1
|
Wu Z, Tian E, Chen Y, Dong Z, Peng Q. Gut microbiota and its roles in the pathogenesis and therapy of endocrine system diseases. Microbiol Res 2023; 268:127291. [PMID: 36542917 DOI: 10.1016/j.micres.2022.127291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
A new field of microbial research is the relationship between microorganisms and multicellular hosts. It is known that gut microbes can cause various endocrine system diseases, such as diabetes and thyroid disease. Changes in the composition or structure and the metabolites of gut microbes may cause gastrointestinal disorders, including ulcers or intestinal perforation and other inflammatory and autoimmune diseases. In recent years, reports on the interactions between intestinal microorganisms and endocrine system diseases have been increasingly documented. In the meantime, the treatment based on gut microbiome has also been paid much attention. For example, fecal microbiota transplantation is found to have a therapeutic effect on many diseases. As such, understanding the gut microbiota-endocrine system interactions is of great significance for the theranostic of endocrine system diseases. Herein, we summarize the relations of gut microbiome with endocrine system diseases, and discuss the potentials of regulating gut microbiome in treating those diseases. In addition, the concerns and possible solutions regarding the gut microbiome-based therapy are discussed.
Collapse
Affiliation(s)
- Zhuoxuan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Erkang Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuyang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zaiquan Dong
- Mental Health Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
3
|
Singh N, Singh V, Rai SN, Mishra V, Vamanu E, Singh MP. Deciphering the gut microbiome in neurodegenerative diseases and metagenomic approaches for characterization of gut microbes. Biomed Pharmacother 2022; 156:113958. [DOI: 10.1016/j.biopha.2022.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
|
4
|
Radaic A, Ganther S, Kamarajan P, Grandis J, Yom SS, Kapila YL. Paradigm shift in the pathogenesis and treatment of oral cancer and other cancers focused on the oralome and antimicrobial-based therapeutics. Periodontol 2000 2021; 87:76-93. [PMID: 34463982 PMCID: PMC8415008 DOI: 10.1111/prd.12388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral microbiome is a community of microorganisms, comprised of bacteria, fungi, viruses, archaea, and protozoa, that form a complex ecosystem within the oral cavity. Although minor perturbations in the environment are frequent and compensable, major shifts in the oral microbiome can promote an unbalanced state, known as dysbiosis. Dysbiosis can promote oral diseases, including periodontitis. In addition, oral dysbiosis has been associated with other systemic diseases, including cancer. The objective of this review is to evaluate the epidemiologic evidence linking periodontitis to oral, gastrointestinal, lung, breast, prostate, and uterine cancers, as well as describe new evidence and insights into the role of oral dysbiosis in the etiology and pathogenesis of the cancer types discussed. Finally, we discuss how antimicrobials, antimicrobial peptides, and probiotics may be promising tools to prevent and treat these cancers, targeting both the microbes and associated carcinogenesis processes. These findings represent a novel paradigm in the pathogenesis and treatment of cancer focused on the oral microbiome and antimicrobial‐based therapies.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Jennifer Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California, USA
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J 2021; 19:1335-1360. [PMID: 33777334 PMCID: PMC7960681 DOI: 10.1016/j.csbj.2021.02.010] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The oralome is the summary of the dynamic interactions orchestrated between the ecological community of oral microorganisms (comprised of up to approximately 1000 species of bacteria, fungi, viruses, archaea and protozoa - the oral microbiome) that live in the oral cavity and the host. These microorganisms form a complex ecosystem that thrive in the dynamic oral environment in a symbiotic relationship with the human host. However, the microbial composition is significantly affected by interspecies and host-microbial interactions, which in turn, can impact the health and disease status of the host. In this review, we discuss the composition of the oralome and inter-species and host-microbial interactions that take place in the oral cavity and examine how these interactions change from healthy (eubiotic) to disease (dysbiotic) states. We further discuss the dysbiotic signatures associated with periodontitis and caries and their sequalae, (e.g., tooth/bone loss and pulpitis), and the systemic diseases associated with these oral diseases, such as infective endocarditis, atherosclerosis, diabetes, Alzheimer's disease and head and neck/oral cancer. We then discuss current computational techniques to assess dysbiotic oral microbiome changes. Lastly, we discuss current and novel techniques for modulation of the dysbiotic oral microbiome that may help in disease prevention and treatment, including standard hygiene methods, prebiotics, probiotics, use of nano-sized drug delivery systems (nano-DDS), extracellular polymeric matrix (EPM) disruption, and host response modulators.
