing. METHODS We analysed with restriction site-associated sequencing (RAD-seq) 108 plants representing 29 named taxa that together span the genus, focusing on section Epipactis. Our filtered matrix of 12 543 single nucleotide polymorphisms was used to generate an unrooted network and a rooted, well-supported likelihood tree. We further inferred genetic structure through a co-ancestry heat map and admixture analysis, and estimated inbreeding coefficients per sample. KEY RESULTS The 27 named taxa of the ingroup were resolved as 11 genuine, geographically widespread species: four dominantly allogamous and seven dominantly autogamous. A single comparatively allogamous species, E. helleborine, is the direct ancestor of most of the remaining species, though one of the derived autogams has generated one further autogamous species. An assessment of shared ancestry suggested only sporadic hybridization between the re-circumscribed species. Taxa with the greatest inclination towards autogamy show less, if any, admixture, whereas the gene pools of more allogamous species contain a mixture alleles found in the autogams. CONCLUSIONS This clade is presently undergoing an evolutionary radiation driven by a wide spectrum of genotypic, phenotypic and environmental factors. Epipactis helleborine has also frequently generated many local variants showing inclinations toward autogamy (and occasionally cleistogamy), best viewed as incipient speciation from within the genetic background provided by E. helleborine, which thus becomes an example of a convincingly paraphyletic species. Autogams are often as widespread and ecologically successful as allogams.
Collapse
Affiliation(s)
- Gábor Sramkó
- Department of Botany, University of Debrecen, Egyetem tér, Debrecen, Hungary
- MTA-DE ‘Lendület’ Evolutionary Phylogenomics Research Group, Debrecen, Hungary
- For correspondence. E-mail
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Levente Laczkó
- Department of Botany, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | - Attila Molnár
- Department of Botany, University of Debrecen, Egyetem tér, Debrecen, Hungary
| | | |
Collapse
|
29
|
Polemis E, Konstantinidis G, Fryssouli V, Slavova M, Tsampazis T, Nakkas V, Assyov B, Kaounas V, Zervakis GI. Tuberpulchrosporum sp. nov., a black truffle of the Aestivum clade (Tuberaceae, Pezizales) from the Balkan peninsula. MycoKeys 2019:35-51. [PMID: 30820166 PMCID: PMC6393397 DOI: 10.3897/mycokeys.47.32085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/07/2019] [Indexed: 11/12/2022] Open
Abstract
Knowledge on the diversity of hypogeous sequestrate ascomycetes is still limited in the Balkan Peninsula. A new species of truffle, Tuberpulchrosporum, is described from Greece and Bulgaria. Specimens were collected from habitats dominated by various oak species (i.e. Quercusilex, Q.coccifera, Q.robur) and other angiosperms. They are morphologically characterised by subglobose, ovoid to irregularly lobed, yellowish-brown to dark brown ascomata, usually with a shallow basal cavity and surface with fissures and small, dense, almost flat, trihedral to polyhedral warts. Ascospores are ellipsoid to subfusiform, uniquely ornamented, crested to incompletely reticulate and are produced in (1-)2-8-spored asci. Hair-like, hyaline to light yellow hyphae protrude from the peridium surface. According to the outcome of ITS rDNA sequence analysis, this species forms a distinct well-supported group in the Aestivum clade, with T.panniferum being the closest phylogenetic taxon.
