1
|
Zhang N, Zhao P, Zhang W, Wang H, Wang K, Wang X, Zhang Z, Tan N, Chen L. A chromosome-level genome of Lobelia seguinii provides insights into the evolution of Campanulaceae and the lobeline biosynthesis. Genomics 2025; 117:110979. [PMID: 39675685 DOI: 10.1016/j.ygeno.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Lobelia seguinii is a plant with great ecological and medicinal value and belongs to Campanulaceae. Lobelia contains lobeline, a well-known compound used to treat respiratory diseases. Nevertheless, lobeline biosynthesis needs further exploration. Moreover, whole-genome duplication (WGD) and karyotype evolution within Campanulaceae still need to be better understood. In this study, we obtained a chromosome-level genome of L. seguinii with a size of 1.4 Gb and 38253 protein-coding genes. Analyses revealed two WGDs within Campanulaceae, one at the most recent common ancestor (MRCA) of Campanula and Adenophora, and another at the MRCA of Lobelioideae. Analyses further revealed that the karyotype of Platycodon grandiflorus represents the ancient type within Asterales. We proposed eight enzymes involved in the lobeline biosynthesis pathway of L. seguinii. Molecular cloning and heterologous expression of phenylalanine ammonia-lyase (PAL), a candidate enzyme involved in the first step of lobeline biosynthesis, verified its function to catalyze the deamination of phenylalanine to cinnamic acid. This study sheds light on the evolution of Campanulaceae and lobeline biosynthesis.
Collapse
Affiliation(s)
- Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Puguang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenda Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangyu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhanjiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China.
| | - Ninghua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Wang J, Song B, Yang M, Hu F, Qi H, Zhang H, Jia Y, Li Y, Wang Z, Wang X. Deciphering recursive polyploidization in Lamiales and reconstructing their chromosome evolutionary trajectories. PLANT PHYSIOLOGY 2024; 195:2143-2157. [PMID: 38482951 DOI: 10.1093/plphys/kiae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 06/30/2024]
Abstract
Lamiales is an order of core eudicots with abundant diversity, and many Lamiales plants have important medicinal and ornamental values. Here, we comparatively reanalyzed 11 Lamiales species with well-assembled genome sequences and found evidence that Lamiales plants, in addition to a hexaploidization or whole-genome triplication (WGT) shared by core eudicots, experienced further polyploidization events, establishing new groups in the order. Notably, we identified a whole-genome duplication (WGD) occurred just before the split of Scrophulariaceae from the other Lamiales families, such as Acanthaceae, Bignoniaceae, and Lamiaceae, suggesting its likely being the causal reason for the establishment and fast divergence of these families. We also found that a WGT occurred ∼68 to 78 million years ago (Mya), near the split of Oleaceae from the other Lamiales families, implying that it may have caused their fast divergence and the establishment of the Oleaceae family. Then, by exploring and distinguishing intra- and intergenomic chromosomal homology due to recursive polyploidization and speciation, respectively, we inferred that the Lamiales ancestral cell karyotype had 11 proto-chromosomes. We reconstructed the evolutionary trajectories from these proto-chromosomes to form the extant chromosomes in each Lamiales plant under study. We must note that most of the inferred 11 proto-chromosomes, duplicated during a WGD thereafter, have been well preserved in jacaranda (Jacaranda mimosifolia) genome, showing the credibility of the present inference implementing a telomere-centric chromosome repatterning model. These efforts are important to understand genome repatterning after recursive polyploidization, especially shedding light on the origin of new plant groups and angiosperm cell karyotype evolution.
Collapse
Affiliation(s)
- Jiangli Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Bowen Song
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Minran Yang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Fubo Hu
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huilong Qi
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Huizhe Zhang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuelong Jia
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yingjie Li
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Zhenyi Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xiyin Wang
- School of Public Health, School of Life Science, and College of Mathematics and Sciences, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
3
|
Li W, Chen X, Yu J, Zhu Y. Upgraded durian genome reveals the role of chromosome reshuffling during ancestral karyotype evolution, lignin biosynthesis regulation, and stress tolerance. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1266-1279. [PMID: 38763999 DOI: 10.1007/s11427-024-2580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/21/2024]
Abstract
Durian (Durio zibethinus) is a tropical fruit that has a unique flavor and aroma. It occupies a significant phylogenetic position within the Malvaceae family. Extant core-eudicot plants are reported to share seven ancestral karyotypes that have undergone reshuffling, resulting in an abundant genomic diversity. However, the ancestral karyotypes of the Malvaceae family, as well as the evolution trajectory leading to the 28 chromosomes in durian, remain poorly understood. Here, we report the high-quality assembly of the durian genome with comprehensive comparative genomic analyses. By analyzing the collinear blocks between cacao and durian, we inferred 11 Malvaceae ancestral karyotypes. These blocks were present in a single-copy form in cacao and mainly in triplicates in durian, possibly resulting from a recent whole genome triplication (WGT) event that led to hexaploidization of the durian genome around 20 (17-24) million years ago. A large proportion of the duplicated genes in durian, such as those involved in the lignin biosynthesis module for phenylpropane biosynthesis, are derived directly from whole genome duplication, which makes it an important force in reshaping its genomic architecture. Transcriptome studies have revealed that genes involved in feruloyl-CoA formations were highly preferentially expressed in fruit peels, indicating that the thorns produced on durian fruit may comprise guaiacyl and syringyl lignins. Among all the analyzed transcription factors (TFs), members of the heat shock factor family (HSF) were the most significantly upregulated under heat stress. All subfamilies of genes encoding heat shock proteins (HSPs) in the durian genome appear to have undergone expansion. The potential interactions between HSF Dzi05.397 and HSPs were examined and experimentally verified. Our study provides a high-quality durian genome and reveals the reshuffling mechanism of ancestral Malvaceae chromosomes to produce the durian genome. We also provide insights into the mechanism underlying lignin biosynthesis and heat stress tolerance.
Collapse
Affiliation(s)
- Wanwan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xin Chen
- The State Key Laboratory of Protein and Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jianing Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Yuxian Zhu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Dar SA, Ahmad I, Ahmed I, Kaur H, Khursheed S, Nisar K, Magray AR, Chishti MZ. Strategies for describing myxozoan pathogens, dreadful fish diseases in aquaculture. Microb Pathog 2024; 187:106512. [PMID: 38154451 DOI: 10.1016/j.micpath.2023.106512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/23/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Myxozoans are obligate endoparasites, cosmopolitan in distribution with both vertebrate and invertebrate hosts. Their myxospores consist of shell valves, polar capsules with coiled polar tubules that are extrudible, and infective amoeboid germs. Myxozoan parasites are most abundant, and due to their increasing number in recent years, they can pose an emerging threat to the fish industry worldwide. Hence, the immediate need is to devise a strategy to understand and detect parasites and parasitism. They may proliferate to different organs with the advancement of infection. This all warrants the development/devising of strategies and results of integrative studies in order to identify these dreadful parasites and resolve taxonomic issues. Different methods whether classical methods including gross morphology or advanced methods such as electron microscopy (SEM, TEM, STEM), Confocal laser scanning microscopy (CLSM), histopathological studies, site preference, host and tissue specificity, a molecular approach using new markers can be clubbed for identification because these parasites are hidden and are difficult to recognize. This group was earlier classified only on the basis of myxospores morphology, but due to the high structural variability of this group advanced methods and approaches have to be implied which can minimize the problems in assigning new species.
Collapse
Affiliation(s)
- Shoaib Ali Dar
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Ishtiyaq Ahmad
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Srinagar, 190006, India.
| | - Imtiaz Ahmed
- Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Srinagar, 190006, India
| | - Harpreet Kaur
- Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Saba Khursheed
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kamran Nisar
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - Aqib Rehman Magray
- Centre of Research for Development, University of Kashmir, Srinagar, 190006, India
| | - M Z Chishti
- Department of Zoology, Central University of Kashmir, 191131, India
| |
Collapse
|
5
|
Siddiqui MN, Pandey K, Bhadhury SK, Sadeqi B, Schneider M, Sanchez-Garcia M, Stich B, Schaaf G, Léon J, Ballvora A. Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. THE NEW PHYTOLOGIST 2023; 238:2175-2193. [PMID: 36808608 DOI: 10.1111/nph.18820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/13/2023] [Indexed: 05/04/2023]
Abstract
Understanding the genetic and molecular function of nitrate sensing and acquisition across crop species will accelerate breeding of cultivars with improved nitrogen use efficiency (NUE). Here, we performed a genome-wide scan using wheat and barley accessions characterized under low and high N inputs that uncovered the NPF2.12 gene, encoding a homolog of the Arabidopsis nitrate transceptor NRT1.6 and other low-affinity nitrate transporters that belong to the MAJOR FACILITATOR SUPERFAMILY. Next, it is shown that variations in the NPF2.12 promoter correlated with altered NPF2.12 transcript levels where decreased gene expression was measured under low nitrate availability. Multiple field trials revealed a significantly enhanced N content in leaves and grains and NUE in the presence of the elite allele TaNPF2.12TT grown under low N conditions. Furthermore, the nitrate reductase encoding gene NIA1 was up-regulated in npf2.12 mutant upon low nitrate concentrations, thereby resulting in elevated levels of nitric oxide (NO) production. This increase in NO correlated with the higher root growth, nitrate uptake, and N translocation observed in the mutant when compared to wild-type. The presented data indicate that the elite haplotype alleles of NPF2.12 are convergently selected in wheat and barley that by inactivation indirectly contribute to root growth and NUE by activating NO signaling under low nitrate conditions.
