1
|
Li J, Su S. Abscission in plants: from mechanism to applications. ADVANCED BIOTECHNOLOGY 2024; 2:27. [PMID: 39883313 PMCID: PMC11740850 DOI: 10.1007/s44307-024-00033-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 01/31/2025]
Abstract
Abscission refers to the natural separation of plant structures from their parent plants, regulated by external environmental signals or internal factors such as stress and aging. It is an advantageous process as it enables plants to shed unwanted organs, thereby regulating nutrient allocation and ensuring the dispersal of fruits and seeds from the parent. However, in agriculture and horticulture, abscission can severely reduce crop quality and yield. In this review, we summarize the recent advances in plant abscission from the perspectives of developmental and molecular biology, emphasizing the diverse regulatory networks across different plant lineages, from model plants to crops. The sophisticated process of plant abscission involves several overlapping steps, including the differentiation of the abscission zone, activation of abscission, tissue detachment, and formation of a protective layer. Finally, we discuss the potential applications of physiological modifications and genetic manipulations of plant abscission in sustainable agriculture in the future.
Collapse
Affiliation(s)
- Jiahuizi Li
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| | - Shihao Su
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Singh P, Maurya SK, Singh D, Sane AP. The rose INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE genes, RbIDL1 and RbIDL4, regulate abscission in an ethylene-responsive manner. PLANT CELL REPORTS 2023; 42:1147-1161. [PMID: 37069436 DOI: 10.1007/s00299-023-03017-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/03/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE RbIDL1 and RbIDL4 are up-regulated in an ethylene-responsive manner during rose petal abscission and restored the Arabidopsis ida-2 mutant abscission defect suggesting functional conservation of the IDA pathway in rose. Abscission is an ethylene-regulated developmental process wherein plants shed unwanted organs in a controlled manner. The INFLORESCENCE DEFICIENT IN ABSCISSION family has been identified as a key regulator of abscission in Arabidopsis, encoding peptides that interact with receptor-like kinases to activate abscission. Loss of function ida mutants show abscission deficiency in Arabidopsis. Functional conservation of the IDA pathway in other plant abscission processes is a matter of interest given the discovery of these genes in several plants. We have identified four members of the INFLORESCENCE DEFICIENT IN ABSCISSION-LIKE family from the ethylene-sensitive, early-abscising fragrant rose, Rosa bourboniana. All four are conserved in sequence and possess well-defined PIP, mIDa and EPIP motifs. Three of these, RbIDL1, RbIDL2 and RbIDL4 show a three-fourfold increase in transcript levels in petal abscission zones (AZ) during ethylene-induced petal abscission as well as natural abscission. The genes are also expressed in other floral tissues but respond differently to ethylene in these tissues. RbIDL1 and RbIDL4, the more prominently expressed IDL genes in rose, can complement the abscission defect of the Arabidopsis ida-2 mutant; while, promoters of both genes can drive AZ-specific expression in an ethylene-responsive manner even in Arabidopsis silique AZs indicating recognition of AZ-specific and ethylene-responsive cis elements in their promoters by the abscission machinery of rose as well as Arabidopsis.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Kumar Maurya
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Botany, Kishori Raman (PG) College, Mathura, India
| | - Deepika Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Wu Z, Huang L, Huang F, Lu G, Wei S, Liu C, Deng H, Liang G. Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
4
|
Boualem A, Berthet S, Devani RS, Camps C, Fleurier S, Morin H, Troadec C, Giovinazzo N, Sari N, Dogimont C, Bendahmane A. Ethylene plays a dual role in sex determination and fruit shape in cucurbits. Curr Biol 2022; 32:2390-2401.e4. [PMID: 35525245 DOI: 10.1016/j.cub.2022.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.