Collapse
Affiliation(s)
- Elias Polemis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece Agricultural University of Athens Athens Greece
| | | | - Vassiliki Fryssouli
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece Agricultural University of Athens Athens Greece
| | - Monica Slavova
- 4 Krivolak Street, Sofia, 1000, Bulgaria Unaffiliated Sofia Bulgaria
| | | | - Vasileios Nakkas
- Konstantinou Davaki 218, Neochoropoulo, 45500 Ioannina, Greece Unaffiliated Ioannina Greece
| | - Boris Assyov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str, Sofia, 1113, Bulgaria Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Vasileios Kaounas
- Sokratous 40, 19016 Artemis, Attica, Greece Unaffiliated Artemis Greece
| | - Georgios I Zervakis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855 Athens, Greece Agricultural University of Athens Athens Greece
| |
Collapse
|
30
|
Halbwachs H, Easton GL, Bol R, Hobbie EA, Garnett MH, Peršoh D, Dixon L, Ostle N, Karasch P, Griffith GW. Isotopic evidence of biotrophy and unusual nitrogen nutrition in soil-dwelling Hygrophoraceae. Environ Microbiol 2018; 20:3573-3588. [PMID: 30105856 PMCID: PMC6849620 DOI: 10.1111/1462-2920.14327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023]
Abstract
Several lines of evidence suggest that the agaricoid, non-ectomycorrhizal members of the family Hygrophoraceae (waxcaps) are biotrophic with unusual nitrogen nutrition. However, methods for the axenic culture and lab-based study of these organisms remain to be developed, so our current knowledge is limited to field-based investigations. Addition of nitrogen, lime or organophosphate pesticide at an experimental field site (Sourhope) suppressed fruiting of waxcap basidiocarps. Furthermore, stable isotope natural abundance in basidiocarps were unusually high in 15 N and low in 13 C, the latter consistent with mycorrhizal nutritional status. Similar patterns were found in waxcap basidiocarps from diverse habitats across four continents. Additional data from 14 C analysis of basidiocarps and 13 C pulse label experiments suggest that these fungi are not saprotrophs but rather biotrophic endophytes and possibly mycorrhizal. The consistently high but variable δ15 N values (10-20‰) of basidiocarps further indicate that N acquisition or processing differ from other fungi; we suggest that N may be derived from acquisition of N via soil fauna high in the food chain.
Collapse
Affiliation(s)
- Hans Halbwachs
- Bavarian Forest National ParkFreyunger Str. 2, 94481, GrafenauGermany
| | - Gary L. Easton
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| | - Roland Bol
- Institute of Bio‐ and Geosciences, Agrosphere (IBG‐3). Forschungszentrum Jülich GmbHWilhelm‐Johnen‐Straße, 52428, JülichGermany
| | - Erik A. Hobbie
- Earth Systems Research Center, Morse HallUniversity of New Hampshire8 College Road, DurhamNH, 03824‐3525USA
| | - Mark H Garnett
- NERC Radiocarbon FacilityScottish Enterprise Technology ParkRankine Avenue, East Kilbride, G75 0QFScotland, UK
| | - Derek Peršoh
- Department of GeobotanyRuhr‐Universität BochumGebäude ND 03/170, Universitätsstraße 150, 44780, BochumGermany
| | - Liz Dixon
- Sustainable Soils and Grassland Systems, Rothamsted ResearchNorth Wyke, Okehampton, Devon, EX20 2SBEngland, UK
| | - Nick Ostle
- Lancaster Environment CentreLancaster UniversityLancaster, LA1 4YQEngland, UK
| | - Peter Karasch
- German Mycological SocietyKirchl 78. D‐94545, HohenauGermany
| | - Gareth W. Griffith
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAdeilad Cledwyn, Penglais, Aberystwyth, Ceredigion, SY23 3DD, WalesUK
| |
Collapse
|
31
|
Suetsugu K, Ohta T, Tayasu I. Partial mycoheterotrophy in the leafless orchid Cymbidium macrorhizon. AMERICAN JOURNAL OF BOTANY 2018; 105:1595-1600. [PMID: 30129024 DOI: 10.1002/ajb2.1142] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/09/2018] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY The evolution of full mycoheterotrophy is one of the most interesting topics within plant evolution. The leafless orchid Cymbidium macrorhizon is often assumed to be fully mycoheterotrophic even though it has a green stem and fruit capsule. Here, we assessed the trophic status of this species by analyzing the chlorophyll content and the natural 13 C and 15 N abundance in the sprouting and the fruiting season. METHODS The chlorophyll content was measured in five sprouting and five fruiting individuals of C. macrorhizon that were co-occurring. In addition, their 13 C and 15 N isotopic signatures were compared with those of neighboring autotrophic and partially mycoheterotrophic reference plants. KEY RESULTS Fruiting individuals of C. macrorhizon were found to contain a remarkable amount of chlorophyll compared to their sprouting counterparts. In addition, the