Collapse
Affiliation(s)
- Allan Radaic
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Yvonne L. Kapila
- Kapila Laboratory, Orofacial Sciences Department, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
6
|
Constantinou A, Kanti V, Polak-Witka K, Blume-Peytavi U, Spyrou GM, Vogt A. The Potential Relevance of the Microbiome to Hair Physiology and Regeneration: The Emerging Role of Metagenomics. Biomedicines 2021; 9:biomedicines9030236. [PMID: 33652789 PMCID: PMC7996884 DOI: 10.3390/biomedicines9030236] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Human skin and hair follicles are recognized sites of microbial colonization. These microbiota help regulate host immune mechanisms via an interplay between microbes and immune cells, influencing homeostasis and inflammation. Bacteria affect immune responses by controlling the local inflammatory milieu, the breakdown of which can result in chronic inflammatory disorders. Follicular microbiome shifts described in some inflammatory cutaneous diseases suggest a link between their development or perpetuation and dysbiosis. Though the hair follicle infundibulum is an area of intense immunological interactions, bulb and bulge regions represent immune-privileged niches. Immune privilege maintenance seems essential for hair growth and regeneration, as collapse and inflammation characterize inflammatory hair disorders like alopecia areata and primary cicatricial alopecia. Current research largely focuses on immunological aberrations. However, studies suggest that external stimuli and interactions across the follicular epithelium can have profound effects on the local immune system, homeostasis, and cycling. Herein, we review hair follicle bacterial colonization, its possible effects on the underlying tissue, and links to the pathogenesis of alopecia, beyond the pure investigation of specific species abundance. As skin microbiology enters the metagenomics era, multi-dimensional approaches will enable a new level of investigations on the effects of microorganisms and metabolism on host tissue.
Collapse
Affiliation(s)
- Andria Constantinou
- Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany; (A.C.); (V.K.); (K.P.-W.); (U.B.-P.)
| | - Varvara Kanti
- Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany; (A.C.); (V.K.); (K.P.-W.); (U.B.-P.)
| | - Katarzyna Polak-Witka
- Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany; (A.C.); (V.K.); (K.P.-W.); (U.B.-P.)
| | - Ulrike Blume-Peytavi
- Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany; (A.C.); (V.K.); (K.P.-W.); (U.B.-P.)
| | - George M. Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus;
| | - Annika Vogt
- Charité-Universitatsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet zu Berlin, Clinical Research Center for Hair and Skin Science, Department of Dermatology, Venereology and Allergy, Charitéplatz 1, 10117 Berlin, Germany; (A.C.); (V.K.); (K.P.-W.); (U.B.-P.)
- Correspondence:
| |
Collapse
|
7
|
Chernevskaya EA, Zozulya SA, Beloborodova NV, Klyushnik TP, Buyakova IV. [The association of aromatic microbial metabolites, inflammatory and autoimmune biomarkers with clinical dynamics in severe diseases of the central nervous system]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:78-85. [PMID: 32790980 DOI: 10.17116/jnevro202012007178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To identify the association between the changes in the profile of microbial metabolites, inflammatory and autoimmune markers and the dynamics of neurological status in chronic critically ill patients with diseases of the central nervous system (CNS). MATERIAL AND METHODS Sixty serum samples from 37 patients, aged 19-77 years, with severe CNS diseases were studied. The changes in clinical condition were assessed with NIHSS, the Rankin scale, the Glasgow Coma Scale, the FOUR Coma Scale and the Rivermead Mobility Index. The levels of aromatic microbial metabolites (AMM) and several inflammatory and autoimmune biomarkers, including the contents of procalcitonin (PCT) and S100, the activity of leukocyte elastase (LE) and a1-proteinase inhibitor a1-PI, the levels of autoantibodies to S100b and MBP were measured. Serum from 60 age- and sex-matched healthy people with no signs of neurological and somatic pathology was used as a control. RESULTS All patients were divided into groups depending on the neurological dynamics: A - positive (n=16), B - without dynamics (n=15), C - negative (n=6). The study revealed a profile of AMM, as well as inflammatory and autoimmune biomarkers associated with the severity of neurological disorders. A significant increase in acute phase proteins, S-100 level and a decrease in the functional activity of neutrophils (via LE activity) were observed in the serum of patients. The different dynamics of neurological status was associated with the multidirectional changes in the microbial metabolites profile and biomarkers. The correlations between the clinical and biological parameters indicate that AMM might modulate immune reactions in patients with different dynamics of neurological status. CONCLUSION The results suggest the involvement of AMM and the level of immune activation via biomarkers in the pathogenesis of neurological dysfunction. Dynamic changes in the profile of microbial metabolites and the level of activation of the immune system may be a promising tool for prediction of neurological recovery.