Collapse
Affiliation(s)
- Md Nurealam Siddiqui
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Kailash Pandey
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Suzan Kumer Bhadhury
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Bahman Sadeqi
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| | - Michael Schneider
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| | - Miguel Sanchez-Garcia
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, 10101, Morocco
| | - Benjamin Stich
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gabriel Schaaf
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Karlrobert-Kreiten-Str. 13, Bonn, D-53115, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Klein-Altendorf 2, Rheinbach, 53359, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation (INRES)-Plant Breeding, University of Bonn, Katzenburgweg 5, Bonn, D-53115, Germany
| |
Collapse
|
6
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1243-1266. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Wang F, Zhang R, Sun X, Wang J, Liu H, Zhang K, Wang C. An intelligent recognition method of chromosome rearrangement patterns based on information entropy. Sci Rep 2022; 12:19707. [PMID: 36385139 PMCID: PMC9668828 DOI: 10.1038/s41598-022-22046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Chromosome rearrangements play an important role in the speciation of plants and animals, and the recognition of chromosome rearrangement patterns is helpful to elucidate the mechanism of species differentiation at the chromosome level. However, the existing chromosome rearrangement recognition methods have some major limitations, such as low quality, barriers to parental selection, and inability to identify specific rearrangement patterns. Based on the whole genome protein sequences, we constructed the combined figure according to the slope of the collinear fragment, the number of homologous genes, the coordinates in the top left and bottom right of the collinear fragment. The standardized combination figure is compared with the four standard pattern figures, and then combined with the information entropy analysis strategy to automatically classify the chromosome images and identify the chromosome rearrangement pattern. This paper proposes an automatic karyotype analysis method EntroCR (intelligent recognition method of chromosome rearrangement based on information entropy), which integrates rearrangement pattern recognition, result recommendation and related chromosome determination, so as to infer the evolution process of ancestral chromosomes to the existing chromosomes. Validation experiments were conducted using whole-genome data of Gossypium raimondii and Gossypium arboreum, Oryza sativa and Sorghum bicolor. The conclusions were consistent with previous results. EntroCR provides a reference for researchers in species evolution and molecular marker assisted breeding as well as new methods for analyzing karyotype evolution in other species.
Collapse
Affiliation(s)
- Fushun Wang
- grid.274504.00000 0001 2291 4530College of Information Science and Technology, Hebei Agricultural University, Baoding, 071000 People’s Republic of China ,grid.274504.00000 0001 2291 4530Hebei Key Laboratory of Agricultural Big Data, Baoding, 071000 People’s Republic of China
| | - Ruolan Zhang
- grid.274504.00000 0001 2291 4530College of Information Science and Technology, Hebei Agricultural University, Baoding, 071000 People’s Republic of China
| | - Xiaohua Sun
- grid.484109.00000 0004 1758 9755Department of Digital Media, Hebei Software Institute, Baoding, 071000 People’s Republic of China
| | - Junhao Wang
- grid.274504.00000 0001 2291 4530College of Information Science and Technology, Hebei Agricultural University, Baoding, 071000 People’s Republic of China
| | - Hongquan Liu
- grid.274504.00000 0001 2291 4530Department of Urban and Rural Construction, Hebei Agricultural University, Baoding, 071000 People’s Republic of China
| | - Kang Zhang
- grid.274504.00000 0001 2291 4530College of Life Science, Hebei Agricultural University, Baoding, 071000 People’s Republic of China ,grid.274504.00000 0001 2291 4530State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000 People’s Republic of China ,grid.274504.00000 0001 2291 4530Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000 People’s Republic of China
| | - Chunyang Wang
- grid.274504.00000 0001 2291 4530College of Life Science, Hebei Agricultural University, Baoding, 071000 People’s Republic of China ,grid.274504.00000 0001 2291 4530State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071000 People’s Republic of China
| |
Collapse
|
8
|
Wang Z, Li Y, Sun P, Zhu M, Wang D, Lu Z, Hu H, Xu R, Zhang J, Ma J, Liu J, Yang Y. A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots. BMC Biol 2022; 20:216. [PMID: 36195948 PMCID: PMC9533543 DOI: 10.1186/s12915-022-01420-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. RESULTS Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. CONCLUSIONS Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.
Collapse
Affiliation(s)
- Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Dandan Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Hongyin Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Renping Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianxiang Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yongzhi Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Shi T, Huneau C, Zhang Y, Li Y, Chen J, Salse J, Wang Q. The slow-evolving Acorus tatarinowii genome sheds light on ancestral monocot evolution. NATURE PLANTS 2022; 8:764-777. [PMID: 35835857 PMCID: PMC9300462 DOI: 10.1038/s41477-022-01187-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/30/2022] [Indexed: 05/03/2023]
Abstract
Monocots are one of the most diverse groups of flowering plants, and tracing the evolution of their ancestral genome into modern species is essential for understanding their evolutionary success. Here, we report a high-quality assembly of the Acorus tatarinowii genome, a species that diverged early from all the other monocots. Genome-wide comparisons with a range of representative monocots characterized Acorus as a slowly evolved genome with one whole-genome duplication. Our inference of the ancestral monocot karyotypes provides new insights into the chromosomal evolutionary history assigned to modern species and reveals the probable molecular functions and processes related to the early adaptation of monocots to wetland or aquatic habitats (that is, low levels of inorganic phosphate, parallel leaf venation and ephemeral primary roots). The evolution of ancestral gene order in monocots is constrained by gene structural and functional features. The newly obtained Acorus genome offers crucial evidence for delineating the origin and diversification of monocots, including grasses.
Collapse
Affiliation(s)
- Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Cécile Huneau
- UCA, INRAE, UMR 1095 GDEC (Genetics, Diversity & Ecophysiology of Cereals), Clermont-Ferrand, France
| | - Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.
| | - Jérôme Salse
- UCA, INRAE, UMR 1095 GDEC (Genetics, Diversity & Ecophysiology of Cereals), Clermont-Ferrand, France.
| | - Qingfeng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
10
|
Qi H, Xia FN, Xiao S, Li J. TRAF proteins as key regulators of plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:431-448. [PMID: 34676666 DOI: 10.1111/jipb.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) proteins are conserved in higher eukaryotes and play key roles in transducing cellular signals across different organelles. They are characterized by their C-terminal region (TRAF-C domain) containing seven to eight anti-parallel β-sheets, also known as the meprin and TRAF-C homology (MATH) domain. Over the past few decades, significant progress has been made toward understanding the diverse roles of TRAF proteins in mammals and plants. Compared to other eukaryotic species, the Arabidopsis thaliana and rice (Oryza sativa) genomes encode many more TRAF/MATH domain-containing proteins; these plant proteins cluster into five classes: TRAF/MATH-only, MATH-BPM, MATH-UBP (ubiquitin protease), Seven in absentia (SINA), and MATH-Filament and MATH-PEARLI-4 proteins, suggesting parallel evolution of TRAF proteins in plants. Increasing evidence now indicates that plant TRAF proteins form central signaling networks essential for multiple biological processes, such as vegetative and reproductive development, autophagosome formation, plant immunity, symbiosis, phytohormone signaling, and abiotic stress responses. Here, we summarize recent advances and highlight future prospects for understanding on the molecular mechanisms by which TRAF proteins act in plant development and stress responses.
