1
|
Saha S, Spinelli L, Castro Mondragon JA, Kervadec A, Lynott M, Kremmer L, Roder L, Krifa S, Torres M, Brun C, Vogler G, Bodmer R, Colas AR, Ocorr K, Perrin L. Genetic architecture of natural variation of cardiac performance from flies to humans. eLife 2022; 11:82459. [DOI: 10.7554/elife.82459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Deciphering the genetic architecture of human cardiac disorders is of fundamental importance but their underlying complexity is a major hurdle. We investigated the natural variation of cardiac performance in the sequenced inbred lines of the Drosophila Genetic Reference Panel (DGRP). Genome-wide associations studies (GWAS) identified genetic networks associated with natural variation of cardiac traits which were used to gain insights as to the molecular and cellular processes affected. Non-coding variants that we identified were used to map potential regulatory non-coding regions, which in turn were employed to predict transcription factors (TFs) binding sites. Cognate TFs, many of which themselves bear polymorphisms associated with variations of cardiac performance, were also validated by heart-specific knockdown. Additionally, we showed that the natural variations associated with variability in cardiac performance affect a set of genes overlapping those associated with average traits but through different variants in the same genes. Furthermore, we showed that phenotypic variability was also associated with natural variation of gene regulatory networks. More importantly, we documented correlations between genes associated with cardiac phenotypes in both flies and humans, which supports a conserved genetic architecture regulating adult cardiac function from arthropods to mammals. Specifically, roles for PAX9 and EGR2 in the regulation of the cardiac rhythm were established in both models, illustrating that the characteristics of natural variations in cardiac function identified in Drosophila can accelerate discovery in humans.
Collapse
Affiliation(s)
- Saswati Saha
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Lionel Spinelli
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | | | - Anaïs Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Michaela Lynott
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Kremmer
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Laurence Roder
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Sallouha Krifa
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Magali Torres
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
| | - Christine Brun
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Karen Ocorr
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute
| | - Laurent Perrin
- Aix-Marseille University, INSERM, TAGC, Turing Center for Living systems
- CNRS
| |
Collapse
|
2
|
Saha S, Perrin L, Röder L, Brun C, Spinelli L. Epi-MEIF: detecting higher order epistatic interactions for complex traits using mixed effect conditional inference forests. Nucleic Acids Res 2022; 50:e114. [PMID: 36107776 PMCID: PMC9639209 DOI: 10.1093/nar/gkac715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 12/04/2022] Open
Abstract
Understanding the relationship between genetic variations and variations in complex and quantitative phenotypes remains an ongoing challenge. While Genome-wide association studies (GWAS) have become a vital tool for identifying single-locus associations, we lack methods for identifying epistatic interactions. In this article, we propose a novel method for higher-order epistasis detection using mixed effect conditional inference forest (epiMEIF). The proposed method is fitted on a group of single nucleotide polymorphisms (SNPs) potentially associated with the phenotype and the tree structure in the forest facilitates the identification of n-way interactions between the SNPs. Additional testing strategies further improve the robustness of the method. We demonstrate its ability to detect true n-way interactions via extensive simulations in both cross-sectional and longitudinal synthetic datasets. This is further illustrated in an application to reveal epistatic interactions from natural variations of cardiac traits in flies (Drosophila). Overall, the method provides a generalized way to identify higher-order interactions from any GWAS data, thereby greatly improving the detection of the genetic architecture underlying complex phenotypes.