Collapse
Affiliation(s)
- E A Chernevskaya
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - S A Zozulya
- Mental Health Research Centre, Moscow, Russia
| | - N V Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | | - I V Buyakova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
8
|
Pautova AK, Khesina ZB, Litvinova TN, Revelsky AI, Beloborodova NV. Metabolic profiling of aromatic compounds in cerebrospinal fluid of neurosurgical patients using microextraction by packed sorbent and liquid-liquid extraction with gas chromatography-mass spectrometry analysis. Biomed Chromatogr 2020; 35:e4969. [PMID: 32845527 DOI: 10.1002/bmc.4969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022]
Abstract
A new approach to the quantitative analysis of aromatic metabolites in cerebrospinal fluid samples of neurosurgical patients based on microextraction by packed sorbent coupled with derivatization and GC-MS was developed. Analytical characteristics such as recoveries (40-90%), limit of detection (0.1-0.3 μm) and limit of quantitation (0.4-0.7 μm) values, accuracy (<±20%), precision (<20%) and linear correlations (R2 ≥ 0.99) over a 0.4-10 μm range of concentrations demonstrated that microextraction by packed sorbent provides results for the quantitative analysis of target compounds comparable with those for liquid-liquid extraction. Similar results were achieved using 40 μl of sample for microextraction by packed sorbent instead of 200 μl for liquid-liquid extraction. Benzoic, 3-phenylpropionic, 3-phenyllactic, 4-hydroxybenzoic, 2-(4-hydroxyphenyl)acetic, homovanillic and 3-(4-hydroxyphenyl)lactic acids were found in cerebrospinal fluid samples (n = 138) of neurosurgical patients in lower concentrations than in serum samples (n = 110) of critically ill patients. Analysis of the cerebrospinal fluid and serum samples taken at the same time from neurosurgical patients (n = 5) revealed similar results for patients without infection and multidirectional results for patients with central nervous system infection. Our preliminary results demonstrate the necessity of further evaluating the aromatic compound profile in cerebrospinal fluid for its subsequent verification for potential diagnostic markers.
Collapse
Affiliation(s)
- Alisa K Pautova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Zoya B Khesina
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana N Litvinova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Alexander I Revelsky
- Laboratory of Mass Spectrometry, Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia V Beloborodova
- Laboratory of Human Metabolism in Critical States, Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| |
Collapse
|
9
|
González J, Pinzón A, Angarita-Rodríguez A, Aristizabal AF, Barreto GE, Martín-Jiménez C. Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-omic Approaches. Front Neuroinform 2020; 14:35. [PMID: 32848690 PMCID: PMC7426703 DOI: 10.3389/fninf.2020.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
The growing importance of astrocytes in the field of neuroscience has led to a greater number of computational models devoted to the study of astrocytic functions and their metabolic interactions with neurons. The modeling of these interactions demands a combined understanding of brain physiology and the development of computational frameworks based on genomic-scale reconstructions, system biology, and dynamic models. These computational approaches have helped to highlight the neuroprotective mechanisms triggered by astrocytes and other glial cells, both under normal conditions and during neurodegenerative processes. In the present review, we evaluate some of the most relevant models of astrocyte metabolism, including genome-scale reconstructions and astrocyte-neuron interactions developed in the last few years. Additionally, we discuss novel strategies from the multi-omics perspective and computational models of other glial cell types that will increase our knowledge in brain metabolism and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, Colombia
| | - Andrea Angarita-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.,Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia Bogotá, Bogotá, Colombia
| | - Andrés Felipe Aristizabal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Cynthia Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
10
|
Karhu E, Zukerman R, Eshraghi RS, Mittal J, Deth RC, Castejon AM, Trivedi M, Mittal R, Eshraghi AA. Nutritional interventions for autism spectrum disorder. Nutr Rev 2020; 78:515-531. [PMID: 31876938 DOI: 10.1093/nutrit/nuz092] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder with considerable clinical heterogeneity. With no cure for the disorder, treatments commonly center around speech and behavioral therapies to improve the characteristic social, behavioral, and communicative symptoms of ASD. Gastrointestinal disturbances are commonly encountered comorbidities that are thought to be not only another symptom of ASD but to also play an active role in modulating the expression of social and behavioral symptoms. Therefore, nutritional interventions are used by a majority of those with ASD both with and without clinical supervision to alleviate gastrointestinal and behavioral symptoms. Despite a considerable interest in dietary interventions, no consensus exists regarding optimal nutritional therapy. Thus, patients and physicians are left to choose from a myriad of dietary protocols. This review, summarizes the state of the current clinical and experimental literature on nutritional interventions for ASD, including gluten-free and casein-free, ketogenic, and specific carbohydrate diets, as well as probiotics, polyunsaturated fatty acids, and dietary supplements (vitamins A, C, B6, and B12; magnesium and folate).