Collapse
Affiliation(s)
- Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shi Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
11
|
Li D, Qian J, Li W, Yu N, Gan G, Jiang Y, Li W, Liang X, Chen R, Mo Y, Lian J, Niu Y, Wang Y. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Mol Ecol Resour 2021; 21:1274-1286. [PMID: 33445226 DOI: 10.1111/1755-0998.13321] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022]
Abstract
The eggplant (Solanum melongena L.) is one of the most important Solanaceae crops, ranking third for total production and economic value in its genus. Herein, we report a high-quality, chromosome-scale eggplant reference genome sequence of 1155.8 Mb, with an N50 of 93.9 Mb, which was assembled by combining PacBio long reads and Hi-C sequencing data. Repetitive sequences occupied 70.1% of the assembly length, and 35,018 high-confidence protein-coding genes were annotated based on multiple sources. Comparative analysis revealed 646 species-specific families and 364 positive selection genes, conferring distinguishing traits on the eggplant. We performed genome-wide comparative identification of disease resistance genes and discovered an expanded gene family of bacterial spot resistance in eggplant and pepper, but not in tomato and potato. The genes involved in chlorogenic acid synthesis were comprehensively characterized. Highly similar chromosomal distribution patterns of polyphenol oxidase genes were observed in the eggplant, tomato, and potato genomes. The eggplant reference genome sequence will not only facilitate evolutionary studies of the Solanaceae but also facilitate their breeding and improvement.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Jun Qian
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Weiliu Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Ning Yu
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xuyu Liang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Riyuan Chen
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongcheng Mo
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| | | | | | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
12
|
Zhang Y, Gao H, Li H, Guo J, Ouyang B, Wang M, Xu Q, Wang J, Lv M, Guo X, Liu Q, Wei L, Ren H, Xi Y, Guo Y, Ren B, Pan S, Liu C, Ding X, Xiang H, Yu Y, Song Y, Meng L, Liu S, Wang J, Jiang Y, Shi J, Liu S, Sabir JS, Sabir MJ, Khan M, Hajrah NH, Ming-Yuen Lee S, Xu X, Yang H, Wang J, Fan G, Yang N, Liu X. The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish. iScience 2020; 23:101754. [PMID: 33251490 PMCID: PMC7677710 DOI: 10.1016/j.isci.2020.101754] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/17/2020] [Accepted: 10/28/2020] [Indexed: 01/27/2023] Open
Abstract
Chondrichthyan (cartilaginous fish) occupies a key phylogenetic position and is important for investigating evolutionary processes of vertebrates. However, limited whole genomes impede our in-depth knowledge of important issues such as chromosome evolution and immunity. Here, we report the chromosome-level genome of white-spotted bamboo shark. Combing it with other shark genomes, we reconstructed 16 ancestral chromosomes of bamboo shark and illustrate a dynamic chromosome rearrangement process. We found that genes on 13 fast-evolving chromosomes can be enriched in immune-related pathways. And two chromosomes contain important genes that can be used to develop single-chain antibodies, which were shown to have high affinity to human disease markers by using enzyme-linked immunosorbent assay. We also found three bone formation-related genes were lost due to chromosome rearrangements. Our study highlights the importance of chromosome rearrangements, providing resources for understanding of cartilaginous fish diversification and potential application of single-chain antibodies.
Collapse
Affiliation(s)
- Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Haoyang Gao
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Hanbo Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiao Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Bingjie Ouyang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Meiniang Wang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiwu Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jiahao Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Meiqi Lv
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Likun Wei
- City University of Hongkong, Kowloon, Hongkong SAR
| | - Han Ren
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yang Xi
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yang Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Bingzhao Ren
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Chuxin Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Xiaoyan Ding
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Haitao Xiang
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yingjia Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Lingfeng Meng
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jun Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Yuan Jiang
- BGI-Shenzhen, Shenzhen 518083, China
- Complete Genomics, Inc., San Jose, CA 95134, USA
| | - Jiahai Shi
- City University of Hongkong, Kowloon, Hongkong SAR
| | - Shiping Liu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jamal S.M. Sabir
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Mumdooh J. Sabir
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Muhummadh Khan
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Nahid H. Hajrah
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Naibo Yang
- BGI-Shenzhen, Shenzhen 518083, China
- Complete Genomics, Inc., San Jose, CA 95134, USA
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
13
|
Shang J, Tian J, Cheng H, Yan Q, Li L, Jamal A, Xu Z, Xiang L, Saski CA, Jin S, Zhao K, Liu X, Chen L. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biol 2020; 21:200. [PMID: 32778152 PMCID: PMC7419205 DOI: 10.1186/s13059-020-02088-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Wintersweet (Chimonanthus praecox), an important ornamental plant, has evolved unique fragrant aroma and winter-flowering properties, which are critical for its successful sexual reproduction. However, the molecular mechanisms underlying these traits are largely unknown in this species. In addition, wintersweet is also a typical representative species of the magnoliids, where the phylogenetic position of which relative to eudicots and monocots has not been conclusively resolved. RESULTS Here, we present a chromosome-level wintersweet genome assembly with a total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Phylogenetic analyses of 17 representative angiosperm genomes suggest that Magnoliids and eudicots are sister to monocots. Whole-genome duplication signatures reveal two major duplication events in the evolutionary history of the wintersweet genome, with an ancient one shared by Laurales, and a more recent one shared by the Calycantaceae. Whole-genome duplication and tandem duplication events have significant impacts on copy numbers of genes related to terpene and benzenoid/phenylpropanoid (the main floral scent volatiles) biosynthesis, which may contribute to the characteristic aroma formation. An integrative analysis combining cytology with genomic and transcriptomic data reveals biological characteristics of wintersweet, such as floral transition in spring, floral organ specification, low temperature-mediated floral bud break, early blooming in winter, and strong cold tolerance. CONCLUSIONS These findings provide insights into the evolutionary history of wintersweet and the relationships among the Magnoliids, monocots, and eudicots; the molecular basis underlying floral scent biosynthesis; and winter flowering, and highlight the utility of multi-omics data in deciphering important ornamental traits in wintersweet.
Collapse
Affiliation(s)
- Junzhong Shang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Jingpu Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Huihui Cheng
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Qiaomu Yan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Lai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Abbas Jamal
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, 843300 China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | | | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, Xinjiang, 843300 China
| | - Kaige Zhao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Xiuqun Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070 People’s Republic of China
| | - Longqing Chen
- Southwest Engineering Technology and Research Center of Landscape Architecture, State Forestry Administration, Southwest Forestry University, Kunming, Yunnan 650224 People’s Republic of China
| |
Collapse
|
14
|
Bauer N, Škiljaica A, Malenica N, Razdorov G, Klasić M, Juranić M, Močibob M, Sprunck S, Dresselhaus T, Leljak Levanić D. The MATH-BTB Protein TaMAB2 Accumulates in Ubiquitin-Containing Foci and Interacts With the Translation Initiation Machinery in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1469. [PMID: 31824527 PMCID: PMC6883508 DOI: 10.3389/fpls.2019.01469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
MATH-BTB proteins are known to act as substrate-specific adaptors of CUL3-based E3 ligases in the ubiquitin proteasome pathway. Their BTB domain binds to CUL3 scaffold proteins and the less conserved MATH domain targets a highly diverse collection of substrate proteins to promote their ubiquitination and subsequent degradation. In plants, a significant expansion of the MATH-BTB family occurred in the grasses. Here, we report analysis of TaMAB2, a MATH-BTB protein transiently expressed at the onset of embryogenesis in wheat. Due to difficulties in studying its role in zygotes and early embryos, we have overexpressed TaMAB2 in Arabidopsis to generate gain-of-function mutants and to elucidate interaction partners and substrates. Overexpression plants showed severe growth defects as well as disorganization of microtubule bundles indicating that TaMAB2 interacts with substrates in Arabidopsis. In tobacco BY-2 cells, TaMAB2 showed a microtubule and ubiquitin-associated cytoplasmic localization pattern in form of foci. Its direct interaction with CUL3 suggests functions in targeting specific substrates for ubiquitin-dependent degradation. Although direct interactions with tubulin could not be confimed, tandem affinity purification of TaMAB2 interactors point towards cytoskeletal proteins including tubulin and actin as well as the translation initiation machinery. The idenification of various subunits of eucaryotic translation initiation factors eIF3 and eIF4 as TaMAB2 interactors indicate regulation of translation initiation as a major function during onset of embryogenesis in plants.
Collapse
Affiliation(s)
- Nataša Bauer
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Andreja Škiljaica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Marija Klasić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Martina Juranić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Močibob
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dunja Leljak Levanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
15
|
Wang Z, Miao H, Liu J, Xu B, Yao X, Xu C, Zhao S, Fang X, Jia C, Wang J, Zhang J, Li J, Xu Y, Wang J, Ma W, Wu Z, Yu L, Yang Y, Liu C, Guo Y, Sun S, Baurens FC, Martin G, Salmon F, Garsmeur O, Yahiaoui N, Hervouet C, Rouard M, Laboureau N, Habas R, Ricci S, Peng M, Guo A, Xie J, Li Y, Ding Z, Yan Y, Tie W, D'Hont A, Hu W, Jin Z. Musa balbisiana genome reveals subgenome evolution and functional divergence. NATURE PLANTS 2019; 5:810-821. [PMID: 31308504 PMCID: PMC6784884 DOI: 10.1038/s41477-019-0452-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/20/2019] [Indexed: 05/19/2023]
Abstract
Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.
