1
|
Liang C, Murray S, Li Y, Lee R, Low A, Sasaki S, Chiang AWT, Lin WJ, Mathews J, Barnes W, Lewis NE. LipidSIM: Inferring mechanistic lipid biosynthesis perturbations from lipidomics with a flexible, low-parameter, Markov modeling framework. Metab Eng 2024; 82:110-122. [PMID: 38311182 PMCID: PMC11163374 DOI: 10.1016/j.ymben.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/03/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024]
Abstract
Lipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types. Here, we present a low-parameter, biologically interpretable framework named Lipid Synthesis Investigative Markov model (LipidSIM), which models and predicts the source of perturbations in lipid biosynthesis from lipidomic data. LipidSIM achieves this by accounting for the interdependency between the lipid species via the lipid biosynthesis network and generates testable hypotheses regarding changes in lipid biosynthetic reactions. This feature allows the integration of lipidomics with other omics types, such as transcriptomics, to elucidate the direct driving mechanisms of altered lipidomes due to treatments or disease progression. To demonstrate the value of LipidSIM, we first applied it to hepatic lipidomics following Keap1 knockdown and found that changes in mRNA expression of the lipid pathways were consistent with the LipidSIM-predicted fluxes. Second, we used it to study lipidomic changes following intraperitoneal injection of CCl4 to induce fast NAFLD/NASH development and the progression of fibrosis and hepatic cancer. Finally, to show the power of LipidSIM for classifying samples with dyslipidemia, we used a Dgat2-knockdown study dataset. Thus, we show that as it demands no a priori knowledge of enzyme kinetics, LipidSIM is a valuable and intuitive framework for extracting biological insights from complex lipidomic data.
Collapse
Affiliation(s)
- Chenguang Liang
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Yang Li
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Richard Lee
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Audrey Low
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Shruti Sasaki
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, La Jolla, CA, 92093, USA
| | - Wen-Jen Lin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404333, Taiwan
| | - Joel Mathews
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Will Barnes
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, 92010, USA
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, CA, 92093, USA; Department of Pediatrics, University of California, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Yeo J, Kang J, Kim H, Moon C. A Critical Overview of HPLC-MS-Based Lipidomics in Determining Triacylglycerol and Phospholipid in Foods. Foods 2023; 12:3177. [PMID: 37685110 PMCID: PMC10486615 DOI: 10.3390/foods12173177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
With the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods. Further, it summarizes the wide applications of MS-based lipidomics in food science, such as for assessing food processing methods, detecting food adulteration, and measuring lipid oxidation in foods. Thus, MS-based lipidomics may be a useful method for identifying the action of individual lipid species in foods.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea; (J.K.); (H.K.); (C.M.)
| | | | | | | |
Collapse
|
3
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Chen Q, Zhang Y, Ye L, Gong S, Sun H, Su G. Identifying active xenobiotics in humans by use of a suspect screening technique coupled with lipidomic analysis. ENVIRONMENT INTERNATIONAL 2021; 157:106844. [PMID: 34455192 DOI: 10.1016/j.envint.2021.106844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Lipidomic analysis has been proven to be a powerful technique to explore the underlying associations between xenobiotics and health status of organisms. Here, we established a strategy that combined the lipidomic analysis with high-throughput suspect contaminant screening technique with an aim to efficiently identify active xenobiotics in humans. Firstly, in the light of single liquid phase equilibrium of chloroform-methanol-water (15:14:2, v/v/v), we developed an efficient method that was able to simultaneously extract both polar and nonpolar lipids in serum samples. By use of this method, targeted and non-targeted lipid analyses were conducted for n = 120 serum samples collected from Wuxi city, China. Secondly, we established a suspect database containing 1450 contaminants that have been previously reported in human samples, and contaminants in this database were screened in the same batch of serum samples by use of high-resolution mass spectrometry (HR-MS). Thirdly, the underlying associations between suspect contaminants and lipids were explored and discussed, and we observed that levels of some lipids were statistically correlated with concentrations of numerous contaminants. Among these active contaminants, 23 ones were identified on the basis of HR MS1 and MS2 characteristics, and these contaminants belonged to the classes of phthalates, phenols, parabens, or perfluorinated compounds (PFCs). Three active xenobiotics were fully validated by comparison with authentic standards, and they were perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and diethyl phthalate (DEP). There were statistically significant changes in levels of triglyceride (TG), lysophosphocholine (LPC), and sphingomyelin (SM) as peak areas of xenobiotics increase. We also observed that, among target lipid molecules, 18:0 lysophosphatidylethanolamine (LPE(18:0)) was very sensitive, and this lipid responded to exposure of various contaminants. Our present study provides novel knowledge on potential alteration of lipid metabolism in humans following exposure to xenobiotics, and provides an efficient strategy for efficiently identifying active xenobiotics in humans.