Collapse
Affiliation(s)
- Elisa Karhu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ryan Zukerman
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | |
Collapse
|
11
|
Tilocca B, Pieroni L, Soggiu A, Britti D, Bonizzi L, Roncada P, Greco V. Gut-Brain Axis and Neurodegeneration: State-of-the-Art of Meta-Omics Sciences for Microbiota Characterization. Int J Mol Sci 2020; 21:E4045. [PMID: 32516966 PMCID: PMC7312636 DOI: 10.3390/ijms21114045] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent advances in the field of meta-omics sciences and related bioinformatics tools have allowed a comprehensive investigation of human-associated microbiota and its contribution to achieving and maintaining the homeostatic balance. Bioactive compounds from the microbial community harboring the human gut are involved in a finely tuned network of interconnections with the host, orchestrating a wide variety of physiological processes. These includes the bi-directional crosstalk between the central nervous system, the enteric nervous system, and the gastrointestinal tract (i.e., gut-brain axis). The increasing accumulation of evidence suggest a pivotal role of the composition and activity of the gut microbiota in neurodegeneration. In the present review we aim to provide an overview of the state-of-the-art of meta-omics sciences including metagenomics for the study of microbial genomes and taxa strains, metatranscriptomics for gene expression, metaproteomics and metabolomics to identify and/or quantify microbial proteins and metabolites, respectively. The potential and limitations of each discipline were highlighted, as well as the advantages of an integrated approach (multi-omics) to predict microbial functions and molecular mechanisms related to human diseases. Particular emphasis is given to the latest results obtained with these approaches in an attempt to elucidate the link between the gut microbiota and the most common neurodegenerative diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Bruno Tilocca
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, via del Fosso di Fiorano, 64-00143 Rome, Italy;
| | - Alessio Soggiu
- Department of Biomedical, Surgical and Dental Sciences- One Health Unit, University of Milano, via Celoria 10, 20133 Milano, Italy;
- Department of Veterinary Medicine, University of Milano, Via dell’Università, 6- 26900 Lodi, Italy;
| | - Domenico Britti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Luigi Bonizzi
- Department of Veterinary Medicine, University of Milano, Via dell’Università, 6- 26900 Lodi, Italy;
| | - Paola Roncada
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, viale Europa, 88100 Catanzaro, Italy; (B.T.); (D.B.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, Largo A. Gemelli, 8-00168 Rome, Italy
| |
Collapse
|
12
|
Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The Microbiome and the Gut-Liver-Brain Axis for Central Nervous System Clinical Pharmacology: Challenges in Specifying and Integrating In Vitro and In Silico Models. Clin Pharmacol Ther 2020; 108:929-948. [PMID: 32347548 PMCID: PMC7572575 DOI: 10.1002/cpt.1870] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The complexity of integrating microbiota into clinical pharmacology, environmental toxicology, and opioid studies arises from bidirectional and multiscale interactions between humans and their many microbiota, notably those of the gut. Hosts and each microbiota are governed by distinct central dogmas, with genetics influencing transcriptomics, proteomics, and metabolomics. Each microbiota's metabolome differentially modulates its own and the host's multi‐omics. Exogenous compounds (e.g., drugs and toxins), often affect host multi‐omics differently than microbiota multi‐omics, shifting the balance between drug efficacy and toxicity. The complexity of the host‐microbiota connection has been informed by current methods of in vitro bacterial cultures and in vivo mouse models, but they fail to elucidate mechanistic details. Together, in vitro organ‐on‐chip microphysiological models, multi‐omics, and in silico computational models have the potential to supplement the established methods to help clinical pharmacologists and environmental toxicologists unravel the myriad of connections between the gut microbiota and host health and disease.
