1
|
Hosseini R, Heidari M. Impact of drought stress on biochemical and molecular responses in lavender ( Lavandula angustifolia Mill.): effects on essential oil composition and antibacterial activity. FRONTIERS IN PLANT SCIENCE 2025; 16:1506660. [PMID: 40271444 PMCID: PMC12014543 DOI: 10.3389/fpls.2025.1506660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Drought stress significantly influences the physiological, biochemical, and molecular processes in plants, directly impacting their growth and defense mechanisms. This study evaluates the response of Lavandula angustifolia (lavender) to different levels of water deficit, with field capacity (FC) treatments set at 20%, 40%, 60%, and 80%. We assessed various biochemical parameters, including protein content, chlorophyll a and b levels, flavonoid and phenolic content, and antioxidant activity, to determine how drought stress affects lavender's primary and secondary metabolism. As water availability decreased, we observed a reduction in total protein and chlorophyll content, while the highest levels of flavonoids, phenolics, and antioxidant activity were recorded in control plants at 80% FC. Gene expression analysis of key terpene synthase genes revealed differential expression patterns, with linalool synthase and α-pinene synthase peaking at 40% FC, and 1,8-cineole synthase and β-phellandrene synthase reaching their highest activity under severe drought (20% FC). Despite this, a clear correlation between gene expression and metabolite accumulation in essential oils was not observed. Drought-induced changes in essential oil composition were associated with enhanced antibacterial activity, particularly against foodborne Gram-positive and Gram-negative bacteria, suggesting that water stress can modulate the therapeutic potential of lavender oil.
Collapse
Affiliation(s)
- Ramin Hosseini
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Forestry and Forest Tree Breeding Department, Georg-August University, Göttingen, Germany
| | - Mahsa Heidari
- Biotechnology Department, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
2
|
Sharma A, Dheer P, Rautela I, Thapliyal P, Thapliyal P, Bajpai AB, Sharma MD. A review on strategies for crop improvement against drought stress through molecular insights. 3 Biotech 2024; 14:173. [PMID: 38846012 PMCID: PMC11150236 DOI: 10.1007/s13205-024-04020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The demand for food goods is rising along with the world population growth, which is directly related to the yield of agricultural crops around the world. However, a number of environmental factors, including floods, salinity, moisture, and drought, have a detrimental effect on agricultural production around the world. Among all of these stresses, drought stress (DS) poses a constant threat to agricultural crops and is a significant impediment to global agricultural productivity. Its potency and severity are expected to increase in the future years. A variety of techniques have been used to generate drought-resistant plants in order to get around this restriction. Different crop plants exhibit specific traits that contribute to drought resistance (DR), such as early flowering, drought escape (DE), and leaf traits. We are highlighting numerous methods that can be used to overcome the effects of DS in this review. Agronomic methods, transgenic methods, the use of sufficient fertilizers, and molecular methods such as clustered regularly interspaced short palindromic repeats (CRISPRs)-associated nuclease 9 (Cas9), virus-induced gene silencing (VIGS), quantitative trait loci (QTL) mapping, microRNA (miRNA) technology, and OMICS-based approaches make up the majority of these techniques. CRISPR technology has rapidly become an increasingly popular choice among researchers exploring natural tolerance to abiotic stresses although, only a few plants have been produced so far using this technique. In order to address the difficulties imposed by DS, new plants utilizing the CRISPR technology must be developed.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248001 India
| | - Pallavi Dheer
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| | - Indra Rautela
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Preeti Thapliyal
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, Uttarakhand 248001 India
| | - Priya Thapliyal
- Department of Biochemistry, H.N.B. Garhwal (A Central) University, Srinagar, Uttarakhand 246174 India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun, Uttarakhand 248001 India
| | - Manish Dev Sharma
- Department of Biotechnology, School of Basic and Applied Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001 India
| |
Collapse
|
3
|
Lin Y, Liu S, Fang X, Ren Y, You Z, Xia J, Hakeem A, Yang Y, Wang L, Fang J, Shangguan L. The physiology of drought stress in two grapevine cultivars: Photosynthesis, antioxidant system, and osmotic regulation responses. PHYSIOLOGIA PLANTARUM 2023; 175:e14005. [PMID: 37882275 DOI: 10.1111/ppl.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Drought stress impedes viticultural plant growth and development by modifying various metabolic pathways. However, the regulatory network response underlying drought stress is not yet clear. In this study, the leaves and roots of "Shine Muscat" ("SM," Vitis labruscana × Vitis vinifera) and "Thompson Seedless" ("TS," V. vinifera L. cv.) were subjected to drought stress to study the regulatory network used by drought stress. Morphophysiological results showed that the malondialdehyde content after 28 days of drought stress increased more significantly in "TS" than "SM." Furthermore, the multiomics analysis studies showed that a total of 3036-6714 differentially expressed genes and 379-385 differentially abundant metabolites were identified in "SM" and "TS" grapevine cultivars under drought stress. Furthermore, the retained intron was the major form of differential alternative splicing event under drought stress. The photosynthesis pathway, antioxidant system, plant hormone signal transduction, and osmotic adjustment were the primary response systems in the two grapevine cultivars under drought stress. We have identified GRIK1, RFS2, and LKR/SDH as the hub genes in the coexpression network of drought stress. In addition, the difference in the accumulation of pheophorbide-a reveals different drought resistance mechanisms in the two grapevine cultivars. Our study explained the difference in drought response between cultivars and tissues and identified drought stress-responsive genes, which provides reference data for further understanding the regulatory network of drought tolerance in grapevine.
Collapse
Affiliation(s)
- YiLing Lin
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Siyu Liu
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Xiang Fang
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
- Agriculture and Horticulture Department, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Yanhua Ren
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Zhijie You
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Jiaxin Xia
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Abdul Hakeem
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Yuxian Yang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Lingyu Wang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Jinggui Fang
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| | - Lingfei Shangguan
- Horticulture Department, Nanjing Agricultural University, Nanjing, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, China
| |
Collapse
|
4
|
Hussain T, Asrar H, Zhang W, Liu X. The combination of salt and drought benefits selective ion absorption and nutrient use efficiency of halophyte Panicum antidotale. FRONTIERS IN PLANT SCIENCE 2023; 14:1091292. [PMID: 37152144 PMCID: PMC10160469 DOI: 10.3389/fpls.2023.1091292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Soil salinity and water deficit often occur concurrently, but understanding their combined effects on plants' ion regulation is limited. With aim to identify if introducing drought with salinity alleviates salt stress's ionic effects, Panicum antidotale - a halophytic grass- was grown in the presence of single and combined stressors, i.e., drought and salt (low and high). Regulation of cations and anions along with the antioxidant capacity and modifications in leaf anatomy were investigated. Results showed a combination of low salt and drought minimally affected plant (dry) mass by improving the selective ions absorption and nutrient use efficiencies. The lowest ratio for efficiency of photosystem II and carbon assimilation (ΦPSII/ΦCO2) suggested less generation of reactive oxygen species, which were probably detoxified with constitutively performing antioxidant enzymes. In contrast, the combination of high salinity and drought escalated the adverse effects caused due to individual stressors. The selective ion absorption increased, but the non-selective ions transport caused an ionic imbalance indicating the highest ratio of Na+/K+. Although the area of mesophyll increased, a reduction in epidermis (cell number and area) predicted a mechanical injury prone to water loss in these plants. The compromised activity of antioxidant enzymes also suggested treatment-induced oxidative damage. Yet, the synergistic interaction between high salinity and drought was not detrimental to the survival of P. antidotale. Therefore, we suggest planting this grass in habitats with harsh environmental conditions to meet the increasing fodder demands without compromising agricultural lands' productivity.