Collapse
Affiliation(s)
- Qianyu Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Shuai Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu 210009, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 210094 Nanjing, People's Republic of China.
| |
Collapse
|
5
|
Ni Z, Goracci L, Cruciani G, Fedorova M. Computational solutions in redox lipidomics - Current strategies and future perspectives. Free Radic Biol Med 2019; 144:110-123. [PMID: 31035005 DOI: 10.1016/j.freeradbiomed.2019.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
The high chemical diversity of lipids allows them to perform multiple biological functions ranging from serving as structural building blocks of biological membranes to regulation of metabolism and signal transduction. In addition to the native lipidome, lipid species derived from enzymatic and non-enzymatic modifications (the epilipidome) make the overall picture even more complex, as their functions are still largely unknown. Oxidized lipids represent the fraction of epilipidome which has attracted high scientific attention due to their apparent involvement in the onset and development of numerous human disorders. Development of high-throughput analytical methods such as liquid chromatography coupled on-line to mass spectrometry provides the possibility to address epilipidome diversity in complex biological samples. However, the main bottleneck of redox lipidomics, the branch of lipidomics dealing with the characterization of oxidized lipids, remains the lack of optimal computational tools for robust, accurate and specific identification of already discovered and yet unknown modified lipids. Here we discuss the main principles of high-throughput identification of lipids and their modified forms and review the main software tools currently available in redox lipidomics. Different levels of confidence for software assisted identification of redox lipidome are defined and necessary steps toward optimal computational solutions are proposed.
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany.
| |
Collapse
|
6
|
Parchem K, Sasson S, Ferreri C, Bartoszek A. Qualitative analysis of phospholipids and their oxidised derivatives - used techniques and examples of their applications related to lipidomic research and food analysis. Free Radic Res 2019; 53:1068-1100. [PMID: 31419920 DOI: 10.1080/10715762.2019.1657573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phospholipids (PLs) are important biomolecules that not only constitute structural building blocks and scaffolds of cell and organelle membranes but also play a vital role in cell biochemistry and physiology. Moreover, dietary exogenous PLs are characterised by high nutritional value and other beneficial health effects, which are confirmed by numerous epidemiological studies. For this reason, PLs are of high interest in lipidomics that targets both the analysis of membrane lipid distribution as well as correlates composition of lipids with their effects on functioning of cells, tissues and organs. Lipidomic assessments follow-up the changes occurring in living organisms, such as free radical attack and oxidative modifications of the polyunsaturated fatty acids (PUFAs) build in PL structures. Oxidised PLs (oxPLs) can be generated exogenously and supplied to organisms with processed food or formed endogenously as a result of oxidative stress. Cellular and tissue oxPLs can be a biomarker predictive of the development of numerous diseases such as atherosclerosis or neuroinflammation. Therefore, suitable high-throughput analytical techniques, which enable comprehensive analysis of PL molecules in terms of the structure of hydrophilic group, fatty acid (FA) composition and oxidative modifications of FAs, have been currently developed. This review addresses all aspects of PL analysis, including lipid isolation, chromatographic separation of PL classes and species, as well as their detection. The bioinformatic tools that enable handling of a large amount of data generated during lipidomic analysis are also discussed. In addition, imaging techniques such as confocal microscopy and mass spectrometry imaging for analysis of cellular lipid maps, including membrane PLs, are presented.