Collapse
Affiliation(s)
- Kyle G Hawkins
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - Caleb Casolaro
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | - David A Edwards
- Department of Anesthesiology and Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Zhu X, Hu J, Deng S, Tan Y, Qiu C, Zhang M, Ni X, Lu H, Wang Z, Li L, Chen H, Huang S, Xiao T, Shang D, Wen Y. Bibliometric and Visual Analysis of Research on the Links Between the Gut Microbiota and Depression From 1999 to 2019. Front Psychiatry 2020; 11:587670. [PMID: 33488420 PMCID: PMC7819979 DOI: 10.3389/fpsyt.2020.587670] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: There is a crucial link between the gut microbiota and the host central nervous system, and the communication between them occurs via a bidirectional pathway termed the "microbiota-gut-brain axis." The gut microbiome in the modern environment has markedly changed in response to environmental factors. These changes may affect a broad range of host psychiatric disorders, such as depression, by interacting with the host through metabolic, immune, neural, and endocrine pathways. Nevertheless, the general aspects of the links between the gut microbiota and depression have not been systematically investigated through bibliometric analysis. Aim: This study aimed to analyze the current status and developing trends in gut microbiota research in the depression field through bibliometric and visual analysis. Methods: A total of 1,962 publications published between 1999 and 2019 were retrieved from the Web of Science Core Collection. CiteSpace (5.6 R5) was used to perform collaboration network analysis, co-citation analysis, co-occurrence analysis, and citation burst detection. Results: The number of publications has been rapidly growing since 2010. The collaboration network analysis revealed that the USA, University College Cork, and John F. Cryan were the most influential country, institute, and scholar, respectively. The most productive and co-cited journals were Brain Behavior and Immunity and Proceedings of the National Academy of Sciences of the United States of America, respectively. The co-citation analysis of references revealed that the most recent research focus was in the largest theme cluster, "cytokines," thus reflecting the important research foundation in this field. The co-occurrence analysis of keywords revealed that "fecal microbiota" and "microbiome" have become the top two research hotspots since 2013. The citation burst detection for keywords identified several keywords, including "Parkinson's disease," "microbiota-gut-brain axis," "microbiome," "dysbiosis," "bipolar disorder," "impact," "C reactive protein," and "immune system," as new research frontiers, which have currently ongoing bursts. Conclusions: These results provide an instructive perspective on the current research and future directions in the study of the links between the gut microbiota and depression, which may help researchers choose suitable cooperators or journals, and promote their research illustrating the underlying molecular mechanisms of depression, including its etiology, prevention, and treatment.