Collapse
Affiliation(s)
- Tabassum Hussain
- CAS Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
- *Correspondence: Tabassum Hussain, ; Xiaojing Liu,
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Wensheng Zhang
- CAS Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaojing Liu
- CAS Engineering Laboratory for Efficient Utilization of Saline Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Tabassum Hussain, ; Xiaojing Liu,
| |
Collapse
|
5
|
Cao S, Shi L, Shen Y, He L, Meng X. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 2022; 10:e14336. [PMID: 36353606 PMCID: PMC9639429 DOI: 10.7717/peerj.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Saposhnikovia divaricata is a traditional Chinese herb that mainly grows in arid grasslands and strongly adapts to various stresses. Drought is not only a major abiotic stress factor but also a typical feature conducive to producing high-quality medicinal material. The present study investigated by treating S. divaricata plants with polyethylene glycol (PEG-6000). Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) identified 146 compounds from the roots of S. divaricata, among which seven primary metabolites and 28 secondary metabolites showed significant changes after drought treatment. UV-Vis spectrophotometer detected the activity of antioxidant enzymes and the content of superoxide anion (O2 -.) and malondialdehyde (MDA). The differential primary metabolites revealed that drought promotes glycolysis, reducing primary metabolism and enhancing secondary metabolism. Meanwhile, the differential secondary metabolites showed an increase in the content of compounds upstream of the secondary metabolic pathway, and other glycosides and increased that of the corresponding aglycones. The activities of antioxidant enzymes and the content of O2 -. and MDA shown different changes duing the drought treatment. These observations indicate that drought promotes the biosynthesis and transformation of the secondary metabolites and activity of antioxidant enzymes, improving plant adaptability. The present study also analyzed a few primary and secondary metabolites of S. divaricata under different degrees and durations of drought and speculated on the metabolic pathways in an arid environment. The findings indicate the biological nature, diversity, and complexity of secondary metabolites and the mechanisms of plant adaptation to ecological stress.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Medical College, Harbin Vocational & Technical College, Harbin, Heilongjiang, China
| | - Lei Shi
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Ying Shen
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Luwen He
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Chauhan PK, Upadhyay SK, Tripathi M, Singh R, Krishna D, Singh SK, Dwivedi P. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Biotechnol Genet Eng Rev 2022:1-37. [PMID: 36254096 DOI: 10.1080/02648725.2022.2131958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/19/2022] [Indexed: 01/09/2023]
Abstract
Soil salinity is a worldwide concern that decreases plant growth performance in agricultural fields and contributes to food scarcity. Salt stressors have adverse impacts on the plant's ionic, osmotic, and oxidative balance, as well as numerous physiological functions. Plants have a variety of coping strategies to deal with salt stress, including osmosensing, osmoregulation, ion-homeostasis, increased antioxidant synthesis, and so on. Not only does salt stress cause oxidative stress but also many types of stress do as well, thus plants have an effective antioxidant system to battle the negative effects of excessive reactive oxygen species produced as a result of stress. Rising salinity in the agricultural field affects crop productivity and plant development considerably; nevertheless, plants have a well-known copying mechanism that shields them from salt stress by facilitated production of secondary metabolites, antioxidants, ionhomeostasis, ABAbiosynthesis, and so on. To address this problem, various environment-friendly solutions such as salt-tolerant plant growth-promoting rhizobacteria, eco-friendly additives, and foliar applications of osmoprotectants/antioxidants are urgently needed. CRISPR/Cas9, a new genetic scissor, has recently been discovered to be an efficient approach for reducing salt stress in plants growing in saline soil. Understanding the processes underlying these physiological and biochemical responses to salt stress might lead to more effective crop yield control measures in the future. In order to address this information, the current review discusses recent advances in plant stress mechanisms against salinity stress-mediated antioxidant systems, as well as the development of appropriate long-term strategies for plant growth mediated by CRISPR/Cas9 techniques under salinity stress.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, India
| | - Manikant Tripathi
- Biotechnology Program, Dr. RamManohar Lohia Avadh University, Ayodhya, India
| | - Rajesh Singh
- Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Deeksha Krishna
- College of agriculture, Fisheries and Forestry, Fiji National University, Fiji
| | - Sushil K Singh
- Department of Agri-Business, V.B.S. Purvanchal University, Jaunpur, India
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Li C, Mur LA, Wang Q, Hou X, Zhao C, Chen Z, Wu J, Guo Q. ROS scavenging and ion homeostasis is required for the adaptation of halophyte Karelinia caspia to high salinity. FRONTIERS IN PLANT SCIENCE 2022; 13:979956. [PMID: 36262663 PMCID: PMC9574326 DOI: 10.3389/fpls.2022.979956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The halophyte Karelinia caspia has not only fodder and medical value but also can remediate saline-alkali soils. Our previous study showed that salt-secreting by salt glands is one of main adaptive strategies of K. caspia under high salinity. However, ROS scavenging, ion homeostasis, and photosynthetic characteristics responses to high salinity remain unclear in K. caspia. Here, physio-biochemical responses and gene expression associated with ROS scavenging and ions transport were tested in K. caspia subjected to 100-400 mM NaCl for 7 days. Results showed that both antioxidant enzymes (SOD, APX) activities and non-enzymatic antioxidants (chlorogenic acid, α-tocopherol, flavonoids, polyamines) contents were significantly enhanced, accompanied by up-regulating the related enzyme and non-enzymatic antioxidant synthesis gene (KcCu/Zn-SOD, KcAPX6, KcHCT, KcHPT1, Kcγ-TMT, KcF3H, KcSAMS and KcSMS) expression with increasing concentrations of NaCl. These responses are beneficial for removing excess ROS to maintain a stable level of H2O2 and O2 - without lipid peroxidation in the K. caspia response to high salt. Meanwhile, up-regulating expression of KcSOS1/2/3, KcNHX1, and KcAVP was linked to Na+ compartmentalization into vacuoles or excretion through salt glands in K. caspia. Notably, salt can improve the function of PSII that facilitate net photosynthetic rates, which is helpful to growing normally in high saline. Overall, the findings suggested that ROS scavenging systems and Na+/K+ transport synergistically contributed to redox equilibrium, ion homeostasis, and the enhancement of PSII function, thereby conferring high salt tolerance.
Collapse
Affiliation(s)
- Cui Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Luis A.J. Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
- College of Software, Shanxi Agricultural University, Taigu, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xincun Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chunqiao Zhao
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhimin Chen
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Juying Wu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qiang Guo
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Miernicka K, Tokarz B, Makowski W, Mazur S, Banasiuk R, Tokarz KM. The Adjustment Strategy of Venus Flytrap Photosynthetic Apparatus to UV-A Radiation. Cells 2022; 11:cells11193030. [PMID: 36230991 PMCID: PMC9564066 DOI: 10.3390/cells11193030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 01/03/2023] Open
Abstract
The objective of this study was to investigate the response of the photosynthetic apparatus of the Venus flytrap (Dionaea muscipula J. Ellis) to UV-A radiation stress as well as the role of selected secondary metabolites in this process. Plants were subjected to 24 h UV-A treatment. Subsequently, chl a fluorescence and gas exchange were measured in living plants. On the collected material, analyses of the photosynthetic pigments and photosynthetic apparatus proteins content, as well as the contents and activity of selected antioxidants, were performed. Measurements and analyses were carried out immediately after the stress treatment (UV plants) and another 24 h after the termination of UV-A exposure (recovery plants). UV plants showed no changes in the structure and function of their photosynthetic apparatus and increased contents and activities of some antioxidants, which led to efficient CO2 carboxylation, while, in recovery plants, a disruption of electron flow was observed, resulting in lower photosynthesis efficiency. Our results revealed that D. muscipula plants underwent two phases of adjustment to UV-A radiation. The first was a regulatory phase related to the exploitation of available mechanisms to prevent the over-reduction of PSII RC. In addition, UV plants increased the accumulation of plumbagin as a potential component of a protective mechanism against the disruption of redox homeostasis. The second was an acclimatization phase initiated after the running down of the regulatory process and decrease in photosynthesis efficiency.