Collapse
Affiliation(s)
- Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Serge Berthet
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Celine Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Sebastien Fleurier
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France
| | - Nathalie Giovinazzo
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Nebahat Sari
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Catherine Dogimont
- INRAE GAFL, Génétique et Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
| |
Collapse
|
5
|
Fu J, Zhang C, Liu Y, Pang T, Dong B, Gao X, Zhu Y, Zhao H. Transcriptomic analysis of flower opening response to relatively low temperatures in Osmanthus fragrans. BMC PLANT BIOLOGY 2020; 20:337. [PMID: 32677959 PMCID: PMC7367400 DOI: 10.1186/s12870-020-02549-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans Lour.) is one of the top ten traditional ornamental flowers in China. The flowering time of once-flowering cultivars in O. fragrans is greatly affected by the relatively low temperature, but there are few reports on its molecular mechanism to date. A hypothesis had been raised that genes related with flower opening might be up-regulated in response to relatively low temperature in O. fragrans. Thus, our work was aimed to explore the underlying molecular mechanism of flower opening regulated by relatively low temperature in O. fragrans. RESULTS The cell size of adaxial and abaxial petal epidermal cells and ultrastructural morphology of petal cells at different developmental stages were observed. The cell size of adaxial and abaxial petal epidermal cells increased gradually with the process of flower opening. Then the transcriptomic sequencing was employed to analyze the differentially expressed genes (DEGs) under different number of days' treatments with relatively low temperatures (19 °C) or 23 °C. Analysis of DEGs in Gene Ontology analysis showed that "metabolic process", "cellular process", "binding", "catalytic activity", "cell", "cell part", "membrane", "membrane part", "single-organism process", and "organelle" were highly enriched. In KEGG analysis, "metabolic pathways", "biosynthesis of secondary metabolites", "plant-pathogen interaction", "starch and sucrose metabolism", and "plant hormone signal transduction" were the top five pathways containing the greatest number of DEGs. The DEGs involved in cell wall metabolism, phytohormone signal transduction pathways, and eight kinds of transcription factors were analyzed in depth. CONCLUSIONS Several unigenes involved in cell wall metabolism, phytohormone signal transduction pathway, and transcription factors with highly variable expression levels between different temperature treatments may be involved in petal cell expansion during flower opening process in response to the relatively low temperature. These results could improve our understanding of the molecular mechanism of relatively-low-temperature-regulated flower opening of O. fragrans, provide practical information for the prediction and regulation of flowering time in O. fragrans, and ultimately pave the way for genetic modification in O. fragrans.
Collapse
Affiliation(s)
- Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yucheng Liu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Tianhong Pang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Bin Dong
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Xiaoyue Gao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Yimin Zhu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China
| | - Hongbo Zhao
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, School of Landscape Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, P.R. China.
| |
Collapse
|
6
|
Singh P, Singh AP, Tripathi SK, Kumar V, Sane AP. Petal abscission in roses is associated with the activation of a truncated version of the animal PDCD4 homologue, RbPCD1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110242. [PMID: 31521226 DOI: 10.1016/j.plantsci.2019.110242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Abscission is a developmental process that leads to shedding of organs not needed by the plant. Apart from wall hydrolysis, the cells of the abscission zone (AZ) are also believed to undergo programmed cell death (PCD). We show that ethylene-induced petal abscission in Rosa bourboniana is accompanied with the activation of RbPCD1 (PROGRAMMED CELL DEATH LIKE 1) encoding a protein of 78 amino acids. Its expression increases during natural and ethylene-induced petal abscission. Its transcription in most tissues is up-regulated by ethylene. RbPCD1 shows similarity to the N-terminal domain of animal PDCD4 (PROGRAMMED CELL DEATH PROTEIN 4) proteins that are activated during apoptosis and function as transcriptional and translational repressors. RbPCD1 resides in the nucleus and cytoplasm and acts as a transcriptional repressor. Constitutive expression of RbPCD1 in transgenic Arabidopsis is seedling lethal. Heat-induced expression of RbPCD1 under the soybean heat-shock promoter affects leaf function, inflorescence development, silique formation, seed yield and reduces survival. Nuclear localization of RbPCD1 is necessary for manifestation of its effects. RbPCD1 may be necessary to mediate some of the ethylene-induced changes during abscission and senescence in specific tissues.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amar Pal Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Siddharth Kaushal Tripathi
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India
| | - Vinod Kumar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Han Y, Yong X, Yu J, Cheng T, Wang J, Yang W, Pan H, Zhang Q. Identification of Candidate Adaxial-Abaxial-Related Genes Regulating Petal Expansion During Flower Opening in Rosa chinensis "Old Blush". FRONTIERS IN PLANT SCIENCE 2019; 10:1098. [PMID: 31552079 PMCID: PMC6747050 DOI: 10.3389/fpls.2019.01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Petal expansion is the main process by which flower opening occurs in roses (Rosa chinensis). Although the regulation of leaf expansion has been extensively studied, little is known about the mechanisms controlling petal expansion. The regulation of leaf dorsoventral (adaxial-abaxial) polarity is important for blade expansion and morphogenesis, but the mechanisms involved adaxial-abaxial regulation in petals are unknown. We found that auxin, a key hormonal regulator of leaf adaxial-abaxial patterning, is unevenly distributed in rose petals. The transcriptomes of the adaxial and abaxial petal tissues were sequenced at three developmental stages during flower opening. Genes that were differentially expressed between the two tissues were filtered for those known to be involved in petal expansion and phytohormone biosynthesis, transport, and signaling, revealing potential roles in petal expansion, especially auxin pathway genes. Using a weighted gene coexpression network analysis (WGCNA), we identified two gene modules that may involve in adaxial-abaxial regulation, 21 and five hub genes have been found respectively. The qRT-PCR validation results were consistent with the RNA-seq data. Based on these findings, we propose a simple network of adaxial-abaxial-related genes that regulates petal expansion in R. chinensis "Old Blush." For the first time, we report the adaxial-abaxial transcriptional changes that occur during petal expansion, providing a reference for the study of the regulation of polarity in plant development.