Collapse
Affiliation(s)
- Karol Parchem
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Shlomo Sasson
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Carla Ferreri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
7
|
Eveque-Mourroux MR, Emans PJ, Zautsen RRM, Boonen A, Heeren RMA, Cillero-Pastor B. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 2019; 144:5953-5958. [PMID: 31418440 DOI: 10.1039/c9an00944b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal diseases, characterized by the progressive deterioration of articular cartilage. Although the disease has been well studied in the past few years, the endogenous metabolic composition and more importantly the spatial information of these molecules in cartilage is still poorly understood. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has been previously used for the investigation of the bimolecular distribution of proteins and lipids through the in situ analysis of cartilage tissue sections. MALDI-MSI as a tool to detect metabolites remains challenging, as these species have low abundance and degrade rapidly. In this work, we present a complete methodology, from sample preparation to data analysis for the detection of endogenous metabolites on cartilage by MSI. Our results demonstrate for the first time the ability to detect small molecules in fragile, challenging tissues through an optimized protocol, and render MSI as a tool towards a better understanding of OA.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
8
|
DiScenza DJ, Smith MA, Intravaia LE, Levine M. Efficient Detection of Phthalate Esters in Human Saliva via Fluorescence Spectroscopy. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1471086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Dana J. DiScenza
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | - Melissa A. Smith
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| | | | - Mindy Levine
- Department of Chemistry, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
9
|
Rupasinghe TWT, Roessner U. Extraction of Plant Lipids for LC-MS-Based Untargeted Plant Lipidomics. Methods Mol Biol 2018; 1778:125-135. [PMID: 29761435 DOI: 10.1007/978-1-4939-7819-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Lipids are defined as hydrophobic or amphipathic small molecules which consist of a number of structurally and functionally distinct molecules that span from nonpolar to neutral to polar compounds. Lipidomics is the comprehensive analysis of all lipids in a biological system. Changes in lipid metabolism and composition, as well as of distinct lipid species have been linked with altered plant growth, development, and responses to environmental stresses including salinity. Recently, improved liquid chromatography mass spectrometry (LC-MS)-based techniques have provided the rapid expansion of lipidomics research. Sample preparation and lipid extraction are important steps in lipidomics, and this chapter describes important considerations in lipid monophasic and biphasic extractions from plant tissues prior to untargeted plant lipidomics approaches with LC-MS.
Collapse
Affiliation(s)
- Thusitha W T Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
10
|
Ni Z, Angelidou G, Lange M, Hoffmann R, Fedorova M. LipidHunter Identifies Phospholipids by High-Throughput Processing of LC-MS and Shotgun Lipidomics Datasets. Anal Chem 2017; 89:8800-8807. [PMID: 28753264 DOI: 10.1021/acs.analchem.7b01126] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipids are dynamic constituents of biological systems, rapidly responding to any changes in physiological conditions. Thus, there is a large interest in lipid-derived markers for diagnostic and prognostic applications, especially in translational and systems medicine research. As lipid identification remains a bottleneck of modern untargeted lipidomics, we developed LipidHunter, a new open source software for the high-throughput identification of phospholipids in data acquired by LC-MS and shotgun experiments. LipidHunter resembles a workflow of manual spectra annotation. Lipid identification is based on MS/MS data analysis in accordance with defined fragmentation rules for each phospholipid (PL) class. The software tool matches product and neutral loss signals obtained by collision-induced dissociation to a user-defined white list of fatty acid residues and PL class-specific fragments. The identified signals are tested against elemental composition and bulk identification provided via LIPID MAPS search. Furthermore, LipidHunter provides information-rich tabular and graphical reports allowing to trace back key identification steps and perform data quality control. Thereby, 202 discrete lipid species were identified in lipid extracts from rat primary cardiomyocytes treated with a peroxynitrite donor. Their relative quantification allowed the monitoring of dynamic reconfiguration of the cellular lipidome in response to mild nitroxidative stress. LipidHunter is available free for download at https://bitbucket.org/SysMedOs/lipidhunter .