Collapse
Affiliation(s)
- Zhuo Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Chunyan Xu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Shancen Zhao
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, China
| | | | - Caihong Jia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyi Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianbin Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiashui Wang
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weihong Ma
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Lili Yu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yulan Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yu Guo
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Frederic Salmon
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Guadeloupe, France
| | - Olivier Garsmeur
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Nathalie Laboureau
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Remy Habas
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Sebastien Ricci
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Guadeloupe, France
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yin Li
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, France.
- AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Genetic Improvement of Bananas, Hainan province, Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
16
|
Plomion C, Aury JM, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G, Lesur I, Bartholomé J, Faivre-Rampant P, Kohler A, Leplé JC, Chantret N, Chen J, Diévart A, Alaeitabar T, Barbe V, Belser C, Bergès H, Bodénès C, Bogeat-Triboulot MB, Bouffaud ML, Brachi B, Chancerel E, Cohen D, Couloux A, Da Silva C, Dossat C, Ehrenmann F, Gaspin C, Grima-Pettenati J, Guichoux E, Hecker A, Herrmann S, Hugueney P, Hummel I, Klopp C, Lalanne C, Lascoux M, Lasserre E, Lemainque A, Desprez-Loustau ML, Luyten I, Madoui MA, Mangenot S, Marchal C, Maumus F, Mercier J, Michotey C, Panaud O, Picault N, Rouhier N, Rué O, Rustenholz C, Salin F, Soler M, Tarkka M, Velt A, Zanne AE, Martin F, Wincker P, Quesneville H, Kremer A, Salse J. Oak genome reveals facets of long lifespan. NATURE PLANTS 2018; 4:440-452. [PMID: 29915331 PMCID: PMC6086335 DOI: 10.1038/s41477-018-0172-3] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/08/2018] [Indexed: 05/18/2023]
Abstract
Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.
Collapse
Affiliation(s)
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | | | | | | | - Sébastien Faye
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Isabelle Lesur
- BIOGECO, INRA, Université de Bordeaux, Cestas, France
- HelixVenture, Mérignac, France
| | | | | | | | | | - Nathalie Chantret
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jun Chen
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anne Diévart
- CIRAD, UMR AGAP, Montpellier, France
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | | | - Valérie Barbe
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Caroline Belser
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | | | | | - Marie-Lara Bouffaud
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle/Saale, Germany
| | | | | | - David Cohen
- UMR Silva, INRA, Université de Lorraine, AgroPariTech, Nancy, France
| | - Arnaud Couloux
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Carole Dossat
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | - Christine Gaspin
- Plateforme bioinformatique Toulouse Midi-Pyrénées, INRA, Auzeville Castanet-Tolosan, France
| | | | | | - Arnaud Hecker
- IAM, INRA, Université de Lorraine, Champenoux, France
| | - Sylvie Herrmann
- German Centre for Integrative Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Irène Hummel
- UMR Silva, INRA, Université de Lorraine, AgroPariTech, Nancy, France
| | - Christophe Klopp
- Plateforme bioinformatique Toulouse Midi-Pyrénées, INRA, Auzeville Castanet-Tolosan, France
| | | | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eric Lasserre
- Université de Perpignan, UMR 5096, Perpignan, France
| | - Arnaud Lemainque
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | | | - Mohammed-Amin Madoui
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | | | - Jonathan Mercier
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Evry, France
| | | | | | | | | | - Olivier Rué
- Plateforme bioinformatique Toulouse Midi-Pyrénées, INRA, Auzeville Castanet-Tolosan, France
| | | | - Franck Salin
- BIOGECO, INRA, Université de Bordeaux, Cestas, France
| | - Marçal Soler
- Université de Toulouse, CNRS, UMR 5546, LRSV, Castanet-Tolosan, France
- Laboratori del Suro, University of Girona, Girona, Spain
| | - Mika Tarkka
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle/Saale, Germany
| | - Amandine Velt
- SVQV, Université de Strasbourg, INRA, Colmar, France
| | - Amy E Zanne
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François-Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université d'Evry, Université Paris-Saclay, Evry, France
| | | | | | | |
Collapse
|
17
|
Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M, Gundlach H, Van Bel M, Meyberg R, Vives C, Morata J, Symeonidi A, Hiss M, Muchero W, Kamisugi Y, Saleh O, Blanc G, Decker EL, van Gessel N, Grimwood J, Hayes RD, Graham SW, Gunter LE, McDaniel SF, Hoernstein SNW, Larsson A, Li FW, Perroud PF, Phillips J, Ranjan P, Rokshar DS, Rothfels CJ, Schneider L, Shu S, Stevenson DW, Thümmler F, Tillich M, Villarreal Aguilar JC, Widiez T, Wong GKS, Wymore A, Zhang Y, Zimmer AD, Quatrano RS, Mayer KFX, Goodstein D, Casacuberta JM, Vandepoele K, Reski R, Cuming AC, Tuskan GA, Maumus F, Salse J, Schmutz J, Rensing SA. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:515-533. [PMID: 29237241 DOI: 10.1111/tpj.13801] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 05/18/2023]
Abstract
The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
Collapse
Affiliation(s)
- Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Florent Murat
- INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, OT Gatersleben, D-06466, Stadt Seeland, Germany
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Fabian B Haas
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Mathieu Piednoel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, D-50829, Cologne, Germany
| | - Heidrun Gundlach
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Michiel Van Bel
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Rabea Meyberg
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Cristina Vives
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi Morata
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | | | - Manuel Hiss
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Omar Saleh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Guillaume Blanc
- Structural and Genomic Information Laboratory (IGS), Aix-Marseille Université, CNRS, UMR 7256 (IMM FR 3479), Marseille, France
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lee E Gunter
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Daniel S Rokshar
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, 94720-2465, USA
| | - Lucas Schneider
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | - Shengqiang Shu
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | | | - Fritz Thümmler
- Vertis Biotechnologie AG, Lise-Meitner-Str. 30, 85354, Freising, Germany
| | - Michael Tillich
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam-Golm, Germany
| | | | - Thomas Widiez
- Department of Plant Biology, University of Geneva, Sciences III, Geneva 4, CH-1211, Switzerland
- Department of Plant Biology & Pathology Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Ann Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yong Zhang
- Shenzhen Huahan Gene Life Technology Co. Ltd, Shenzhen, China
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralph S Quatrano
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- WZW, Technical University Munich, Munich, Germany
| | | | - Josep M Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Klaas Vandepoele
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Florian Maumus
- URGI, INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Jérome Salse
- INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals (GDEC), 5 Chemin de Beaulieu, 63100, Clermont-Ferrand, France
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schaenzlestr. 18, 79104, Freiburg, Germany
| |
Collapse
|
18
|
The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 2017; 546:148-152. [PMID: 28538728 DOI: 10.1038/nature22380] [Citation(s) in RCA: 447] [Impact Index Per Article: 55.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/16/2017] [Indexed: 12/30/2022]
Abstract
The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.
Collapse
|
19
|
Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 2017; 49:490-496. [DOI: 10.1038/ng.3813] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/14/2017] [Indexed: 01/24/2023]
|
20
|
El Baidouri M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 213:1477-1486. [PMID: 27551821 DOI: 10.1111/nph.14113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 05/26/2023]
Abstract
The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.
Collapse
Affiliation(s)
- Moaine El Baidouri
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Florent Murat
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Maeva Veyssiere
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Mélanie Molinier
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Raphael Flores
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Laura Burlot
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Michael Alaux
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Hadi Quesneville
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Caroline Pont
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| |
Collapse
|
21
|
Balsalobre TWA, da Silva Pereira G, Margarido GRA, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP, de Souza AP, Garcia AAF, Carneiro MS. GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 2017; 18:72. [PMID: 28077090 PMCID: PMC5225503 DOI: 10.1186/s12864-016-3383-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Sugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes. RESULTS We used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes. CONCLUSIONS This study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.