Collapse
Affiliation(s)
- Karolina Miernicka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Stanisław Mazur
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdansk, Poland
| | - Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Kraków, Poland
- Correspondence: (B.T.); (K.M.T.); Tel.: +48-12-662-52-02 (K.M.T.)
| |
Collapse
|
9
|
Sanwal SK, Kumar P, Kesh H, Gupta VK, Kumar A, Kumar A, Meena BL, Colla G, Cardarelli M, Kumar P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141842. [PMID: 35890476 PMCID: PMC9316722 DOI: 10.3390/plants11141842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions. For this purpose, fifty-three varieties of potato were screened under control and salt stress conditions for growth and yield-related traits during 2020. Salt stress caused a mean reduction of 14.49%, 8.88%, and 38.75% in plant height, stem numbers, and tuber yield, respectively in comparison to control. Based on percent yield reduction, the genotypes were classified as salt-tolerant (seven genotypes), moderately tolerant (thirty-seven genotypes), and salt-sensitive genotypes (nine genotypes). Seven salt-tolerant and nine salt-sensitive genotypes were further evaluated to study their responses to salinity on targeted physiological, biochemical, and ionic traits during 2021. Salt stress significantly reduced the relative water content (RWC), membrane stability index (MSI), photosynthesis rate (Pn), transpiration rate (E), stomatal conductance, and K+/Na+ ratio in all the sixteen genotypes; however, this reduction was more pronounced in salt-sensitive genotypes compared to salt-tolerant ones. The better performance of salt-tolerant genotypes under salt stress was due to the strong antioxidant defense system as evidenced by greater activity of super oxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) and better osmotic adjustment (accumulation of proline). The stepwise regression approach identified plant height, stem numbers, relative water content, proline content, H2O2, POX, tuber K+/Na+, and membrane stability index as predominant traits for tuber yield, suggesting their significant role in alleviating salt stress. The identified salt-tolerant genotypes could be used in hybridization programs for the development of new high-yielding and salt-tolerant breeding lines. Further, these genotypes can be used to understand the genetic and molecular mechanism of salt tolerance in potato.
Collapse
Affiliation(s)
- Satish Kumar Sanwal
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
- Correspondence: (S.K.S.); (M.C.)
| | - Parveen Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
- ICAR—Central Coastal Agricultural Research Institute, Ela, Old Goa 403402, India
| | - Hari Kesh
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Vijai Kishor Gupta
- ICAR—Central Potato Research Institute, Regional Station Modipuram, Meerut 250110, India;
| | - Arvind Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Ashwani Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Babu Lal Meena
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (S.K.S.); (M.C.)
| | - Pradeep Kumar
- ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India;
| |
Collapse
|
10
|
Toum L, Perez-Borroto LS, Peña-Malavera AN, Luque C, Welin B, Berenstein A, Fernández Do Porto D, Vojnov A, Castagnaro AP, Pardo EM. Selecting putative drought-tolerance markers in two contrasting soybeans. Sci Rep 2022; 12:10872. [PMID: 35761017 PMCID: PMC9237119 DOI: 10.1038/s41598-022-14334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Identifying high-yield genotypes under low water availability is essential for soybean climate-smart breeding. However, a major bottleneck lies in phenotyping, particularly in selecting cost-efficient markers associated with stress tolerance and yield stabilization. Here, we conducted in-depth phenotyping experiments in two soybean genotypes with contrasting drought tolerance, MUNASQA (tolerant) and TJ2049 (susceptible), to better understand soybean stress physiology and identify/statistically validate drought-tolerance and yield-stabilization traits as potential breeding markers. Firstly, at the critical reproductive stage (R5), the molecular differences between the genotype's responses to mild water deficit were explored through massive analysis of cDNA ends (MACE)-transcriptomic and gene ontology. MUNASQA transcriptional profile, compared to TJ2049, revealed significant differences when responding to drought. Next, both genotypes were phenotyped under mild water deficit, imposed in vegetative (V3) and R5 stages, by evaluating 22 stress-response, growth, and water-use markers, which were subsequently correlated between phenological stages and with yield. Several markers showed high consistency, independent of the phenological stage, demonstrating the effectiveness of the phenotyping methodology and its possible use for early selection. Finally, these markers were classified and selected according to their cost-feasibility, statistical weight, and correlation with yield. Here, pubescence, stomatal density, and canopy temperature depression emerged as promising breeding markers for the early selection of drought-tolerant soybeans.
Collapse
Affiliation(s)
- Laila Toum
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Lucia Sandra Perez-Borroto
- Plant Breeding, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
- Centro de Bioplantas, Universidad de Ciego de Ávila "Máximo Gómez Báez", Road to Morón 9 ½ Km, Ciego de Ávila, Cuba
| | - Andrea Natalia Peña-Malavera
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Catalina Luque
- Cátedra de Anatomía Vegetal. Facultad de Ciencias Naturales E IML, Universidad Nacional de Tucumán, Miguel Lillo 205, San Miguel de Tucumán, Tucumán, Argentina
| | - Bjorn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Ariel Berenstein
- Laboratorio de Biología Molecular, División Patología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), CONICET-GCBA, C1425EFD, Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Instituto de Química Biológica (IQUIBICEN), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, Argentina
| | - Adrian Vojnov
- Instituto de Ciencia y Tecnología "Dr. César Milstein", Fundación Pablo Cassará-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Saladillo 2468, C1440FFX, Buenos Aires, Argentina
| | - Atilio Pedro Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), William Cross 3150, Las Talitas, Tucumán, Argentina.
| |
Collapse
|
11
|
Distinctive Physio-Biochemical Properties and Transcriptional Changes Unfold the Mungbean Cultivars Differing by Their Response to Drought Stress at Flowering Stage. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mungbean is a nutritionally and economically important pulse crop cultivated around Asia, mainly in India. The crop is sensitive to drought at various developmental stages of its growing period. However, there is limited or almost no research on a comparative evaluation of mung-bean plants at the flowering stage under drought conditions. Hence, the aim of this research was to impose the drought stress on two mungbean cultivars VRM (Gg) 1 and CO6 at the flowering stage and assess the physio-biochemical and transcriptional changes. After imposing the drought stress, we found that VRM (Gg) 1 exhibited a low reduction in physiological traits (Chlorophyll, relative water content, and plant dry mass) and high proline content than CO6. Additionally, VRM (Gg) 1 has a low level of H2O2 and MDA contents and higher antioxidant enzymes (SOD, POD, and CAT) activity than CO6 during drought stress. The transcriptional analysis of photosynthesis (PS II-PsbP, PS II-LHC, PS I-PsaG/PsaK, and PEPC 3), antioxidant (SOD 2, POD, CAT 2), and drought-responsive genes (HSP-90, DREB2C, NAC 3 and AREB 2) show that VRM (Gg) 1 had increased transcripts more than CO6 under drought stress. Taken together, VRM (Gg) 1 had a better photosynthetic performance which resulted in fewer reductions in chlorophyll, relative water content, and plant dry mass during drought stress. In addition, higher antioxidative enzyme activities led to lower H2O2 and MDA levels, limiting oxidative damage in VRM (Gg) 1. This was positively correlated with increased transcripts of photosynthesis and antioxidant-related genes in VRM (Gg) 1. Further, the increased transcripts of drought-responsive genes indicate that VRM (Gg) 1 has a better genetic basis against drought stress than CO6. These findings help to understand the mungbean response to drought stress and will aid in the development of genotypes with greater drought tolerance by utilizing natural genetic variants.