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology and Biomedicine, Universität Leipzig , Deutscher Platz 5, 04103 Leipzig, Germany
| | - Georgia Angelidou
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology and Biomedicine, Universität Leipzig , Deutscher Platz 5, 04103 Leipzig, Germany
| | - Mike Lange
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology and Biomedicine, Universität Leipzig , Deutscher Platz 5, 04103 Leipzig, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology and Biomedicine, Universität Leipzig , Deutscher Platz 5, 04103 Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and ‡Center for Biotechnology and Biomedicine, Universität Leipzig , Deutscher Platz 5, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Wang R, Gu X, Dai W, Ye J, Lu F, Chai Y, Fan G, Gonzalez FJ, Duan G, Qi Y. A lipidomics investigation into the intervention of celastrol in experimental colitis. MOLECULAR BIOSYSTEMS 2017; 12:1436-44. [PMID: 27021137 DOI: 10.1039/c5mb00864f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Celastrol is well known for its anti-inflammatory and anti-cancer effects. In this study, the efficacy of celastrol against dextran sulfate sodium (DSS)-induced inflammatory bowel disease (IBD) in mice was established and the mechanism was investigated using lipidomics. Celastrol treatment significantly alleviated DSS-induced colitis in mice, as revealed by the body weight, colon length, scores of rectal bleeding and diarrhea, serum TNF-α level, and histological analysis results. Lipidomics analysis based on UPLC/MS revealed characteristic changes in the metabolic profiles of the colitis mice, with altered levels of lipid markers associated with IBD, including LPC18 : 0, LPC18 : 1, LPC18 : 2, sphingomyelin (SM), and increased LPC18 : 0/LPC18 : 1 and LPC18 : 0/LPC18 : 2 ratios. For the celastrol-treated colitis mice, however, levels of the above lipid markers were restored, together with recovered saturated LPC/unsaturated LPC ratios. Accordingly, using GC-MS analysis, increased stearic acid (C18 : 0)/oleic acid (C18 : 1) and stearic acid (C18 : 0)/linoleic acid (C18 : 2) ratios were observed in colitis mice, which were later recovered after celastrol treatment. Quantitative real-time PCR analysis revealed that the liver expression of stearoyl-coenzyme A desaturase 1 (SCD1), the key enzyme controlling the desaturation of saturated fatty acid, was dramatically inhibited in IBD mice, and was obviously recovered after celastrol treatment. These results suggest that the increased saturated LPC/unsaturated LPC (and saturated fatty acid/unsaturated fatty acid) ratios associated with SCD1 down-regulation could be regarded as biomarkers of colitis, and celastrol alleviates DSS-induced colitis partially via up-regulation of SCD1, restoring the altered balance between stearic acid- and oleic acid-derived lipid species, which plays an important role in alleviating colitis. In all, this study provided the scientific basis for further development of celastrol in treating IBD.
Collapse
Affiliation(s)
- Renping Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xueqin Gu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiquan Dai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jun Ye
- Shanghai Zhabei Institute for Food and Drug Control, Shanghai 200436, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Guorong Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gengli Duan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China. and Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
12
|
Shulaev V, Chapman KD. Plant lipidomics at the crossroads: From technology to biology driven science. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:786-791. [PMID: 28238862 DOI: 10.1016/j.bbalip.2017.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/25/2022]
Abstract
The identification and quantification of lipids from plant tissues have become commonplace and many researchers now incorporate lipidomics approaches into their experimental studies. Plant lipidomics research continues to involve technological developments such as those in mass spectrometry imaging, but in large part, lipidomics approaches have matured to the point of being accessible to the novice. Here we review some important considerations for those planning to apply plant lipidomics to their biological questions, and offer suggestions for appropriate tools and practices. This article is part of a Special Issue entitled: BBALIP_Lipidomics Opinion Articles edited by Sepp Kohlwein.