Collapse
Affiliation(s)
- Thiago Willian Almeida Balsalobre
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Guilherme da Silva Pereira
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Rodrigo Gazaffi
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Fernanda Zatti Barreto
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Carina Oliveira Anoni
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Cláudio Benício Cardoso-Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Estela Araújo Costa
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Melina Cristina Mancini
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Hermann Paulo Hoffmann
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Avenida Monteiro Lobato 255, Campinas, CEP 13083-862 São Paulo Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Avenida Candido Rondon 400, Campinas, CEP 13083-875 São Paulo Brazil
| | - Antonio Augusto Franco Garcia
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias 11, Piracicaba, CEP 13418-900 São Paulo Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Anhanguera, Km 174, Araras, CEP 13600-970 São Paulo Brazil
| |
Collapse
|
22
|
Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J. Combined Genomic and Genetic Data Integration of Major Agronomical Traits in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1843. [PMID: 29184557 PMCID: PMC5694560 DOI: 10.3389/fpls.2017.01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
The high resolution integration of bread wheat genetic and genomic resources accumulated during the last decades offers the opportunity to unveil candidate genes driving major agronomical traits to an unprecedented scale. We combined 27 public quantitative genetic studies and four genetic maps to deliver an exhaustive consensus map consisting of 140,315 molecular markers hosting 221, 73, and 82 Quantitative Trait Loci (QTL) for respectively yield, baking quality, and grain protein content (GPC) related traits. Projection of the consensus genetic map and associated QTLs onto the wheat syntenome made of 99,386 genes ordered on the 21 chromosomes delivered a complete and non-redundant repertoire of 18, 8, 6 metaQTLs for respectively yield, baking quality and GPC, altogether associated to 15,772 genes (delivering 28,630 SNP-based makers) including 37 major candidates. Overall, this study illustrates a translational research approach in transferring information gained from grass relatives to dissect the genomic regions hosting major loci governing key agronomical traits in bread wheat, their flanking markers and associated candidate genes to be now considered as a key resource for breeding programs.
Collapse
Affiliation(s)
- Umar M. Quraishi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- *Correspondence: Umar M. Quraishi ;
| | - Caroline Pont
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Qurat-ul Ain
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raphael Flores
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Laura Burlot
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Michael Alaux
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Jerome Salse
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- Jerome Salse
| |
Collapse
|
23
|
Wang J, Yu J, Sun P, Li Y, Xia R, Liu Y, Ma X, Yu J, Yang N, Lei T, Wang Z, Wang L, Ge W, Song X, Liu X, Sun S, Liu T, Jin D, Pan Y, Wang X. Comparative Genomics Analysis of Rice and Pineapple Contributes to Understand the Chromosome Number Reduction and Genomic Changes in Grasses. Front Genet 2016; 7:174. [PMID: 27757123 PMCID: PMC5047885 DOI: 10.3389/fgene.2016.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/13/2016] [Indexed: 11/13/2022] Open
Abstract
Rice is one of the most researched model plant, and has a genome structure most resembling that of the grass common ancestor after a grass common tetraploidization ∼100 million years ago. There has been a standing controversy whether there had been five or seven basic chromosomes, before the tetraploidization, which were tackled but could not be well solved for the lacking of a sequenced and assembled outgroup plant to have a conservative genome structure. Recently, the availability of pineapple genome, which has not been subjected to the grass-common tetraploidization, provides a precious opportunity to solve the above controversy and to research into genome changes of rice and other grasses. Here, we performed a comparative genomics analysis of pineapple and rice, and found solid evidence that grass-common ancestor had 2n = 2x = 14 basic chromosomes before the tetraploidization and duplicated to 2n = 4x = 28 after the event. Moreover, we proposed that enormous gene missing from duplicated regions in rice should be explained by an allotetraploid produced by prominently divergent parental lines, rather than gene losses after their divergence. This means that genome fractionation might have occurred before the formation of the allotetraploid grass ancestor.
Collapse
Affiliation(s)
- Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Jiaxiang Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Pengchuan Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Ruiyan Xia
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Yinzhe Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Xuelian Ma
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Jigao Yu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Nanshan Yang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Weina Ge
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Xiaoming Song
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Xiaojian Liu
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Sangrong Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Tao Liu
- College of Science, North China University of Science and Technology Tangshan, China
| | - Dianchuan Jin
- College of Science, North China University of Science and Technology Tangshan, China
| | - Yuxin Pan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| | - Xiyin Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology Tangshan, China
| |
Collapse
|
24
|
Salse J. Ancestors of modern plant crops. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:134-42. [PMID: 26985732 DOI: 10.1016/j.pbi.2016.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 05/19/2023]
Abstract
Recent accumulation of plant genomic resources offers the opportunity to compare modern genomes and model their evolutionary history from their reconstructed Most Recent Common Ancestors (MRCAs) that can be used as a guide to unveil the forces driving the evolutionary success of angiosperms and ultimately to perform applied translational research from models to crops. This article reviews the current state of art of recent structural comparative genomics studies through ancestral genome reconstruction, that is, the field of in silico paleogenomics.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Laboratory PaleoEVO 'Paleogenomics & Evolution', 5 chemin de Beaulieu, 63100 Clermont Ferrand, France(1).
| |
Collapse
|
25
|
Wang X, Wang J, Jin D, Guo H, Lee TH, Liu T, Paterson AH. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events. MOLECULAR PLANT 2015; 8:885-98. [PMID: 25896453 DOI: 10.1016/j.molp.2015.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/13/2015] [Accepted: 04/06/2015] [Indexed: 05/06/2023]
Abstract
Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics.
Collapse
Affiliation(s)
- Xiyin Wang
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Jingpeng Wang
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Dianchuan Jin
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA
| | - Tao Liu
- Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063000, China; College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Athens, GA 30602, USA; Department of Plant Biology, University of Georgia, Athens, GA 30602, USA; Department of Crop and Soil Science, University of Georgia, Athens, GA 30602, USA; Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
26
|
Murat F, Zhang R, Guizard S, Gavranović H, Flores R, Steinbach D, Quesneville H, Tannier E, Salse J. Karyotype and gene order evolution from reconstructed extinct ancestors highlight contrasts in genome plasticity of modern rosid crops. Genome Biol Evol 2015; 7:735-49. [PMID: 25637221 PMCID: PMC5322550 DOI: 10.1093/gbe/evv014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We used nine complete genome sequences, from grape, poplar, Arabidopsis, soybean, lotus, apple, strawberry, cacao, and papaya, to investigate the paleohistory of rosid crops. We characterized an ancestral rosid karyotype, structured into 7/21 protochomosomes, with a minimal set of 6,250 ordered protogenes and a minimum physical coding gene space of 50 megabases. We also proposed ancestral karyotypes for the Caricaceae, Brassicaceae, Malvaceae, Fabaceae, Rosaceae, Salicaceae, and Vitaceae families with 9, 8, 10, 6, 12, 9, 12, and 19 protochromosomes, respectively. On the basis of these ancestral karyotypes and present-day species comparisons, we proposed a two-step evolutionary scenario based on allohexaploidization involving the newly characterized A, B, and C diploid progenitors leading to dominant (stable) and sensitive (plastic) genomic compartments in any modern rosid crops. Finally, a new user-friendly online tool, “DicotSyntenyViewer” (available from http://urgi.versailles.inra.fr/synteny-dicot), has been made available for accurate translational genomics in rosids.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Rongzhi Zhang
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Sébastien Guizard
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| | - Haris Gavranović
- Faculty of Engineering and Natural Sciences, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Raphael Flores
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Delphine Steinbach
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Hadi Quesneville
- INRA 'Unité de Recherche en Génomique et Informatique', Centre INRA de Versailles, Versailles, France
| | - Eric Tannier
- INRIA Rhône-Alpes, Université de Lyon 1, CNRS UMR5558, Laboratoire Biométrie et Biologie Évolutive, Villeurbanne Cedex, France
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Clermont Ferrand, France
| |
Collapse
|
27
|
Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. FRONTIERS IN PLANT SCIENCE 2015; 6:743. [PMID: 26442056 PMCID: PMC4585131 DOI: 10.3389/fpls.2015.00743] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011-2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development.
Collapse
Affiliation(s)
- Qurat-ul Ain
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Awais Rasheed
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Alia Anwar
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Tariq Mahmood
- Higher Education Commission, Research and DevelopmentIslamabad, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT), C/O National Agriculture Research CenterIslamabad, Pakistan
| | - Tariq Mahmood
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Umar M. Quraishi
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
- *Correspondence: Umar M. Quraishi, Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
28
|
Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, Steinbach D, Quesneville H, Cooke R, Salse J. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol 2014; 6:12-33. [PMID: 24317974 PMCID: PMC3914691 DOI: 10.1093/gbe/evt200] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named "PlantSyntenyViewer," available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC (Génétique, Diversité et Ecophysiologie des Céréales), Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, Li J. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC PLANT BIOLOGY 2014; 14:190. [PMID: 25059596 PMCID: PMC4222257 DOI: 10.1186/s12870-014-0190-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The understanding of sugarcane genetics has lagged behind that of other members of the Poaceae family such as wheat, rice, barley and sorghum mainly due to the complexity, size and polyploidization of the genome. We have used the genetic map of a sugarcane cultivar to generate a consensus genetic map to increase genome coverage for comparison to the sorghum genome. We have utilized the recently developed sugarcane DArT array to increase the marker density within the genetic map. The sequence of these DArT markers plus SNP and EST-SSR markers was then used to form a bridge to the sorghum genomic sequence by BLAST alignment to start to unravel the complex genomic architecture of sugarcane. RESULTS Comparative mapping revealed that certain sugarcane chromosomes show greater levels of synteny to sorghum than others. On a macrosyntenic level a good collinearity was observed between sugarcane and sorghum for 4 of the 8 homology groups (HGs). These 4 HGs were syntenic to four sorghum chromosomes with from 98% to 100% of these chromosomes covered by these linked markers. Four major chromosome rearrangements were identified between the other four sugarcane HGs and sorghum, two of which were condensations of chromosomes reducing the basic chromosome number of sugarcane from x = 10 to x = 8. This macro level of synteny was transferred to other members within the Poaceae family such as maize to uncover the important evolutionary relationships that exist between sugarcane and these species. CONCLUSIONS Comparative mapping of sugarcane to the sorghum genome has revealed new information on the genome structure of sugarcane which will help guide identification of important genes for use in sugarcane breeding. Furthermore of the four major chromosome rearrangements identified in this study, three were common to maize providing some evidence that chromosome reduction from a common paleo-ancestor of both maize and sugarcane was driven by the same translocation events seen in both species.