Collapse
|
12
|
Mitigation of Salinity Stress on Pomegranate (Punica granatum L. cv. Wonderful) Plant Using Salicylic Acid Foliar Spray. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Salt stress significantly impacts plant morphological structure and physiological processes, resulting in decreased plant growth. Salicylic acid (SA) is a key signal molecule that protects plants from the negative impacts of salinity. Under natural conditions, the pomegranate plant generally exhibits salt-tolerant characteristics. The objective of this study was to elucidate the salt-tolerance level of pomegranate (Punica granatum L. cv. Wonderful) and the effect of the regulating strategy of SA foliar spray on growth, morphological structure, and physiological processes. SA levels were 0, 0.25, 0.50, and 1 mM in the presence of salinity levels of 10, 35, and 70 mM NaCl, respectively. Vegetative growth indices, including stem cross-sectional area, leaf area, and total dry weight, were lowered by salinity treatments. However, SA applications greatly improved morphological characteristics and plant growth under salt stress. The effects of salinity were effectively reversed by SA treatment at 1 mM compared to control and other treatments. Interestingly, SA applications enhanced the chlorophyll, total phenolic, carbohydrate, and proline contents of leaves while decreasing electrolyte leakage (EL), Na, and Cl levels. Moreover, the foliar SA treatments enhanced the nutrient content in the leaves and increased the activities of peroxidase (POD) and catalase (CAT), with a decrease in malondialdehyde (MDA) content. This study suggests that the alleviation of the salinity stress by SA may be due to the activation of the antioxidant enzymatic mechanism and decrease in the lipid peroxidation of the pomegranate plant.
Collapse
|
13
|
Comparative Physiology of Indica and Japonica Rice under Salinity and Drought Stress: An Intrinsic Study on Osmotic Adjustment, Oxidative Stress, Antioxidant Defense and Methylglyoxal Detoxification. STRESSES 2022. [DOI: 10.3390/stresses2020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Salinity and drought stress are significant environmental threats, alone or in combination. The current study was conducted to investigate the morpho-physiology, osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification of three rice genotypes from the indica (cv. BRRI dhan29 and BRRI dhan48) and japonica (cv. Koshihikari) groups. Eighteen-day-old seedlings of these genotypes were exposed to either in alone salinity (150 mM NaCl) and drought (15% PEG 6000) or in the combination of salinity and drought (150 mM NaCl + 15% PEG 6000) stress in vitro for 72 h. Compared with the control, the water status, biomass and photosynthetic pigments were decreased, where a significant increase was seen in the mortality rate, hydrogen peroxide content, electrolyte leakage, lipoxygenase activity, level of malondialdehyde and methylglyoxal, indicating increased lipid peroxidation in rice genotypes in stress conditions. The non-enzymatic and enzymatic components of the ascorbate-glutathione (AsA-GSH) pool in rice genotypes were disrupted under all stress treatments, resulting imbalance in the redox equilibrium. In contrast, compared to other rice genotypes, BRRI dhan48 revealed a lower Na+/K+ ratio, greater proline (Pro) levels, higher activity of AsA, dehydroascorbate (DHA) and GSH, lower glutathione disulfide (GSSG) and a higher ratio of AsA/DHA and GSH/GSSG, whereas enzymatic components increased monodehydroascorbate reductase, dehydroascorbate reductase, glutathione peroxidase and glyoxalase enzymes. The results showed that a stronger tolerate ability for BRRI dhan48 against stress has been connected to a lower Na+/K+ ratio, an increase in Pro content and an improved performance of the glyoxalase system and antioxidant protection for scavenging of reactive oxygen species. These data can give insight into probable responses to single or combination salinity and drought stress in rice genotypes.
Collapse
|
14
|
González-Teuber M, Contreras RA, Zúñiga GE, Barrera D, Bascuñán-Godoy L. Synergistic Association With Root Endophytic Fungi Improves Morpho-Physiological and Biochemical Responses of Chenopodium quinoa to Salt Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.787318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Symbiotic associations with microbes can contribute to mitigating abiotic environmental stress in plants. In this study, we investigated individual and interactive effects of two root endophytic fungal species on physiological and biochemical mechanisms of the crop Chenopodium quinoa in response to salinity. Fungal endophytes (FE) Talaromyces minioluteus and Penicillium murcianum, isolated from quinoa plants that occur naturally in the Atacama Desert, were used for endophyte inoculation. A greenhouse experiment was developed using four plant groups: (1) plants inoculated with T. minioluteus (E1+), (2) plants inoculated with P. murcianum (E2+), (3) plants inoculated with both fungal species (E1E2+), and (4) non-inoculated plants (E-). Plants from each group were then assigned to either salt (300 mM) or control (no salt) treatments. Differences in morphological traits, photosynthesis, stomatal conductance, transpiration, superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase, (POD), phenylalanine ammonia-lyase (PAL), phenolic content, and lipid peroxidation between plant groups under each treatment were examined. We found that both endophyte species significantly improved morphological and physiological traits, including plant height, number of shoots, photosynthesis, stomatal conductance, and transpiration, in C. quinoa in response to salt, but optimal physiological responses were observed in E1E2+ plants. Under saline conditions, endophyte inoculation improved SOD, APX, and POD activity by over 50%, and phenolic content by approximately 30%, with optimal enzymatic responses again observed in E1E2+ plants. Lipid peroxidation was significantly lower in inoculated plants than in non-inoculated plants. Results demonstrate that both endophyte species enhanced the ability of C. quinoa to cope with salt stress by improving antioxidative enzyme and non-enzyme systems. In general, both FE species interacting in tandem yielded better morphological, physiological, and biochemical responses to salinity in quinoa than inoculation by a single species in isolation. Our study highlights the importance of stress-adapted FE as a biological agent for mitigating abiotic stress in crop plants.