Collapse
Affiliation(s)
- Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| | - Kent D Chapman
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
13
|
Bielow C, Mastrobuoni G, Orioli M, Kempa S. On Mass Ambiguities in High-Resolution Shotgun Lipidomics. Anal Chem 2017; 89:2986-2994. [PMID: 28193003 DOI: 10.1021/acs.analchem.6b04456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mass-spectrometry-based lipidomics aims to identify as many lipid species as possible from complex biological samples. Due to the large combinatorial search space, unambiguous identification of lipid species is far from trivial. Mass ambiguities are common in direct-injection shotgun experiments, where an orthogonal separation (e.g., liquid chromatography) is missing. Using the rich information within available lipid databases, we generated a comprehensive rule set describing mass ambiguities, while taking into consideration the resolving power (and its decay) of different mass analyzers. Importantly, common adduct species and isotopic peaks are accounted for and are shown to play a major role, both for perfect mass overlaps due to identical sum formulas and resolvable mass overlaps. We identified known and hitherto unknown mass ambiguities in high- and ultrahigh resolution data, while also ranking lipid classes by their propensity to cause ambiguities. On the basis of this new set of ambiguity rules, guidelines and recommendations for experimentalists and software developers of what constitutes a solid lipid identification in both MS and MS/MS were suggested. For researchers new to the field, our results are a compact source of ambiguities which should be accounted for. These new findings also have implications for the selection of internal standards, peaks used for internal mass calibration, optimal choice of instrument resolution, and sample preparation, for example, in regard to adduct ion formation.
Collapse
Affiliation(s)
- Chris Bielow
- Berlin Institute of Health Technology Platform Metabolomics, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Marica Orioli
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Stefan Kempa
- Berlin Institute of Health Technology Platform Metabolomics, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany.,Berlin Institute for Medical Systems Biology, Max-Delbrück-Centrum for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| |
Collapse
|
14
|
Pribasnig MA, Mrak I, Grabner GF, Taschler U, Knittelfelder O, Scherz B, Eichmann TO, Heier C, Grumet L, Kowaliuk J, Romauch M, Holler S, Anderl F, Wolinski H, Lass A, Breinbauer R, Marsche G, Brown JM, Zimmermann R. α/β Hydrolase Domain-containing 6 (ABHD6) Degrades the Late Endosomal/Lysosomal Lipid Bis(monoacylglycero)phosphate. J Biol Chem 2015; 290:29869-81. [PMID: 26491015 PMCID: PMC4705992 DOI: 10.1074/jbc.m115.669168] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/23/2022] Open
Abstract
α/β Hydrolase domain-containing 6 (ABHD6) can act as monoacylglycerol hydrolase and is believed to play a role in endocannabinoid signaling as well as in the pathogenesis of obesity and liver steatosis. However, the mechanistic link between gene function and disease is incompletely understood. Here we aimed to further characterize the role of ABHD6 in lipid metabolism. We show that mouse and human ABHD6 degrade bis(monoacylglycero)phosphate (BMP) with high specific activity. BMP, also known as lysobisphosphatidic acid, is enriched in late endosomes/lysosomes, where it plays a key role in the formation of intraluminal vesicles and in lipid sorting. Up to now, little has been known about the catabolism of this lipid. Our data demonstrate that ABHD6 is responsible for ∼90% of the BMP hydrolase activity detected in the liver and that knockdown of ABHD6 increases hepatic BMP levels. Tissue fractionation and live-cell imaging experiments revealed that ABHD6 co-localizes with late endosomes/lysosomes. The enzyme is active at cytosolic pH and lacks acid hydrolase activity, implying that it degrades BMP exported from acidic organelles or de novo-formed BMP. In conclusion, our data suggest that ABHD6 controls BMP catabolism and is therefore part of the late endosomal/lysosomal lipid-sorting machinery.