Collapse
Affiliation(s)
- Saswati Saha
- Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France
| | - Laurent Perrin
- Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France
- CNRS, Marseille, France
| | - Laurence Röder
- Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France
| | - Christine Brun
- Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France
- CNRS, Marseille, France
| | - Lionel Spinelli
- Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France
| |
Collapse
|
3
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
4
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Lambers E, Kume T. Navigating the labyrinth of cardiac regeneration. Dev Dyn 2016; 245:751-61. [PMID: 26890576 DOI: 10.1002/dvdy.24397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/26/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022] Open
Abstract
Heart disease is the number one cause of morbidity and mortality in the world and is a major health and economic burden, costing the United States Health Care System more than $200 billion annually. A major cause of heart disease is the massive loss or dysfunction of cardiomyocytes caused by myocardial infarctions and hypertension. Due to the limited regenerative capacity of the heart, much research has focused on better understanding the process of differentiation toward cardiomyocytes. This review will highlight what is currently known about cardiac cell specification during mammalian development, areas of controversy, cellular sources of cardiomyocytes, and current and potential uses of stem cell derived cardiomyocytes for cardiac therapies. Developmental Dynamics 245:751-761, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Novak SM, Joardar A, Gregorio CC, Zarnescu DC. Regulation of Heart Rate in Drosophila via Fragile X Mental Retardation Protein. PLoS One 2015; 10:e0142836. [PMID: 26571124 PMCID: PMC4646288 DOI: 10.1371/journal.pone.0142836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023] Open
Abstract
RNA binding proteins play a pivotal role in post-transcriptional gene expression regulation, however little is understood about their role in cardiac function. The Fragile X (FraX) family of RNA binding proteins is most commonly studied in the context of neurological disorders, as mutations in Fragile X Mental Retardation 1 (FMR1) are the leading cause of inherited mental retardation. More recently, alterations in the levels of Fragile X Related 1 protein, FXR1, the predominant FraX member expressed in vertebrate striated muscle, have been linked to structural and functional defects in mice and zebrafish models. FraX proteins are established regulators of translation and are known to regulate specific targets in different tissues. To decipher the direct role of FraX proteins in the heart in vivo, we turned to Drosophila, which harbors a sole, functionally conserved and ubiquitously expressed FraX protein, dFmr1. Using classical loss of function alleles as well as muscle specific RNAi knockdown, we show that Drosophila FMRP, dFmr1, is required for proper heart rate during development. Functional analyses in the context of cardiac-specific dFmr1 knockdown by RNAi demonstrate that dFmr1 is required cell autonomously in cardiac cells for regulating heart rate. Interestingly, these functional defects are not accompanied by any obvious structural abnormalities, suggesting that dFmr1 may regulate a different repertoire of targets in Drosophila than in vertebrates. Taken together, our findings support the hypothesis that dFmr1 protein is essential for proper cardiac function and establish the fly as a new model for studying the role(s) of FraX proteins in the heart.
Collapse
Affiliation(s)
- Stefanie Mares Novak
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Archi Joardar
- Department of Molecular and Cellular Biology The University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, 85724, United States of America
| | - Daniela C. Zarnescu
- Department of Molecular and Cellular Biology The University of Arizona, Tucson, Arizona, 85721, United States of America
- * E-mail:
| |
Collapse
|
7
|
Talin is required to position and expand the luminal domain of the Drosophila heart tube. Dev Biol 2015; 405:189-201. [DOI: 10.1016/j.ydbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/22/2022]
|
8
|
Sharma R, Beer K, Iwanov K, Schmöhl F, Beckmann PI, Schröder R. The single fgf receptor gene in the beetle Tribolium castaneum codes for two isoforms that integrate FGF8- and Branchless-dependent signals. Dev Biol 2015; 402:264-75. [PMID: 25864412 DOI: 10.1016/j.ydbio.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 11/16/2022]
Abstract
The precise regulation of cell-cell communication by numerous signal-transduction pathways is fundamental for many different processes during embryonic development. One important signalling pathway is the evolutionary conserved fibroblast-growth-factor (FGF)-pathway that controls processes like cell migration, axis specification and mesoderm formation in vertebrate and invertebrate animals. In the model insect Drosophila, the FGF ligand / receptor combinations of FGF8 (Pyramus and Thisbe) / Heartless (Htl) and Branchless (Bnl) / Breathless (Btl) are required for the migration of mesodermal cells and for the formation of the tracheal network respectively with both the receptors functioning independently of each other. However, only a single fgf-receptor gene (Tc-fgfr) has been identified in the genome of the beetle Tribolium. We therefore asked whether both the ligands Fgf8 and Bnl could transduce their signal through a common FGF-receptor in Tribolium. Indeed, we found that the function of the single Tc-fgfr gene is essential for mesoderm differentiation as well as for the formation of the tracheal network during early development. Ligand specific RNAi for Tc-fgf8 and Tc-bnl resulted in two distinct non-overlapping phenotypes of impaired mesoderm differentiation and abnormal formation of the tracheal network in Tc-fgf8- and Tc-bnl(RNAi) embryos respectively. We further show that the single Tc-fgfr gene encodes at least two different receptor isoforms that are generated through alternative splicing. We in addition demonstrate through exon-specific RNAi their distinct tissue-specific functions. Finally, we discuss the structure of the fgf-receptor gene from an evolutionary perspective.