Collapse
|
15
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
16
|
Lu Y, Zhang B, Li L, Zeng F, Li X. Negative effects of long-term exposure to salinity, drought, and combined stresses on halophyte Halogeton glomeratus. PHYSIOLOGIA PLANTARUM 2021; 173:2307-2322. [PMID: 34625966 DOI: 10.1111/ppl.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Plants are subjected to salt and drought stresses concurrently but our knowledge about the effects of combined stress on plants is limited, especially on halophytes. We aim to study if some diverse drought and salt tolerance traits in halophyte may explain their tolerance to salinity and drought stresses, individual and in combination, and identify key traits that influence growth under such stress conditions. Here, the halophyte Halogeton glomeratus was grown under control, single or combinations of 60 days drought and salt treatments, and morphophysiological responses were tested. Our results showed that drought, salinity, and combination of these two stressors decreased plant growth (shoot height, root length, and biomass), leaf photosynthetic pigments content (chlorophyll a, b, a + b and carotenoids), gas exchange parameters (Net photosynthesis rate [PN ], transpiration rate [E], stomatal conductance [gs ]), and water potential (ψw ), and the decreases were more prominent under combined drought and salinity treatment compared with these two stressors individually performed. Similarly, combined drought and salinity treatment induced more severe oxidative stress as indicated by more hydrogen peroxide (H2 O2 ) and malondialdehyde (MDA) accumulated. Nevertheless, H. glomeratus is equipped with specific mechanisms to protect itself against drought and salt stresses, including upregulation of superoxide dismutases (SOD; EC 1.15.1.1) and catalase (CAT; EC 1.11.1.6) activities and accumulation of osmoprotectants (Na+ , Cl- , and soluble sugar). Our results indicated that photosynthetic pigments content, gas exchange parameters, water potential, APX activity, CAT activity, soluble sugar, H2 O2 , and MDA are valuable screening criteria for drought and salt, alone or combined, and provide the tolerant assessment of H. glomeratus.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Bo Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Lei Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
| |
Collapse
|
17
|
Boughalleb F, Maaloul S, Mahmoudi M, Mabrouk M, Bakhshandeh E, Abdellaoui R. Limoniastrum guyonianum behavior under seasonal conditions fluctuations of Sabkha Aïn Maïder (Tunisia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:305-320. [PMID: 34673320 DOI: 10.1016/j.plaphy.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In Sabkha biotope, several environmental factors (i.e., salinity, drought, temperature, etc.) especially during dry season affect halophytes developments. To cope with these harmful conditions, halophytes use multiple mechanisms of adaptations. In this study, we focused on the effect of environmental condition changes over a year in the Sabkha of Aïn Maïder (Medenine - Tunisia) on the physiological and biochemical behavior of Limoniastrum guyonianum using a modeling approach. Our study showed that the model depicted well (R2 > 0.75) the monthly fluctuations of the studied parameters in this habitat. During the dry period (June to September), the salinity of the soil increased remarkably (high level of EC and Na+ content), resulting in high Na+ content in the aerial parts followed by a nutrient deficiency in K+, Ca2+, and Mg2+. As a result of this disruption, L. guyonianum decreased its water potential to more negative values to maintain osmotic potential using inorganic osmolytes (i.e., Na+) and organic osmolytes (i.e., sugars: sucrose, fructose, glucose, and xylitol, and organic acids: citric and malic acids). In addition, CO2 assimilation rate, stomatal conductance, transpiration rate, and photosynthetic pigments decreased significantly with increasing salinity. The phenolic compounds contents and the antioxidant activity increased significantly in the dry period as a result of increased levels of H2O2 and lipid peroxidation. This increase was highly correlated with soil salinity and air temperature. The maintenance of tissue hydration (i.e., moderate decrease of relative water content), the accumulation of sugars and organic acids, the enhancement of phenolic compounds amounts, and the increase of antioxidant activity during the dry period suggest that L. guyonianum possesses an efficient tolerance mechanism that allows the plant to withstand the seasonal fluctuations of climatic conditions in its natural biotope.
Collapse
Affiliation(s)
- Fayçal Boughalleb
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia.
| | - Sameh Maaloul
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| | - Maher Mahmoudi
- University of Gabes, Faculty of Sciences of Gabes, Tunisia
| | - Mahmoud Mabrouk
- University of Gabes, Platform Advances Analysis, Institute of Arid Regions, Medenine, Tunisia
| | - Esmaeil Bakhshandeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Raoudha Abdellaoui
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| |
Collapse
|
18
|
Nefissi Ouertani R, Abid G, Karmous C, Ben Chikha M, Boudaya O, Mahmoudi H, Mejri S, Jansen RK, Ghorbel A. Evaluating the contribution of osmotic and oxidative stress components on barley growth under salt stress. AOB PLANTS 2021; 13:plab034. [PMID: 34316337 PMCID: PMC8309955 DOI: 10.1093/aobpla/plab034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/08/2021] [Indexed: 05/21/2023]
Abstract
Salt stress is considered one of the most devastating environmental stresses, affecting barley growth and leading to significant yield loss. Hence, there is considerable interest in investigating the most effective traits that determine barley growth under salt stress. The objective of this study was to elucidate the contribution of osmotic and oxidative stress components in leaves and roots growth under salt stress. Two distinct barley (Hordeum vulgare) salt-stress tolerant genotypes, Barrage Malleg (BM, tolerant) and Saouef (Sf, sensitive), were subjected to 200 mM NaCl at early vegetative stages. Stressed and control leaves and roots tissue were assessed for several growth traits, including fresh and dry weight and plant length, as well as the content of osmoprotectants proline and soluble sugars. In addition, malondialdehyde content and activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as their corresponding gene expression patterns, were investigated. The results showed better performance of BM over Sf for leaf dry weight (LDW), root dry weight (RDW) and root length (RL). The salt-tolerant genotype (BM) had better osmoprotection against salt stress compared with the salt-sensitive genotype (Sf), with a higher accumulation of proline and soluble sugars in leaves and roots and a stronger antioxidant system as evidenced by higher activities of SOD, CAT and APX and more abundant Cu/Zn-SOD transcripts, especially in roots. Stepwise regression analysis indicated that under salt stress the most predominant trait of barley growth was Cu/Zn-SOD gene expression level, suggesting that alleviating oxidative stress and providing cell homeostasis is the first priority.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
- Corresponding author’s e-mail address:
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding, National Institute of Agronomy of Tunisia, Carthage University, LR14 AGR01, 1082 Tunis, Tunisia
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Oumaima Boudaya
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, P.O. Box 14660, Al Ruwayyah 2, Academic City, Dubai, United Arab Emirates
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz, University (KAU), Jeddah 21589, Saudi Arabia
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
19
|
Shahzad K, Hussain S, Arfan M, Hussain S, Waraich EA, Zamir S, Saddique M, Rauf A, Kamal KY, Hano C, El-Esawi MA. Exogenously Applied Gibberellic Acid Enhances Growth and Salinity Stress Tolerance of Maize through Modulating the Morpho-Physiological, Biochemical and Molecular Attributes. Biomolecules 2021; 11:1005. [PMID: 34356629 PMCID: PMC8301807 DOI: 10.3390/biom11071005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.
Collapse
Affiliation(s)
- Kashif Shahzad
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (K.S.); (M.A.); (M.S.)
| | - Sadam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (S.H.); (E.A.W.); (S.Z.)
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Muhammad Arfan
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (K.S.); (M.A.); (M.S.)
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (S.H.); (E.A.W.); (S.Z.)