Collapse
Affiliation(s)
- Karen S Aitken
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Meredith D McNeil
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Paul J Berkman
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| | - Scott Hermann
- BSES Limited, 50 Meiers Road, Indooroopilly, Brisbane 4068, QLD, Australia
| | - Andrzej Kilian
- Diversity Arrays P/L, 1 Wilf Crane Crescent, Yarralumla, Canberra 2600, ACT, Australia
| | - Peter C Bundock
- Southern Cross University, Ctr Plant Conservation Genetics, Lismore 2480, NSW, Australia
| | - Jingchuan Li
- CSIRO Plant Industry, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane 4067, QLD, Australia
| |
Collapse
|
30
|
|
31
|
Zhang R, Murat F, Pont C, Langin T, Salse J. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 2014; 15:187. [PMID: 24617999 PMCID: PMC4234491 DOI: 10.1186/1471-2164-15-187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/25/2014] [Indexed: 01/28/2023] Open
Abstract
Background The recent access to a large set of genome sequences, combined with a robust evolutionary scenario of modern monocot (i.e. grasses) and eudicot (i.e. rosids) species from their founder ancestors, offered the opportunity to gain insights into disease resistance genes (R-genes) evolutionary plasticity. Results We unravel in the current article (i) a R-genes repertoire consisting in 7883 for monocots and 15758 for eudicots, (ii) a contrasted R-genes conservation with 23.8% for monocots and 6.6% for dicots, (iii) a minimal ancestral founder pool of 384 R-genes for the monocots and 150 R-genes for the eudicots, (iv) a general pattern of organization in clusters accounting for more than 60% of mapped R-genes, (v) a biased deletion of ancestral duplicated R-genes between paralogous blocks possibly compensated by clusterization, (vi) a bias in R-genes clusterization where Leucine-Rich Repeats act as a ‘glue’ for domain association, (vii) a R-genes/miRNAs interome enriched toward duplicated R-genes. Conclusions Together, our data may suggest that R-genes family plasticity operated during plant evolution (i) at the structural level through massive duplicates loss counterbalanced by massive clusterization following polyploidization; as well as at (ii) the regulation level through microRNA/R-gene interactions acting as a possible source of functional diploidization of structurally retained R-genes duplicates. Such evolutionary shuffling events leaded to CNVs (i.e. Copy Number Variation) and PAVs (i.e. Presence Absence Variation) between related species operating in the decay of R-genes colinearity between plant species.
Collapse
Affiliation(s)
| | | | | | | | - Jerome Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', 5 chemin de Beaulieu, 63100 Clermont-Ferrand, France.
| |
Collapse
|
32
|
Juranić M, Dresselhaus T. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses. PLANT SIGNALING & BEHAVIOR 2014; 9:e28242. [PMID: 24614623 PMCID: PMC4091423 DOI: 10.4161/psb.28242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.
Collapse
Affiliation(s)
- Martina Juranić
- Department of Molecular Biology; Faculty of Science and Mathematics; University of Zagreb; Zagreb, Croatia
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry; Biochemie-Zentrum Regensburg; University of Regensburg; Regensburg, Germany
- Correspondence to: Thomas Dresselhaus,
| |
Collapse
|
33
|
The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2012. [PMID: 23179023 DOI: 10.1038/ng.2470] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.
Collapse
|
34
|
Bodénès C, Chancerel E, Gailing O, Vendramin GG, Bagnoli F, Durand J, Goicoechea PG, Soliani C, Villani F, Mattioni C, Koelewijn HP, Murat F, Salse J, Roussel G, Boury C, Alberto F, Kremer A, Plomion C. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC PLANT BIOLOGY 2012; 12:153. [PMID: 22931513 PMCID: PMC3493355 DOI: 10.1186/1471-2229-12-153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/22/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species. RESULTS We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype. CONCLUSIONS This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.
Collapse
Affiliation(s)
- Catherine Bodénès
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Emilie Chancerel
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding Büsgen Institute Faculty of Forest Sciences and Forest Ecology Göttingen University, Büsgenweg 2, 37077, Göttingen, Germany
- New address: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Giovanni G Vendramin
- Plant Genetics Institute, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Francesca Bagnoli
- Plant Protection Institute, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, FI, 50019, Italy
| | - Jerome Durand
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Pablo G Goicoechea
- NEIKER-Tecnalia, Dpto Biotecnologia, PO Box 46, Vitoria-Gasteiz, 01080, Spain
| | - Carolina Soliani
- Unidad de Genética Ecológica y Mejoramiento Forestal, INTA EEA Bariloche, Bariloche, CC277 8400, Argentina
| | - Fiorella Villani
- CNR Istituto di Biologia Agroambientale e Forestale, Porano, TR, 05010, Italy
| | - Claudia Mattioni
- CNR Istituto di Biologia Agroambientale e Forestale, Porano, TR, 05010, Italy
| | | | - Florent Murat
- INRA, UMR1095 GDEC, Clermont-Ferrand, F-63100, France
| | - Jerome Salse
- INRA, UMR1095 GDEC, Clermont-Ferrand, F-63100, France
| | - Guy Roussel
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Christophe Boury
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Florian Alberto
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Antoine Kremer
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| | - Christophe Plomion
- INRA, UMR1202 BIOGECO, Cestas, F-33610, France
- Université de Bordeaux, UMR1202 BIOGECO, Cestas, F-33610, France
| |
Collapse
|
35
|
Murat F, de Peer YV, Salse J. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biol Evol 2012; 4:917-28. [PMID: 22833223 PMCID: PMC3516226 DOI: 10.1093/gbe/evs066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Continuing advances in genome sequencing technologies and computational methods for comparative genomics currently allow inferring the evolutionary history of entire plant and animal genomes. Based on the comparison of the plant and animal genome paleohistory, major differences are unveiled in 1) evolutionary mechanisms (i.e., polyploidization versus diploidization processes), 2) genome conservation (i.e., coding versus noncoding sequence maintenance), and 3) modern genome architecture (i.e., genome organization including repeats expansion versus contraction phenomena). This article discusses how extant animal and plant genomes are the result of inherently different rates and modes of genome evolution resulting in relatively stable animal and much more dynamic and plastic plant genomes.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC ‘Génétique, Diversité et Ecophysiologie des Céréales’, Clermont Ferrand, France
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC ‘Génétique, Diversité et Ecophysiologie des Céréales’, Clermont Ferrand, France
- *Corresponding author: E-mail:
| |
Collapse
|
36
|
Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès H, Pont C, Blanco A, Salse J. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics 2012; 13:221. [PMID: 22672222 PMCID: PMC3413518 DOI: 10.1186/1471-2164-13-221] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY) plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3) that have been widely characterized in rice, maize and sorghum. RESULTS In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA), since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. CONCLUSIONS We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses.