Collapse
Affiliation(s)
- Maria A Pribasnig
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Irina Mrak
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Gernot F Grabner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Ulrike Taschler
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Oskar Knittelfelder
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Scherz
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Lukas Grumet
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Jakob Kowaliuk
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Matthias Romauch
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Felix Anderl
- the University of Technology, 8010 Graz, Austria
| | - Heimo Wolinski
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | | | - Gunther Marsche
- the Institute of Organic Chemistry, Medical University of Graz, 8010 Graz, Austria, and
| | - J Mark Brown
- the Institute of Experimental and Clinical Pharmacology, Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
| |
Collapse
|
15
|
Spickett CM, Pitt AR. Oxidative lipidomics coming of age: advances in analysis of oxidized phospholipids in physiology and pathology. Antioxid Redox Signal 2015; 22:1646-66. [PMID: 25694038 PMCID: PMC4486145 DOI: 10.1089/ars.2014.6098] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Oxidized phospholipids are now well recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and it is responsible for the expansion of oxidative lipidomics. RECENT ADVANCES Studies of oxidized phospholipids in biological samples, from both animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods has enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy, and cystic fibrosis, and it offers potential for developing biomarkers of molecular aspects of the diseases. CRITICAL ISSUES AND FUTURE DIRECTIONS The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases, and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease.
Collapse
Affiliation(s)
- Corinne M. Spickett
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| | - Andrew R. Pitt
- School of Life & Health Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
16
|
Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression. Proc Natl Acad Sci U S A 2015; 112:E1077-85. [PMID: 25713391 DOI: 10.1073/pnas.1423175112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle.
Collapse
|
17
|
Qi Y, Jiang C, Tanaka N, Krausz KW, Brocker CN, Fang ZZ, Bredell BX, Shah YM, Gonzalez FJ. PPARα-dependent exacerbation of experimental colitis by the hypolipidemic drug fenofibrate. Am J Physiol Gastrointest Liver Physiol 2014; 307:G564-G573. [PMID: 25035112 PMCID: PMC4154119 DOI: 10.1152/ajpgi.00153.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
Fibrates, such as fenofibrate, are peroxisome proliferator-activated receptor-α (PPARα) agonists and have been used for several decades as hypolipidemic agents in the clinic. However, contradictory observations exist on the role of fibrates in host response to acute inflammation, with unclear mechanisms. The role of PPARα in colitis was assessed using fenofibrate and Ppara-null mice. Wild-type or Ppara-null mice were subjected to acute colitis under three distinct protocols, dextran sulfate sodium, trinitrobenzenesulfonic acid, and Salmonella Typhi. Serum and colon lipidomics were analyzed to characterize the metabolic profiles by ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Messenger RNAs of PPARα target genes and genes involved in inflammation were determined by qunatitative PCR analysis. Fenofibrate treatment exacerbated inflammation and tissue injury in acute colitis, and this was dependent on PPARα activation. Lipidomics analysis revealed that bioactive sphingolipids, including sphingomyelins (SM) and ceramides, were significantly increased in the colitis group compared with the control group; this was further potentiated following fenofibrate treatment. In the colon, fenofibrate did not reduce the markedly increased expression of mRNA encoding TNFα found in the acute colitis model, while it decreased hydrolysis and increased synthesis of SM, upregulated RIPK3-dependent necrosis, and elevated mitochondrial fatty acid β-oxidation, which were possibly related to the exacerbated colitis.
Collapse
Affiliation(s)
- Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Bryce X Bredell
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
18
|
Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 2014; 55:43-60. [DOI: 10.1016/j.plipres.2014.06.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 12/14/2022]
|
19
|
Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JYL. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:19-29. [PMID: 24796972 DOI: 10.1016/j.bbalip.2014.04.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Yunpeng Qi
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiangang Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Y L Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
20
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
21
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
22
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|