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (S.H.); (E.A.W.); (S.Z.)
| | - Shahid Zamir
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (S.H.); (E.A.W.); (S.Z.)
| | - Maham Saddique
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (K.S.); (M.A.); (M.S.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan;
| | - Khaled Y. Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRAE USC1328, Université d’Orléans, 28000 Chartres, France;
| | | |
Collapse
|
20
|
Kumar A, Mann A, Kumar A, Kumar N, Meena BL. Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:1041-1051. [PMID: 33528269 DOI: 10.1080/15226514.2021.1874289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salt stress induced modulations in different ionic ratios and ROS system were studied in ten halophytic species, namely Atriplex lentiformis, Tamarix aphylla, Sporobolus marginatus, Suaeda nudiflora, Urochondra setulosa, Arundo donax, Aeluropus lagopoides, Heliotropium ramossimum, Atriplex nummularia, Leptachloa fusca at salinity level of ECe ∼ 30 dSm-1 (≈300 mM NaCl) to explore their possible role in salt tolerance ability of these halophytes. These halophytes were categorized for their salt tolerance levels based on the ratios of Na+/K+, Na+/Ca2+, Na+/Cl- and Na + Cl/K + Ca. Variable responses were observed among all halophytes where Atriplex lentiformis had lowest leaf Na+/K+ (0.44) which is one of the best indicator of salt tolerance, Heliotropium ramossimum had lowest Na+/Ca2+ and Na+/Cl- (0.97 and 0.18), whereas Sporobolus marginatus had lowest Na + Cl/K + Ca (0.79). Specific enzymes activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were also assessed to get better comprehension of the ROS scavenging system under salinity in these halophytes. Urochondra setulosa showed highest APX and SOD activity followed by Atriplex lentiformis. Most efficient enzyme in degrading hydrogen peroxide i.e. CAT showed highest activity in Suaeda nudiflora followed by Atriplex nummularia and Urochondra setulosa, whereas Atriplex nummularia and Atriplex lentiformis showed higher POX activity. Significant variability in H2O2 and MDA content was also observed. These results possibly suggest higher inbuilt genetic potential of these halophytes to combat high salinity induced oxidative stress via higher antioxidant activities. Novelty statement: Halophytic plant adopt different strategies to cope up with the toxic ions and our studies show that the induction of antioxidant defense system to scavenge ROS, alongwith structural modifications in terms of lipid peroxidation and compartmentalization of toxic ions are the main strategies for tighter control of ion fluxes in the studied halophytes.
Collapse
Affiliation(s)
- Ashwani Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal, India
| | - Anita Mann
- ICAR - Central Soil Salinity Research Institute, Karnal, India
| | - Arvind Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal, India
| | - Naresh Kumar
- ICAR - Central Soil Salinity Research Institute, Karnal, India
| | - Babu Lal Meena
- ICAR - Central Soil Salinity Research Institute, Karnal, India
| |
Collapse
|
21
|
Tokarz KM, Wesołowski W, Tokarz B, Makowski W, Wysocka A, Jędrzejczyk RJ, Chrabaszcz K, Malek K, Kostecka-Gugała A. Stem Photosynthesis-A Key Element of Grass Pea ( Lathyrus sativus L.) Acclimatisation to Salinity. Int J Mol Sci 2021; 22:E685. [PMID: 33445673 PMCID: PMC7828162 DOI: 10.3390/ijms22020685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/19/2022] Open
Abstract
Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.
Collapse
Affiliation(s)
- Krzysztof M. Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Wesołowski
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
| | - Anna Wysocka
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (B.T.); (W.M.); (A.W.)
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Roman J. Jędrzejczyk
- Plant-Microorganism Interactions Group, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Karolina Chrabaszcz
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Kamilla Malek
- Raman Imaging Group, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (K.C.); (K.M.)
| | - Anna Kostecka-Gugała
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland; (W.W.); (A.K.-G.)
| |
Collapse
|
22
|
Responses to Increased Salinity and Severe Drought in the Eastern Iberian Endemic Species Thalictrum maritimum (Ranunculaceae), Threatened by Climate Change. PLANTS 2020; 9:plants9101251. [PMID: 32977553 PMCID: PMC7598256 DOI: 10.3390/plants9101251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/24/2023]
Abstract
Thalictrum maritimum is an endangered, endemic species in East Spain, growing in areas of relatively low salinity in littoral salt marshes. A regression of its populations and the number of individuals has been registered in the last decade. This study aimed at establishing the causes of this reduction using a multidisciplinary approach, including climatic, ecological, physiological and biochemical analyses. The climatic data indicated that there was a direct negative correlation between increased drought, especially during autumn, and the number of individuals censused in the area of study. The susceptibility of this species to water deficit was confirmed by the analysis of growth parameters upon a water deficit treatment applied under controlled greenhouse conditions, with the plants withstanding only 23 days of complete absence of irrigation. On the other hand, increased salinity does not seem to be a risk factor for this species, which behaves as a halophyte, tolerating in controlled treatments salinities much higher than those registered in its natural habitat. The most relevant mechanisms of salt tolerance in T. maritimum appear to be based on the control of ion transport, by (i) the active transport of toxic ions to the aerial parts of the plants at high external salinity—where they are presumably stored in the leaf vacuoles to avoid their deleterious effects in the cytosol, (ii) the maintenance of K+ concentrations in belowground and aboveground organs, despite the increase of Na+ levels, and (iii) the salt-induced accumulation of Ca2+, particularly in stems and leaves. This study provides useful information for the management of the conservation plans of this rare and endangered species.
Collapse
|
23
|
Szekely-Varga Z, González-Orenga S, Cantor M, Jucan D, Boscaiu M, Vicente O. Effects of Drought and Salinity on Two Commercial Varieties of Lavandula angustifolia Mill. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9050637. [PMID: 32429357 DOI: 10.15835/nbha48412150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 05/25/2023]
Abstract
Global warming is not only affecting arid and semi-arid regions but also becoming a threat to agriculture in Central and Eastern European countries. The present study analyzes the responses to drought and salinity of two varieties of Lavandula angustifolia cultivated in Romania. Lavender seedlings were subjected to one month of salt stress (100, 200, and 300 mM NaCl) and water deficit (complete withholding of irrigation) treatments. To assess the effects of stress on the plants, several growth parameters and biochemical stress markers (photosynthetic pigments, mono and divalent ions, and different osmolytes) were determined in control and stressed plants after the treatments. Both stress conditions significantly inhibited the growth of the two varieties, but all plants survived the treatments, indicating a relative stress tolerance of the two varieties. The most relevant mechanisms of salt tolerance are based on the maintenance of foliar K+ levels and the accumulation of Ca2+ and proline as a functional osmolyte in parallel with increasing external salinities. Under water stress, significant increases of Na+ and K+ concentrations were detected in roots, indicating a possible role of these cations in osmotic adjustment, limiting root dehydration. No significant differences were found when comparing the stress tolerance and stress responses of the two selected lavender varieties.
Collapse
Affiliation(s)
- Zsolt Szekely-Varga
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Maria Cantor
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Denisa Jucan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
24
|
Szekely-Varga Z, González-Orenga S, Cantor M, Jucan D, Boscaiu M, Vicente O. Effects of Drought and Salinity on Two Commercial Varieties of Lavandula angustifolia Mill. PLANTS 2020; 9:plants9050637. [PMID: 32429357 PMCID: PMC7284986 DOI: 10.3390/plants9050637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Global warming is not only affecting arid and semi-arid regions but also becoming a threat to agriculture in Central and Eastern European countries. The present study analyzes the responses to drought and salinity of two varieties of Lavandula angustifolia cultivated in Romania. Lavender seedlings were subjected to one month of salt stress (100, 200, and 300 mM NaCl) and water deficit (complete withholding of irrigation) treatments. To assess the effects of stress on the plants, several growth parameters and biochemical stress markers (photosynthetic pigments, mono and divalent ions, and different osmolytes) were determined in control and stressed plants after the treatments. Both stress conditions significantly inhibited the growth of the two varieties, but all plants survived the treatments, indicating a relative stress tolerance of the two varieties. The most relevant mechanisms of salt tolerance are based on the maintenance of foliar K+ levels and the accumulation of Ca2+ and proline as a functional osmolyte in parallel with increasing external salinities. Under water stress, significant increases of Na+ and K+ concentrations were detected in roots, indicating a possible role of these cations in osmotic adjustment, limiting root dehydration. No significant differences were found when comparing the stress tolerance and stress responses of the two selected lavender varieties.