Collapse
Affiliation(s)
- Bianca Dibari
- INRA-UMR 1095 Génétique Diversité Ecophysiologie des Céréales (GDEC), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Salse J. In silico archeogenomics unveils modern plant genome organisation, regulation and evolution. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:122-130. [PMID: 22280839 DOI: 10.1016/j.pbi.2012.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/26/2011] [Accepted: 01/03/2012] [Indexed: 05/27/2023]
Abstract
Increasing access to plant genome sequences as well as high resolution gene-based genetic maps have recently offered the opportunity to compare modern genomes and model their evolutionary history from their reconstructed founder ancestors on an unprecedented scale. In silico paleogenomic data have revealed the evolutionary forces that have shaped present-day genomes and allowed us to gain insight into how they are organised and regulated today.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Group PPAV 'Paléogénomique des Plantes pour l'Amélioration Variétale', Domaine de Crouelle, 234 avenue du Brézet, 63100 Clermont Ferrand, France.
| |
Collapse
|
38
|
Zhang Q, Chen W, Sun L, Zhao F, Huang B, Yang W, Tao Y, Wang J, Yuan Z, Fan G, Xing Z, Han C, Pan H, Zhong X, Shi W, Liang X, Du D, Sun F, Xu Z, Hao R, Lv T, Lv Y, Zheng Z, Sun M, Luo L, Cai M, Gao Y, Wang J, Yin Y, Xu X, Cheng T, Wang J. The genome of Prunus mume. Nat Commun 2012; 3:1318. [PMID: 23271652 PMCID: PMC3535359 DOI: 10.1038/ncomms2290] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/14/2012] [Indexed: 11/21/2022] Open
Abstract
Prunus mume (mei), which was domesticated in China more than 3,000 years ago as ornamental plant and fruit, is one of the first genomes among Prunus subfamilies of Rosaceae been sequenced. Here, we assemble a 280M genome by combining 101-fold next-generation sequencing and optical mapping data. We further anchor 83.9% of scaffolds to eight chromosomes with genetic map constructed by restriction-site-associated DNA sequencing. Combining P. mume genome with available data, we succeed in reconstructing nine ancestral chromosomes of Rosaceae family, as well as depicting chromosome fusion, fission and duplication history in three major subfamilies. We sequence the transcriptome of various tissues and perform genome-wide analysis to reveal the characteristics of P. mume, including its regulation of early blooming in endodormancy, immune response against bacterial infection and biosynthesis of flower scent. The P. mume genome sequence adds to our understanding of Rosaceae evolution and provides important data for improvement of fruit trees.
Collapse
Affiliation(s)
- Qixiang Zhang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- These authors contributed equally to this work
| | - Wenbin Chen
- BGI-Shenzhen, Shenzhen 518083, China
- These authors contributed equally to this work
| | - Lidan Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- These authors contributed equally to this work
| | - Fangying Zhao
- Beijing Lin Fu Ke Yuan Flowers Co., Ltd, Beijing 101322, China
- These authors contributed equally to this work
| | - Bangqing Huang
- BGI-Shenzhen, Shenzhen 518083, China
- These authors contributed equally to this work
| | - Weiru Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ye Tao
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jia Wang
- National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Zhiqiong Yuan
- Beijing Lin Fu Ke Yuan Flowers Co., Ltd, Beijing 101322, China
| | | | - Zhen Xing
- College of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Tibet 860000, China
| | | | - Huitang Pan
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | | | - Wenfang Shi
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | | | - Dongliang Du
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | | | - Zongda Xu
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ruijie Hao
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tian Lv
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yingmin Lv
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | | | - Ming Sun
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Le Luo
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Ming Cai
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yike Gao
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | | | - Ye Yin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Tangren Cheng
- National Engineering Research Center for Floriculture, Beijing 100083, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
39
|
RNA-seq in grain unveils fate of neo- and paleopolyploidization events in bread wheat (Triticum aestivum L.). Genome Biol 2011; 12:R119. [PMID: 22136458 PMCID: PMC3334614 DOI: 10.1186/gb-2011-12-12-r119] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/25/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022] Open
Abstract
Background Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes. Results We performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence. Conclusions We suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization.
Collapse
|
40
|
Ouangraoua A, Tannier E, Chauve C. Reconstructing the architecture of the ancestral amniote genome. Bioinformatics 2011; 27:2664-71. [DOI: 10.1093/bioinformatics/btr461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Potier J, Houtin H, Rond C, Murat F, Marget P, Aubert G, Burstin J. Translational Genomics in Legumes Allowed Placing In Silico 5460 Unigenes on the Pea Functional Map and Identified Candidate Genes in Pisum sativum L. G3 (BETHESDA, MD.) 2011; 1:93-103. [PMID: 22384322 PMCID: PMC3276132 DOI: 10.1534/g3.111.000349] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 05/06/2011] [Indexed: 12/31/2022]
Abstract
To identify genes involved in phenotypic traits, translational genomics from highly characterized model plants to poorly characterized crop plants provides a valuable source of markers to saturate a zone of interest as well as functionally characterized candidate genes. In this paper, an integrated view of the pea genetic map was developed. A series of gene markers were mapped and their best reciprocal homologs were identified on M. truncatula, L. japonicus, soybean, and poplar pseudomolecules. Based on the syntenic relationships uncovered between pea and M. truncatula, 5460 pea Unigenes were tentatively placed on the consensus map. A new bioinformatics tool, http://www.thelegumeportal.net/pea_mtr_translational_toolkit, was developed that allows, for any gene sequence, to search its putative position on the pea consensus map and hence to search for candidate genes among neighboring Unigenes. As an example, a promising candidate gene for the hypernodulation mutation nod3 in pea was proposed based on the map position of the likely homolog of Pub1, a M. truncatula gene involved in nodulation regulation. A broader view of pea genome evolution was obtained by revealing syntenic relationships between pea and sequenced genomes. Blocks of synteny were identified which gave new insights into the evolution of chromosome structure in Papillionoids and Eudicots. The power of the translational genomics approach was underlined.
Collapse
|
42
|
Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE. Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:207-18. [PMID: 21468676 DOI: 10.1007/s00122-011-1577-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/15/2011] [Indexed: 05/07/2023]
Abstract
The genome sequences of rice (Oryza sativa L.) and Brachypodium distachyon and the comprehensive Triticeae EST (Expressed Sequence Tag) resources provide invaluable information for comparative genomics analysis. The powdery mildew resistance gene, Pm6, which was introgressed into common wheat from Triticum timopheevii, was previously mapped to the wheat chromosome bin of 2BL [fraction length (FL) 0.50-1.00] with limited DNA markers. In this study, we saturated the Pm6 locus in wheat using the collinearity-based markers by extensively exploiting these genomic resources. All wheat ESTs located in the bin 2BL FL 0.50-1.00 and their corresponding orthologous genes on rice chromosome 4 were firstly used to develop STS (Sequence Tagged Site) markers. Those identified markers that flanked the Pm6 locus were then used to identify the collinear regions in the genomes of rice and Brachypodium. Triticeae ESTs with orthologous genes in these collinear regions were further used to develop new conserved markers for the fine mapping of Pm6. Using two F(2) populations derived from crosses of IGVI-465 × Prins and IGVI-466 × Prins, we mapped a total of 29 markers to the Pm6 locus. Among them, 14 markers were co-segregated with Pm6 in the IGVI-466/Prins population. Comparative genome analysis showed that the collinear region of the 29 linked markers covers a ~5.6-Mb region in chromosome 5L of Brachypodium and a ~6.0-Mb region in chromosome 4L of rice. The marker order is conserved between rice and Brachypodium, but re-arrangements are present in wheat. Comparative mapping in the two populations showed that two conserved markers (CINAU123 and CINAU127) flanked the Pm6 locus, and an LRR-receptor-like protein kinase cluster was identified in the collinear regions of Brachypodium and rice. This putative resistance gene cluster provides a potential target site for further fine mapping and cloning of Pm6. Moreover, the newly developed conserved markers closely linked to Pm6 can be used for the marker-assisted selection (MAS) of Pm6 in wheat breeding programs.
Collapse
Affiliation(s)
- Bi Qin
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mayer KF, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N. Unlocking the barley genome by chromosomal and comparative genomics. THE PLANT CELL 2011; 23:1249-63. [PMID: 21467582 PMCID: PMC3101540 DOI: 10.1105/tpc.110.082537] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/10/2011] [Accepted: 03/18/2011] [Indexed: 05/18/2023]
Abstract
We used a novel approach that incorporated chromosome sorting, next-generation sequencing, array hybridization, and systematic exploitation of conserved synteny with model grasses to assign ~86% of the estimated ~32,000 barley (Hordeum vulgare) genes to individual chromosome arms. Using a series of bioinformatically constructed genome zippers that integrate gene indices of rice (Oryza sativa), sorghum (Sorghum bicolor), and Brachypodium distachyon in a conserved synteny model, we were able to assemble 21,766 barley genes in a putative linear order. We show that the barley (H) genome displays a mosaic of structural similarity to hexaploid bread wheat (Triticum aestivum) A, B, and D subgenomes and that orthologous genes in different grasses exhibit signatures of positive selection in different lineages. We present an ordered, information-rich scaffold of the barley genome that provides a valuable and robust framework for the development of novel strategies in cereal breeding.