Collapse
Affiliation(s)
- Xiuqing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jinqing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Shuhua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaojia Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haoyang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhanzhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Lu Li
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hongzhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shanqing Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Tao Xiao
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dewei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuguan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
14
|
Geerts H, Wikswo J, van der Graaf PH, Bai JPF, Gaiteri C, Bennett D, Swalley SE, Schuck E, Kaddurah-Daouk R, Tsaioun K, Pelleymounter M. Quantitative Systems Pharmacology for Neuroscience Drug Discovery and Development: Current Status, Opportunities, and Challenges. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 9:5-20. [PMID: 31674729 PMCID: PMC6966183 DOI: 10.1002/psp4.12478] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022]
Abstract
The substantial progress made in the basic sciences of the brain has yet to be adequately translated to successful clinical therapeutics to treat central nervous system (CNS) diseases. Possible explanations include the lack of quantitative and validated biomarkers, the subjective nature of many clinical endpoints, and complex pharmacokinetic/pharmacodynamic relationships, but also the possibility that highly selective drugs in the CNS do not reflect the complex interactions of different brain circuits. Although computational systems pharmacology modeling designed to capture essential components of complex biological systems has been increasingly accepted in pharmaceutical research and development for oncology, inflammation, and metabolic disorders, the uptake in the CNS field has been very modest. In this article, a cross-disciplinary group with representatives from academia, pharma, regulatory, and funding agencies make the case that the identification and exploitation of CNS therapeutic targets for drug discovery and development can benefit greatly from a system and network approach that can span the gap between molecular pathways and the neuronal circuits that ultimately regulate brain activity and behavior. The National Institute of Neurological Disorders and Stroke (NINDS), in collaboration with the National Institute on Aging (NIA), National Institute of Mental Health (NIMH), National Institute on Drug Abuse (NIDA), and National Center for Advancing Translational Sciences (NCATS), convened a workshop to explore and evaluate the potential of a quantitative systems pharmacology (QSP) approach to CNS drug discovery and development. The objective of the workshop was to identify the challenges and opportunities of QSP as an approach to accelerate drug discovery and development in the field of CNS disorders. In particular, the workshop examined the potential for computational neuroscience to perform QSP-based interrogation of the mechanism of action for CNS diseases, along with a more accurate and comprehensive method for evaluating drug effects and optimizing the design of clinical trials. Following up on an earlier white paper on the use of QSP in general disease mechanism of action and drug discovery, this report focuses on new applications, opportunities, and the accompanying limitations of QSP as an approach to drug development in the CNS therapeutic area based on the discussions in the workshop with various stakeholders.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, Berwyn, Pennsylvania, USA
| | - John Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Jane P F Bai
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University, Chicago, Illinois, USA
| | | | | | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Katya Tsaioun
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mary Pelleymounter
- Division of Translational Research, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Gogou M, Kolios G. Nutritional Supplements During Gestation and Autism Spectrum Disorder: What Do We Really Know and How Far Have We Gone? J Am Coll Nutr 2019; 39:261-271. [PMID: 31318329 DOI: 10.1080/07315724.2019.1635920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutritional interventions are gaining remarkable attention as complementary management options for autism. Our aim is to provide literature data about the impact of the administration of dietary supplements during pregnancy on the risk of autism spectrum disorder in the offspring. A comprehensive search was undertaken by 2 reviewers independently using PubMed as the medical database source. Prospective clinical and experimental studies were considered and no year-of-publication restriction was placed. We were able to identify 4 basic (conducted in rodents) and 3 clinical research papers fulfilling our selection criteria. Supplements studied included folic acid, iron, multivitamins, choline, vitamin D, and docosahexaenoic acid. Choline and folic acid had a significant impact on the expression of autism-related genes. However, from a clinical point of view, prenatal folate administration did not reduce the risk of autism. Similarly, iron had no significant impact, while the use of multivitamins in moderate frequency had a protective effect. The use of vitamin D and docosahexaenoic acid during gestation decreased the incidence of autism in animal models. In conclusion, available data are controversial and cannot change current routine practice. More large-scale prospective studies are needed to identify the real effect of nutritional supplements and also optimize their administration.Key teaching pointsMultivitamins use during pregnancy can exert a protective effect on the risk of autism, although depending on the frequency of use. Nevertheless, prenatal iron and folate were not shown to have any significant impact.Research based on animal models showed that choline and folic acid can have a significant impact on the expression of autism-related genes in a sex-specific manner.Furthermore, the use of vitamin D and docosahexaenoic acid during gestation seem to decrease the incidence of autism in animal offspring.In the future, more clinical, large-scale prospective and methodologically homogenous clinical studies are needed to further investigate the effect of the periconceptional use of nutritional supplements on autism risk.