Collapse
Affiliation(s)
- Zsolt Szekely-Varga
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Maria Cantor
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
| | - Denisa Jucan
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania; (Z.S.-V.); (M.C.)
- Correspondence:
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
25
|
Zhu Y, Luo X, Nawaz G, Yin J, Yang J. Physiological and Biochemical Responses of four cassava cultivars to drought stress. Sci Rep 2020; 10:6968. [PMID: 32332812 PMCID: PMC7181862 DOI: 10.1038/s41598-020-63809-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
The antioxidant mechanism is crucial for resisting oxidative damage induced by drought stress in plants. Different antioxidant mechanisms may contribute to the tolerance of cassava to drought stress, but for a specific genotype, the response is still unknown. The objective of this study was to investigate antioxidant response and physiological changes of four cassava genotypes under water stress conditions, by keeping the soil moisture content as 80% (control), 50% (medium), 20% (severe) of field capacity for a week. Genotypes RS01 and SC124 were keeping higher relative water content (RWC) and relative chlorophyll content (SPAD value) and less affected by oxidative stress than SC205 and GR4 under drought stress. RS01 just showed slight membrane damage and oxidative stress even under severe drought conditions. A principal component analysis showed that cassava plant water status was closely related to the antioxidant mechanism. Antioxidant response in genotypes RS01 and SC124 under drought stress might attribute to the increased accumulation of ascorbate (AsA) and glutathione (GSH) content and higher superoxide dismutase (SOD) and catalase (CAT) activities, which explained by the up-regulation of Mn-SOD and CAT genes. However, Genotypes SC205 and GR4 mainly depended on the accumulation of total phenolics (TP) and increased glutathione reductase (GR) activity, which attribute to the up-regulation of the GR gene. Our findings could provide vital knowledge for refining the tactics of cultivation and molecular breeding with drought avoidance in cassava.
Collapse
Affiliation(s)
- Yanmei Zhu
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Xinglu Luo
- Agricultural College of Guangxi University, Nanning, 530005, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning, 530005, China.
| | - Gul Nawaz
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Jingjing Yin
- Agricultural College of Guangxi University, Nanning, 530005, China
| | - Jingni Yang
- Agricultural College of Guangxi University, Nanning, 530005, China
| |
Collapse
|
26
|
Muszyńska E, Labudda M, Kral A. Ecotype-Specific Pathways of Reactive Oxygen Species Deactivation in Facultative Metallophyte Silene Vulgaris (Moench) Garcke Treated with Heavy Metals. Antioxidants (Basel) 2020; 9:E102. [PMID: 31991666 PMCID: PMC7070611 DOI: 10.3390/antiox9020102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022] Open
Abstract
This research aimed to indicate mechanisms involved in protection against the imbalanced generation of reactive oxygen species (ROS) during heavy metals (HMs) exposition of Silene vulgaris ecotypes with different levels of metal tolerance. Specimens of non-metallicolous (NM), calamine (CAL), and serpentine (SER) ecotypes were treated in vitro with Zn, Pb, and Cd ions applied simultaneously in concentrations that reflected their contents in natural habitats of the CAL ecotype (1× HMs) and 2.5- or 5.0-times higher than the first one. Our findings confirmed the sensitivity of the NM ecotype and revealed that the SER ecotype was not fully adapted to the HM mixture, since intensified lipid peroxidation, ultrastructural alternations, and decline in photosynthetic pigments' content were ascertained under HM treatment. These changes resulted from insufficient antioxidant defense mechanisms based only on ascorbate peroxidase (APX) activity assisted (depending on HMs concentration) by glutathione-S-transferase (GST) and peroxidase activity at pH 6.8 in the NM ecotype or by GST and guaiacol-type peroxidase in the SER one. In turn, CAL specimens showed a hormetic reaction to 1× HMs, which manifested by both increased accumulation of pigments and most non-enzymatic antioxidants and enhanced activity of catalase and enzymes from the peroxidase family (with the exception of APX). Interestingly, no changes in superoxide dismutase activity were noticed in metallicolous ecotypes. To sum up, the ROS scavenging pathways in S. vulgaris relied on antioxidants specific to the respective ecotypes, however the synthesis of polyphenols was proved to be a universal reaction to HMs.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| | - Adam Kral
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776 Warsaw, Poland;
| |
Collapse
|
27
|
Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Salinity stress occurs due to the accumulation of high levels of salts in soil, which ultimately leads to the impairment of plant growth and crop loss. Stress tolerance-inducing compounds have a remarkable ability to improve growth and minimize the effects of salinity stress without negatively affecting the environment by controlling the physiological and molecular activities in plants. Two pot experiments were carried out in 2017 and 2018 to study the influence of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) on the physiological and biochemical parameters of sweet pepper plants under saline conditions (2000 and 4000 ppm). The results showed that salt stress led to decreasing the chlorophyll content, relative water content, and fruit yields, whereas electrolyte leakage, malondialdehyde (MDA), proline concentration, reactive oxygen species (ROS), and the activities of antioxidant enzymes increased in salt-stressed plants. The application of salicylic acid (1 mM), yeast extract (6 g L−1), and proline (10 mM) markedly improved the physiological characteristics and fruit yields of salt-stressed plants compared with untreated stressed plants. A significant reduction in electrolyte leakage, MDA, and ROS was also recorded for all treatments. In conclusion, our results reveal the important role of proline, SA, and yeast extracts in enhancing sweet pepper growth and tolerance to salinity stress via modulation of the physiological parameters and antioxidants machinery. Interestingly, proline proved to be the best treatment.
Collapse
|
28
|
Zhang H, Gao X, Zhi Y, Li X, Zhang Q, Niu J, Wang J, Zhai H, Zhao N, Li J, Liu Q, He S. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. THE NEW PHYTOLOGIST 2019; 223:1918-1936. [PMID: 31091337 DOI: 10.1111/nph.15925] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/08/2019] [Indexed: 05/21/2023]
Abstract
CCCH-type zinc-finger proteins play essential roles in regulating plant development and stress responses. However, the molecular and functional properties of non-tandem CCCH-type zinc-finger (non-TZF) proteins have been rarely characterized in plants. Here, we report the biological and molecular characterization of a sweet potato non-TZF gene, IbC3H18. We show that IbC3H18 exhibits tissue- and abiotic stress-specific expression, and could be effectively induced by abiotic stresses, including NaCl, polyethylene glycol (PEG) 6000, H2 O2 and abscisic acid (ABA) in sweet potato. Accordingly, overexpression of IbC3H18 led to increased, whereas knock-down of IbC3H18 resulted in decreased tolerance of sweet potato to salt, drought and oxidation stresses. In addition, IbC3H18 functions as a nuclear transcriptional activator and regulates the expression of a range of abiotic stress-responsive genes involved in reactive oxygen species (ROS) scavenging, ABA signaling, photosynthesis and ion transport pathways. Moreover, our data demonstrate that IbC3H18 physically interacts with IbPR5, and that overexpression of IbPR5 enhances salt and drought tolerance in transgenic tobacco plants. Collectively, our data indicate that IbC3H18 functions in enhancing abiotic stress tolerance in sweet potato, which may serve as a candidate gene for use in improving abiotic stress resistance in crops.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Niu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
29
|
Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res 2019; 52:39. [PMID: 31358053 PMCID: PMC6661828 DOI: 10.1186/s40659-019-0246-3] [Citation(s) in RCA: 491] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
In the growth condition(s) of plants, numerous secondary metabolites (SMs) are produced by them to serve variety of cellular functions essential for physiological processes, and recent increasing evidences have implicated stress and defense response signaling in their production. The type and concentration(s) of secondary molecule(s) produced by a plant are determined by the species, genotype, physiology, developmental stage and environmental factors during growth. This suggests the physiological adaptive responses employed by various plant taxonomic groups in coping with the stress and defensive stimuli. The past recent decades had witnessed renewed interest to study abiotic factors that influence secondary metabolism during in vitro and in vivo growth of plants. Application of molecular biology tools and techniques are facilitating understanding the signaling processes and pathways involved in the SMs production at subcellular, cellular, organ and whole plant systems during in vivo and in vitro growth, with application in metabolic engineering of biosynthetic pathways intermediates.