natural abundance of 13 C in the tissues of the fruiting plants was slightly depleted relative to the sprouting ones. Linear two-source mixing model analysis revealed that fruiting C. macrorhizon plants obtained approximately 73.7 ± 2.0% of their total carbon from their mycorrhizal fungi when the sprouting individuals were used as the 100% carbon gain standard. CONCLUSIONS Our results indicated that despite its leafless status, fruiting plants of C. macrorhizon were capable of fixing significant quantities of carbon. Considering the autotrophic carbon gain increases during the fruiting season, its photosynthetic ability may contribute to fruit and seed production. These results indicate that C. macrorhizon should, therefore, be considered a partially mycoheterotrophic species rather than fully mycoheterotrophic, at least during the fruiting stage.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tamihisa Ohta
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
- Environmental Biology and Chemistry, Graduate School of Science and Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Ichiro Tayasu
- Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8047, Japan
| |
Collapse
|
32
|
Schweiger JM, Bidartondo MI, Gebauer G. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julienne M.‐I. Schweiger
- Laboratory of Isotope BiogeochemistryBayreuth Center of Ecology and Environmental Research (BayCEER)University of Bayreuth Bayreuth Germany
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College London London UK
- Royal Botanic GardensKew Richmond UK
| | - Gerhard Gebauer
- Laboratory of Isotope BiogeochemistryBayreuth Center of Ecology and Environmental Research (BayCEER)University of Bayreuth Bayreuth Germany
| |
Collapse
|
33
|
Jacquemyn H, Waud M, Brys R, Lallemand F, Courty PE, Robionek A, Selosse MA. Mycorrhizal Associations and Trophic Modes in Coexisting Orchids: An Ecological Continuum between Auto- and Mixotrophy. FRONTIERS IN PLANT SCIENCE 2017; 8:1497. [PMID: 28912791 PMCID: PMC5583604 DOI: 10.3389/fpls.2017.01497] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/14/2017] [Indexed: 05/03/2023]
Abstract
Two distinct nutritional syndromes have been described in temperate green orchids. Most orchids form mycorrhizas with rhizoctonia fungi and are considered autotrophic. Some orchids, however, associate with fungi that simultaneously form ectomycorrhizas with surrounding trees and derive their carbon from these fungi. This evolutionarily derived condition has been called mixotrophy or partial mycoheterotrophy and is characterized by 13C enrichment and high N content. Although it has been suggested that the two major nutritional syndromes are clearly distinct and tightly linked to the composition of mycorrhizal communities, recent studies have challenged this assumption. Here, we investigated whether mycorrhizal communities and nutritional syndromes differed between seven green orchid species that co-occur under similar ecological conditions (coastal dune slacks). Our results showed that mycorrhizal communities differed significantly between orchid species. Rhizoctonia fungi dominated in Dactylorhiza sp., Herminium monorchis, and Epipactis palustris, which were autotrophic based on 13C and N content. Conversely, Liparis loeselii and Epipactis neerlandica associated primarily with ectomycorrhizal fungi but surprisingly, 13C and N content supported mixotrophy only in E. neerlandica. This, together with the finding of some ectomycorrhizal fungi in rhizoctonia-associated orchids, suggests that there exists an ecological continuum between the two syndromes. The presence of a large number of indicator species associating with individual orchid species further confirms previous findings that mycorrhizal fungi may be important factors driving niche-partitioning in terrestrial orchids and therefore contribute to orchid coexistence.
Collapse
Affiliation(s)
- Hans Jacquemyn
- Plant Conservation and Population Biology, Department of Biology, KU LeuvenLeuven, Belgium
| | - Michael Waud
- Plant Conservation and Population Biology, Department of Biology, KU LeuvenLeuven, Belgium
| | - Rein Brys
- Research Institute for Forest and NatureGeraardsbergen, Belgium
| | - Félix Lallemand
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne UniversitésParis, France
| | | | - Alicja Robionek
- The Laboratory of Freshwater Ecology, Department of Plant Ecology, University of GdańskGdańsk, Poland
- Department of Plant Taxonomy and Nature Conservation, University of GdańskGdańsk, Poland
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité, UMR 7205, CNRS, MNHN, UPMC, EPHE, Muséum National d’Histoire Naturelle, Sorbonne UniversitésParis, France
- Department of Plant Taxonomy and Nature Conservation, University of GdańskGdańsk, Poland
| |
Collapse
|