Collapse
Affiliation(s)
- Klaus F.X. Mayer
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Mihaela Martis
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Pete E. Hedley
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland DD25DA, United Kingdom
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, 77200 Olomouc, Czech Republic
| | - Hui Liu
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland DD25DA, United Kingdom
| | - Jenny A. Morris
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland DD25DA, United Kingdom
| | - Burkhard Steuernagel
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Stefan Taudien
- Leibniz Institute for Age Research-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Stephan Roessner
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Heidrun Gundlach
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Marie Kubaláková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, 77200 Olomouc, Czech Republic
| | - Pavla Suchánková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, 77200 Olomouc, Czech Republic
| | - Florent Murat
- Institut National de la Recherche Agronomique Clermont-Ferrand, Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Université Blaise Pascal 1095, Amélioration et Santé des Plantes, Domaine de Crouelle, Clermont-Ferrand 63100, France
| | - Marius Felder
- Leibniz Institute for Age Research-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Thomas Nussbaumer
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems Biology, Institute for Bioinformatics and Systems Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Jerome Salse
- Institut National de la Recherche Agronomique Clermont-Ferrand, Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Université Blaise Pascal 1095, Amélioration et Santé des Plantes, Domaine de Crouelle, Clermont-Ferrand 63100, France
| | - Takashi Endo
- Kyoto University, Laboratory of Plant Genetics, Kyoto 606-8502, Japan
| | - Hiroaki Sakai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Tsuyoshi Tanaka
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Takeshi Itoh
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiro Sato
- Okayama University, Institute of Plant Science and Resources, Kurashiki 710-0046, Japan
| | - Matthias Platzer
- Leibniz Institute for Age Research-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Takashi Matsumoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, 77200 Olomouc, Czech Republic
| | - Robbie Waugh
- Scottish Crop Research Institute, Invergowrie, Dundee, Scotland DD25DA, United Kingdom
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466 Gatersleben, Germany
- Address correspondence to
| |
Collapse
|
44
|
Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J. Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:745-56. [PMID: 21251102 DOI: 10.1111/j.1365-313x.2010.04461.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA/Université Blaise Pascal UMR 1095 GDEC, Domaine de Crouelle, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Salse J, Feuillet C. Palaeogenomics in cereals: modeling of ancestors for modern species improvement. C R Biol 2011; 334:205-11. [PMID: 21377615 DOI: 10.1016/j.crvi.2010.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During the last decade, technological improvements led to the development of large sets of plant genomic resources permitting the emergence of high-resolution comparative genomic studies. Synteny-based identification of seven shared duplications in cereals led to the modeling of a common ancestral genome structure of 33.6 Mb structured in five protochromosomes containing 9138 protogenes and provided new insights into the evolution of cereal genomes from their extinct ancestors. Recent palaeogenomic data indicate that whole genome duplications were a driving force in the evolutionary success of cereals over the last 50 to 70 millions years. Finally, detailed synteny and duplication relationships led to an improved representation of cereal genomes in concentric circles, thus providing a new reference tool for improved gene annotation and cross-genome markers development.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 GDEC 'génétique, diversité et écophysiologie des céréales', Research group PPAV 'Paleogénomique des Plantes pour l'Amélioration Variétale', 234 avenue du Brézet, Clermont-Ferrand, France.
| | | |
Collapse
|
46
|
Abstract
We sequenced and assembled the draft genome of Theobroma cacao, an economically important tropical-fruit tree crop that is the source of chocolate. This assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of these genes anchored on the 10 T. cacao chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example, flavonoid-related genes. It also provides a major source of candidate genes for T. cacao improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten T. cacao chromosomes were shaped from an ancestor through eleven chromosome fusions.
Collapse
|
47
|
Ueno S, Le Provost G, Léger V, Klopp C, Noirot C, Frigerio JM, Salin F, Salse J, Abrouk M, Murat F, Brendel O, Derory J, Abadie P, Léger P, Cabane C, Barré A, de Daruvar A, Couloux A, Wincker P, Reviron MP, Kremer A, Plomion C. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 2010; 11:650. [PMID: 21092232 PMCID: PMC3017864 DOI: 10.1186/1471-2164-11-650] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/23/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity. RESULTS We generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html. CONCLUSIONS This genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations.
Collapse
Affiliation(s)
- Saneyoshi Ueno
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
- Forestry and Forest Products Research Institute, Department of Forest Genetics, Tree Genetics Laboratory, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | | | - Valérie Léger
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | - Christophe Klopp
- Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France
| | - Céline Noirot
- Plateforme bioinformatique Genotoul, UR875 Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan, France
| | | | - Franck Salin
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | - Jérôme Salse
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 234 avenue du Brézet, 63100 Clermont Ferrand, France
| | - Michael Abrouk
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 234 avenue du Brézet, 63100 Clermont Ferrand, France
| | - Florent Murat
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 234 avenue du Brézet, 63100 Clermont Ferrand, France
| | - Oliver Brendel
- INRA, UMR1137 EEF "Ecologie et Ecophysiologie Forestières", F 54280 Champenoux, France
| | - Jérémy Derory
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | - Pierre Abadie
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | - Patrick Léger
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | - Cyril Cabane
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
- CNRS, UMR 5800, Laboratoire Bordelais de Recherche en Informatique, Talence, France
| | - Aurélien Barré
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
| | - Antoine de Daruvar
- Université de Bordeaux, Centre de Bioinformatique de Bordeaux, Bordeaux, France
- CNRS, UMR 5800, Laboratoire Bordelais de Recherche en Informatique, Talence, France
| | - Arnaud Couloux
- CEA, DSV, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux CP5706 91057 Evry cedex, France
| | - Patrick Wincker
- CEA, DSV, Genoscope, Centre National de Séquençage, 2 rue Gaston Crémieux CP5706 91057 Evry cedex, France
| | | | - Antoine Kremer
- INRA, UMR 1202 BIOGECO, 69 route d'Arcachon, F-33612 Cestas, France
| | | |
Collapse
|
48
|
Murat F, Xu JH, Tannier E, Abrouk M, Guilhot N, Pont C, Messing J, Salse J. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Genome Res 2010; 20:1545-57. [PMID: 20876790 PMCID: PMC2963818 DOI: 10.1101/gr.109744.110] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/24/2010] [Indexed: 11/25/2022]
Abstract
The comparison of the chromosome numbers of today's species with common reconstructed paleo-ancestors has led to intense speculation of how chromosomes have been rearranged over time in mammals. However, similar studies in plants with respect to genome evolution as well as molecular mechanisms leading to mosaic synteny blocks have been lacking due to relevant examples of evolutionary zooms from genomic sequences. Such studies require genomes of species that belong to the same family but are diverged to fall into different subfamilies. Our most important crops belong to the family of the grasses, where a number of genomes have now been sequenced. Based on detailed paleogenomics, using inference from n = 5-12 grass ancestral karyotypes (AGKs) in terms of gene content and order, we delineated sequence intervals comprising a complete set of junction break points of orthologous regions from rice, maize, sorghum, and Brachypodium genomes, representing three different subfamilies and different polyploidization events. By focusing on these sequence intervals, we could show that the chromosome number variation/reduction from the n = 12 common paleo-ancestor was driven by nonrandom centric double-strand break repair events. It appeared that the centromeric/telomeric illegitimate recombination between nonhomologous chromosomes led to nested chromosome fusions (NCFs) and synteny break points (SBPs). When intervals comprising NCFs were compared in their structure, we concluded that SBPs (1) were meiotic recombination hotspots, (2) corresponded to high sequence turnover loci through repeat invasion, and (3) might be considered as hotspots of evolutionary novelty that could act as a reservoir for producing adaptive phenotypes.
Collapse
Affiliation(s)
- Florent Murat
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Jian-Hong Xu
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Eric Tannier
- INRIA Rhône-Alpes, Université de Lyon 1, CNRS UMR5558, Laboratoire Biométrie et Biologie Évolutive, 69622 Villeurbanne Cedex, France
| | - Michael Abrouk
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Nicolas Guilhot
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Caroline Pont
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| | - Joachim Messing
- The Plant Genome Initiative at Rutgers (PGIR), Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Jérôme Salse
- INRA, UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont Ferrand, France
| |
Collapse
|
49
|
Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM, Bedo Z, Saulnier L, Guillon F, Balzergue S, Shewry PR, Feuillet C, Charmet G, Salse J. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 2010; 11:71-83. [PMID: 20697765 DOI: 10.1007/s10142-010-0183-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/30/2022]
Abstract
Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.
Collapse
Affiliation(s)
- Umar Masood Quraishi
- INRA-University Blaise Pascal, UMR1095 Génétique, Diversité et Ecophysiologie des Céréales, 234 Avenue du Brézet, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mahmood K, Konagurthu AS, Song J, Buckle AM, Webb GI, Whisstock JC. EGM: encapsulated gene-by-gene matching to identify gene orthologs and homologous segments in genomes. Bioinformatics 2010; 26:2076-84. [DOI: 10.1093/bioinformatics/btq339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|