Collapse
Affiliation(s)
- Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jiayao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
8
|
Singh P, Singh AP, Sane AP. Differential and reciprocal regulation of ethylene pathway genes regulates petal abscission in fragrant and non-fragrant roses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:330-339. [PMID: 30824012 DOI: 10.1016/j.plantsci.2018.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The fragrant rose, Rosa bourboniana, is highly sensitive to ethylene and shows rapid petal abscission (within 16-18 h) while the non-fragrant hybrid rose, R. hybrida, shows delayed abscission (50-52 h) due to reduced ethylene sensitivity. To understand the molecular basis governing these differences, all components of the ethylene pathway (biosynthesis/ receptor/signalling) were studied for expression during abscission. Transcript accumulation of most ethylene biosynthesis genes (ACS/ACO families) increased rapidly in petal abscission zones of R. bourboniana within 4-8 h of ethylene treatment. The expression of most receptor and signalling genes encoding CTRs, EIN2 and EIN3/EIL homologues also followed similar kinetics. Under natural field conditions where abscission takes longer, there was a temporal delay in transcript accumulation of most ethylene pathway genes while some biosynthesis genes (showing reduced ethylene sensitivity) were more strongly up-regulated by abscission cues. In contrast, in R. hybrida where even ethylene-induced abscission is considerably delayed, transcript accumulation of most ethylene biosynthesis and signalling genes was, surprisingly, reduced by ethylene and showed an opposite regulation compared to R. bourboniana. The results suggest that differential and reciprocal regulation of ethylene pathway is one of the major reasons for differences in petal abscission and vase-life between Rosa bourboniana and R. hybrida.
Collapse
Affiliation(s)
- Priya Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amar Pal Singh
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR), Lucknow, 226001, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (CSIR), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Fu C, Wang F, Liu W, Liu D, Li J, Zhu M, Liao Y, Liu Z, Huang H, Zeng X, Ma X. Transcriptomic Analysis Reveals New Insights into High-Temperature-Dependent Glume-Unclosing in an Elite Rice Male Sterile Line. FRONTIERS IN PLANT SCIENCE 2017; 8:112. [PMID: 28261226 PMCID: PMC5306291 DOI: 10.3389/fpls.2017.00112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Glume-unclosing after anthesis is a widespread phenomenon in hybrid rice and also a maternal hereditary trait. The character of Glume-unclosing in rice male sterile lines also seriously influences germination rate and the commercial quality of hybrid rice seeds. We validated that the type of glume-unclosing after anthesis in the elite rice thermo-sensitive genic male sterile (TGMS) line RGD-7S was caused by high temperature. Transcriptomic sequencing of rice panicles was performed to explore the change of transcript profiles under four conditions: pre- and post-anthesis under high temperature (HRGD0 and HRGD1), and pre- and post-anthesis under low temperature (LRGD0 and LRGD1). We identified a total of 14,540 differentially expressed genes (DEGs) including some heat shock factors (HSFs) across the four samples. We found that more genes were up-regulated than down-regulated in the sample pair HRGD1vsHRGD0. These up-regulated genes were significantly enriched in the three biological processes of carbohydrate metabolism, response to water and cell wall macromolecular metabolism. Simultaneously, we also found that the HSF gene OsHsfB1 was specially up-regulated in HRGD1vsHRGD0. However, the down-regulated DEGs in LRGD1vsLRGD0 were remarkably clustered in the biological process of carbohydrate metabolism. This suggests that carbohydrate metabolism may play a key role in regulation of glume-unclosing under high temperature in RGD-7S. We also analyzed the expression pattern of genes enriched in carbohydrate metabolism and several HSF genes under different conditions and provide new insights into the cause of rice glume-unclosing.