Collapse
Affiliation(s)
- Maria Gogou
- 2nd Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, University General Hospital AHEPA, Thessaloniki, Greece
| | - George Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
16
|
Dovrolis N, Filidou E, Kolios G. Systems biology in inflammatory bowel diseases: on the way to precision medicine. Ann Gastroenterol 2019; 32:233-246. [PMID: 31040620 PMCID: PMC6479645 DOI: 10.20524/aog.2019.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and recurrent inflammatory disorders of the gastrointestinal tract. The elucidation of their etiopathology requires complex and multiple approaches. Systems biology has come to fulfill this need in approaching the pathogenetic mechanisms of IBD and its etiopathology, in a comprehensive way, by combining data from different scientific sources. In combination with bioinformatics and network medicine, it uses principles from computer science, mathematics, physics, chemistry, biology, medicine and computational tools to achieve its purposes. Systems biology utilizes scientific sources that provide data from omics studies (e.g., genomics, transcriptomics, etc.) and clinical observations, whose combined analysis leads to network formation and ultimately to a more integrative image of disease etiopathogenesis. In this review, we analyze the current literature on the methods and the tools utilized by systems biology in order to cover an innovative and exciting field: IBD-omics.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Correspondence to: Prof. George Kolios, MD PhD, Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, 68100, Greece, e-mail:
| |
Collapse
|
17
|
Abstract
Radical changes in the composition, diversity and metabolic activity of gut microbiome in critically ill patients most probably affect adversely the outcome of treatment. Microbiota dysfunction may be a predictor and presumably the main cause of infectious complications and sepsis. Clinicists use objective scales for evaluation of patient condition severity including specific parameters of disorders of organs and systems; however, microbiota function is not considered specific and, hence, not evaluated. Technical capabilities of the recent decade have allowed characterizing the intestinal microbiota and that helped understanding the ongoing processes. The authors have analyzed data about the role of intestinal microbiota as a metabolic 'reactor' during critical states, possible complications related to misbalance of 'harmful' and 'beneficial' bacteria, and examined potential of a targeted therapy aimed directly at correction of intestinal microbiota. Search for papers was carried out using Scopus and Web of Science databases 2001 to 2018 years: (Gut Microbiota) AND (Critically ill OR Intensive care unit), key words taken for the search were: intestinal microbiota, metabolism, sepsis, antibiotics, critically ill patients, multiple organ failure. A number of questions in understanding of the interaction between gut microbiome and host remain open. It is necessary to take into account interference of microbial metabolism while assessing metabolome of patients with sepsis. Among low-molecular compounds found in blood of sepsis patients, special attention should be paid to molecules that can be classified as ‘common metabolites’ of humans and bacteria, for example, degradation products of aromatic compounds, which many-fold rise in blood of septic patients. It is necessary to take into consideration and experimentally model changes in the human internal environment, which occur during radical transformation of microbiome in critically ill patients. Such approach brings in new prospects for objective monitoring of diseases by evaluating metabolic profile at a particular moment of time based on integral indices reflecting the status of microbiome/metabolome system, which will supply new targets for therapeutic intervention in future.
Collapse
Affiliation(s)
- E. A. Chernevskaya
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - N. V. Beloborodova
- V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| |
Collapse
|
18
|
Gogou M, Kolios G. Are therapeutic diets an emerging additional choice in autism spectrum disorder management? World J Pediatr 2018; 14:215-223. [PMID: 29846886 DOI: 10.1007/s12519-018-0164-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND A nutritional background has been recognized in the pathophysiology of autism and a series of nutritional interventions have been considered as complementary therapeutic options. As available treatments and interventions are not effective in all individuals, new therapies could broaden management options for these patients. Our aim is to provide current literature data about the effect of therapeutic diets on autism spectrum disorder. DATA SOURCE A systematic review was conducted by two reviewers independently. Prospective clinical and preclinical studies were considered. RESULT Therapeutic diets that have been used in children with autism include ketogenic and gluten/casein-free diet. We were able to identify 8 studies conducted in animal models of autism demonstrating a beneficial effect on neurophysiological and clinical parameters. Only 1 clinical study was found showing improvement in childhood autism rating scale after implementation of ketogenic diet. With regard to gluten/casein-free diet, 4 clinical studies were totally found with 2 of them showing a favorable outcome in children with autism. Furthermore, a combination of gluten-free and modified ketogenic diet in a study had a positive effect on social affect scores. No serious adverse events have been reported. CONCLUSION Despite encouraging laboratory data, there is controversy about the real clinical effect of therapeutic diets in patients with autism. More research is needed to provide sounder scientific evidence.
Collapse
Affiliation(s)
- M Gogou
- 2nd Department of Pediatrics, School of Medicine, University General Hospital AHEPA, Aristotle University of Thessaloniki, Thessaloníki, Greece.
| | - G Kolios
- Laboratory of Pharmacology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|