Collapse
Affiliation(s)
- Tasiu Isah
- Department of Botany, School of Chemical and Life Sciences, Hamdard University, New Delhi, 110 062, India.
| |
Collapse
|
30
|
Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, Qiu L. Research Progress and Perspective on Drought Stress in Legumes: A Review. Int J Mol Sci 2019; 20:E2541. [PMID: 31126133 PMCID: PMC6567229 DOI: 10.3390/ijms20102541] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Climate change, food shortage, water scarcity, and population growth are some of the threatening challenges being faced in today's world. Drought stress (DS) poses a constant challenge for agricultural crops and has been considered a severe constraint for global agricultural productivity; its intensity and severity are predicted to increase in the near future. Legumes demonstrate high sensitivity to DS, especially at vegetative and reproductive stages. They are mostly grown in the dry areas and are moderately drought tolerant, but severe DS leads to remarkable production losses. The most prominent effects of DS are reduced germination, stunted growth, serious damage to the photosynthetic apparatus, decrease in net photosynthesis, and a reduction in nutrient uptake. To curb the catastrophic effect of DS in legumes, it is imperative to understand its effects, mechanisms, and the agronomic and genetic basis of drought for sustainable management. This review highlights the impact of DS on legumes, mechanisms, and proposes appropriate management approaches to alleviate the severity of water stress. In our discussion, we outline the influence of water stress on physiological aspects (such as germination, photosynthesis, water and nutrient uptake), growth parameters and yield. Additionally, mechanisms, various management strategies, for instance, agronomic practices (planting time and geometry, nutrient management), plant growth-promoting Rhizobacteria and arbuscular mycorrhizal fungal inoculation, quantitative trait loci (QTLs), functional genomics and advanced strategies (CRISPR-Cas9) are also critically discussed. We propose that the integration of several approaches such as agronomic and biotechnological strategies as well as advanced genome editing tools is needed to develop drought-tolerant legume cultivars.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Alam Sher
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Identification of Salt and Drought Biochemical Stress Markers in Several Silene vulgaris Populations. SUSTAINABILITY 2019. [DOI: 10.3390/su11030800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study attempted to determine short-term responses to drought and salt stress in different Silene vulgaris genotypes and to identify potential abiotic stress biochemical indicators in this species. Four populations from contrasting habitats were subjected to drought and three levels of salinity under controlled greenhouse conditions. The determination of several growth parameters after the stress treatments allowed for ranking the tolerance to stress of the four analyzed populations on the basis of their relative degree of stress-induced growth inhibition. This was then correlated with changes in the leaf levels of monovalent ions (Na+, Cl−, and K+), photosynthetic pigments (chlorophylls a and b, carotenoids), osmolytes (total soluble sugars, proline), and non-enzymatic antioxidants (total phenolic compounds and flavonoids). Despite the observed differences, all four populations appeared to be relatively tolerant to both stress conditions, which in general did not cause a significant degradation of photosynthetic pigments and did not generate oxidative stress in the plants. Drought and salinity tolerance in S. vulgaris was mostly dependent on the use of Na+ and K+ for osmotic adjustment under stress, a mechanism that appeared to be constitutive, and not stress-induced, since relatively high concentrations of these cations (without reaching toxic levels) were also present in the leaves of control plants. The inhibition of additional transportation of toxic ions to the leaves, in response to increasing external salinity, seemed to be a relevant mechanism of tolerance, specifically to salt stress, whereas accumulation of soluble sugars under drought conditions may have contributed to tolerance to drought.
Collapse
|
32
|
Li M, Zhang K, Sun Y, Cui H, Cao S, Yan L, Xu M. Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:77-88. [PMID: 30048907 DOI: 10.1016/j.jplph.2018.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, non-enzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.
Collapse
Affiliation(s)
- Mingna Li
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Kun Zhang
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Sun
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Huiting Cui
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Shihao Cao
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Li Yan
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Mengxin Xu
- Grassland Science Department, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
33
|
Effects of Drought and Salinity on European Larch (Larix decidua Mill.) Seedlings. FORESTS 2018. [DOI: 10.3390/f9060320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
The genus Portulaca as a suitable model to study the mechanisms of plant tolerance to drought and salinity. THE EUROBIOTECH JOURNAL 2018. [DOI: 10.2478/ebtj-2018-0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Drought and soil salinity are at present the major factors responsible for the global reduction of crop yields, and the problem will become more severe in the coming decades because of climate change effects. The most promising strategy to achieve the increased agricultural production that will be required to meet food demands worldwide will be based on the enhancement of crop stress tolerance, by both, traditional breeding and genetic engineering. This, in turn, requires a deep understanding of the mechanisms of tolerance which, although based on a conserved set of basic responses, vary widely among plant species. Therefore, the use of different plant models to investigate these mechanisms appears to be a sensible approach. The genus Portulaca could be a suitable model to carry out these studies, as some of its taxa have been described as tolerant to drought and/or salinity. Information on relevant mechanisms of tolerance to salt and water stress can be obtained by correlating the activation of specific defence pathways with the relative stress resistance of the investigated species. Also, species of the genus could be economically attractive as ‘new’ crops for ‘saline’ and ‘arid’, sustainable agriculture, as medicinal plants, highly nutritious vegetable crops and ornamentals.
Collapse
|
35
|
Halophytic herbs of the Mediterranean basin: An alternative approach to health. Food Chem Toxicol 2018; 114:155-169. [DOI: 10.1016/j.fct.2018.02.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/21/2022]
|
36
|
Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. FRONTIERS IN PLANT SCIENCE 2017; 8:1438. [PMID: 28861106 PMCID: PMC5562691 DOI: 10.3389/fpls.2017.01438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/03/2017] [Indexed: 05/23/2023]
Abstract
We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to "recovery of germination" tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves), and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl- to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the apparent activation of K+ transport to the leaves at high external salinity, observed only in the most tolerant L. narbonense and L. virgatum. This specific response may be therefore relevant for salt tolerance in Limonium. The ecological implications of these results, which can contribute to a more efficient management of salt marshes conservation/regeneration programs, are also discussed.
Collapse
Affiliation(s)
- Mohamad Al Hassan
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - Elena Estrelles
- Jardín Botánico—ICBiBE, Universitat de ValènciaValencia, Spain
| | - Pilar Soriano
- Jardín Botánico—ICBiBE, Universitat de ValènciaValencia, Spain
| | - María P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - José M. Bellés
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de ValènciaValencia, Spain
| | - Oscar Vicente
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|