Collapse
Affiliation(s)
- Rahul Sharma
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Beer
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Katharina Iwanov
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Felix Schmöhl
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Paula Indigo Beckmann
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany
| | - Reinhard Schröder
- University of Rostock, Biological Sciences, Department of Genetics, Albert-Einsteinstr. 3, 18059 Rostock, Germany.
| |
Collapse
|
9
|
Shrinet J, Nandal UK, Adak T, Bhatnagar RK, Sunil S. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection. PLoS One 2014; 9:e114461. [PMID: 25474020 PMCID: PMC4256432 DOI: 10.1371/journal.pone.0114461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023] Open
Abstract
Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.
Collapse
Affiliation(s)
- Jatin Shrinet
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Umesh Kumar Nandal
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, the Netherlands
| | - Tridibes Adak
- National Institute of Malaria Research, New Delhi, India
| | - Raj K. Bhatnagar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Potier D, Seyres D, Guichard C, Iche-Torres M, Aerts S, Herrmann C, Perrin L. Identification of cis-regulatory modules encoding temporal dynamics during development. BMC Genomics 2014; 15:534. [PMID: 24972496 PMCID: PMC4097164 DOI: 10.1186/1471-2164-15-534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/13/2014] [Indexed: 12/02/2022] Open
Abstract
Background Developmental transcriptional regulatory networks are circuits of transcription factors (TFs) and cis-acting DNA elements (Cis Regulatory Modules, CRMs) that dynamically control expression of downstream genes. Comprehensive knowledge of these networks is an essential step towards our understanding of developmental processes. However, this knowledge is mostly based on genome-wide mapping of transcription factor binding sites, and therefore requires prior knowledge regarding the TFs involved in the network. Results Focusing on how temporal control of gene expression is integrated within a developmental network, we applied an in silico approach to discover regulatory motifs and CRMs of co-expressed genes, with no prior knowledge about the involved TFs. Our aim was to identify regulatory motifs and potential trans-acting factors which regulate the temporal expression of co-expressed gene sets during a particular process of organogenesis, namely adult heart formation in Drosophila. Starting from whole genome tissue specific expression dynamics, we used an in silico method, cisTargetX, to predict TF binding motifs and CRMs. Potential Nuclear Receptor (NR) binding motifs were predicted to control the temporal expression profile of a gene set with increased expression levels during mid metamorphosis. The predicted CRMs and NR motifs were validated in vivo by reporter gene essays. In addition, we provide evidence that three NRs modulate CRM activity and behave as temporal regulators of target enhancers. Conclusions Our approach was successful in identifying CRMs and potential TFs acting on the temporal regulation of target genes. In addition, our results suggest a modular architecture of the regulatory machinery, in which the temporal and spatial regulation can be uncoupled and encoded by distinct CRMs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-534) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32:1805-16. [PMID: 23756463 PMCID: PMC3981183 DOI: 10.1038/emboj.2013.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023] Open
Abstract
Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non-coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.
Collapse
|