Collapse
Affiliation(s)
- Chongyun Fu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Feng Wang
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Wuge Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Jinhua Li
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Manshan Zhu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Yilong Liao
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Zhenrong Liu
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
| | - Huijun Huang
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Xueqin Zeng
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| | - Xiaozhi Ma
- Rice Research Institute, Guangdong Academy of Agricultural SciencesGuangzhou, China
- Guangdong Provincial Key Laboratory of New Technology in Rice BreedingGuangzhou, China
| |
Collapse
|
10
|
Trivellini A, Cocetta G, Hunter DA, Vernieri P, Ferrante A. Spatial and temporal transcriptome changes occurring during flower opening and senescence of the ephemeral hibiscus flower, Hibiscus rosa-sinensis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5919-5931. [PMID: 27591432 PMCID: PMC5091337 DOI: 10.1093/jxb/erw295] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flowers are complex systems whose vegetative and sexual structures initiate and die in a synchronous manner. The rapidity of this process varies widely in flowers, with some lasting for months while others such as Hibiscus rosa-sinensis survive for only a day. The genetic regulation underlying these differences is unclear. To identify key genes and pathways that coordinate floral organ senescence of ephemeral flowers, we identified transcripts in H. rosa-sinensis floral organs by 454 sequencing. During development, 2053 transcripts increased and 2135 decreased significantly in abundance. The senescence of the flower was associated with increased abundance of many hydrolytic genes, including aspartic and cysteine proteases, vacuolar processing enzymes, and nucleases. Pathway analysis suggested that transcripts altering significantly in abundance were enriched in functions related to cell wall-, aquaporin-, light/circadian clock-, autophagy-, and calcium-related genes. Finding enrichment in light/circadian clock-related genes fits well with the observation that hibiscus floral development is highly synchronized with light and the hypothesis that ageing/senescence of the flower is orchestrated by a molecular clock. Further study of these genes will provide novel insight into how the molecular clock is able to regulate the timing of programmed cell death in tissues.
Collapse
Affiliation(s)
- Alice Trivellini
- Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| | - Donald A Hunter
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, Università degli Studi di Pisa, Pisa, Italy
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi Milano, Milan, Italy
| |
Collapse
|
11
|
Domingos S, Scafidi P, Cardoso V, Leitao AE, Di Lorenzo R, Oliveira CM, Goulao LF. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways. FRONTIERS IN PLANT SCIENCE 2015; 6:457. [PMID: 26157448 PMCID: PMC4476107 DOI: 10.3389/fpls.2015.00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/08/2015] [Indexed: 05/11/2023]
Abstract
Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways.
Collapse
Affiliation(s)
- Sara Domingos
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Pietro Scafidi
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Vania Cardoso
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Antonio E. Leitao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| | - Rosario Di Lorenzo
- Dipartimento di Scienze Agrarie e Forestali, University of PalermoPalermo, Italy
| | - Cristina M. Oliveira
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
| | - Luis F. Goulao
- Agri4Safe-BioTrop, Instituto de Investigação Científica Tropical I.P., LisbonPortugal
| |
Collapse
|
12
|
Kumari A, Kumar J, Kumar A, Chaudhury A, Singh SP. Grafting triggers differential responses between scion and rootstock. PLoS One 2015; 10:e0124438. [PMID: 25874958 PMCID: PMC4395316 DOI: 10.1371/journal.pone.0124438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 03/13/2015] [Indexed: 02/06/2023] Open
Abstract
Grafting is a well-established practice to facilitate asexual propagation in horticultural and agricultural crops. It has become a method for studying molecular aspects of root-to-shoot and/or shoot-to-root signaling events. The objective of this study was to investigate differences in gene expression between the organs of the scion and rootstock of a homograft (Arabidopsis thaliana). MapMan and Gene Ontology enrichment analysis revealed differentially expressed genes from numerous functional categories related to stress responses in the developing flower buds and leaves of scion and rootstock. Meta-analysis suggested induction of drought-type responses in flower buds and leaves of the scion. The flower buds of scion showed over-representation of the transcription factor genes, such as Homeobox, NAC, MYB, bHLH, B3, C3HC4, PLATZ etc. The scion leaves exhibited higher accumulation of the regulatory genes for flower development, such as SEPALLATA 1-4, Jumonji C and AHL16. Differential transcription of genes related to ethylene, gibberellic acid and other stimuli was observed between scion and rootstock. The study is useful in understanding the molecular basis of grafting and acclimation of scion on rootstock.
Collapse
Affiliation(s)
- Anita Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ashok Chaudhury
- Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Sudhir P. Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- * E-mail:
| |
Collapse
|
13
|
Sundaresan S, Philosoph-Hadas S, Riov J, Mugasimangalam R, Kuravadi NA, Kochanek B, Salim S, Tucker ML, Meir S. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission. FRONTIERS IN PLANT SCIENCE 2015; 6:1258. [PMID: 26834766 PMCID: PMC4712312 DOI: 10.3389/fpls.2015.01258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/24/2015] [Indexed: 05/19/2023]
Abstract
Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession.
Collapse
Affiliation(s)
- Srivignesh Sundaresan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Sonia Philosoph-Hadas
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Joseph Riov
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of JerusalemRehovot, Israel
| | - Raja Mugasimangalam
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Nagesh A. Kuravadi
- Department of Bioinformatics, QTLomics Technologies Pvt. LtdBangalore, India
| | - Bettina Kochanek
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Shoshana Salim
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Shimon Meir
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani CenterBet-Dagan, Israel
- *Correspondence: Shimon Meir
| |
Collapse
|