1
|
Park JH, Cho YR. Draw+: network-based computational drug repositioning with attention walking and noise filtering. Health Inf Sci Syst 2025; 13:14. [PMID: 39764174 PMCID: PMC11700073 DOI: 10.1007/s13755-024-00326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/11/2024] [Indexed: 02/02/2025] Open
Abstract
Purpose Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions. Methods We present a novel network-based framework for drug repositioning, named DRAW+, which incorporates noise filtering and feature extraction using graph neural networks and attention mechanisms. The proposed model first constructs a heterogeneous network that integrates the drug-disease association network with the similarity networks of drugs and diseases, which are upgraded through reduced-rank singular value decomposition. Next, a subgraph surrounding the targeted drug-disease node pair is extracted, allowing the model to focus on local structures. Graph neural networks are then applied to extract structural representation, followed by attention walking to capture key features of the subgraph. Finally, a multi-layer perceptron classifies the subgraph as positive or negative, which indicates the presence of the link between the target node pair. Results Experimental validation across three benchmark datasets showed that DRAW+ outperformed seven state-of-the-art methods, achieving the highest average AUROC and AUPRC, 0.963 and 0.564, respectively. Moreover, DRAW+ demonstrated its robustness by achieving the best performance across two additional datasets, further confirming its generalizability and effectiveness in diverse settings. Conclusions The proposed network-based computational approach, DRAW+, demonstrates exceptional accuracy and robustness, confirming its effectiveness in drug repositioning tasks.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea
- Division of Digital Healthcare, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, Gangwon-do 26493 Korea
| |
Collapse
|
2
|
Akhtar M, Nehal N, Gull A, Parveen R, Khan S, Khan S, Ali J. Explicating the transformative role of artificial intelligence in designing targeted nanomedicine. Expert Opin Drug Deliv 2025:1-21. [PMID: 40321117 DOI: 10.1080/17425247.2025.2502022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/01/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION Artificial intelligence (AI) has emerged as a transformative force in nanomedicine, revolutionizing drug delivery, diagnostics, and personalized treatment. While nanomedicine offers precise targeted drug delivery and reduced toxic effects, its clinical translation is hindered by biological complexity, unpredictable in vivo behavior, and inefficient trial-and-error approaches. AREAS COVERED This review covers the application of AI and Machine Learning (ML) across the nanomedicine development pipeline, starting from drug and target identification to nanoparticle design, toxicity prediction, and personalized dosing. Different AI/ML models like QSAR, MTK-QSBER, and Alchemite, along with data sources and high-throughput screening methods, have been explored. Real-world applications are critically discussed, including AI-assisted drug repurposing, controlled-release formulations, and cancer-specific delivery systems. EXPERT OPINION AI has emerged as an essential component in designing next-generation nanomedicine. Efficiently handling multidimensional datasets, optimizing formulations, and personalizing treatment regimens, it has sped up the innovation process. However, challenges like data heterogeneity, model transparency, and regulatory gaps remain. Addressing these hurdles through interdisciplinary efforts and emerging innovations like explainable AI and federated learning will pave the way for the clinical translation of AI-driven nanomedicine.
Collapse
Affiliation(s)
- Masheera Akhtar
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Nida Nehal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Sana Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, New Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, New Delhi, India
| |
Collapse
|
3
|
Wang G, Chen H, Wang H, Fu Y, Shi C, Cao C, Hu X. Heterogeneous Graph Contrastive Learning with Graph Diffusion for Drug Repositioning. J Chem Inf Model 2025. [PMID: 40377926 DOI: 10.1021/acs.jcim.5c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Drug repositioning, which identifies novel therapeutic applications for existing drugs, offers a cost-effective alternative to traditional drug development. However, effectively capturing the complex relationships between drugs and diseases remains challenging. We present HGCL-DR, a novel heterogeneous graph contrastive learning framework for drug repositioning that effectively integrates global and local feature representations through three key components. First, we introduce an improved heterogeneous graph contrastive learning approach to model drug-disease relationships. Second, for local feature extraction, we employ a bidirectional graph convolutional network with a subgraph generation strategy in the bipartite drug-disease association graph, while utilizing a graph diffusion process to capture long-range dependencies in drug-drug and disease-disease relation graphs. Third, for global feature extraction, we leverage contrastive learning in the heterogeneous graph to enhance embedding consistency across different feature spaces. Extensive experiments on four benchmark data sets using 10-fold cross-validation demonstrate that HGCL-DR consistently outperforms state-of-the-art baselines in both AUPR, AUROC, and F1-score metrics. Ablation studies confirm the significance of each proposed component, while case studies on Alzheimer's disease and breast neoplasms validate HGCL-DR's practical utility in identifying novel drug candidates. These results establish HGCL-DR as an effective approach for computational drug repositioning.
Collapse
Affiliation(s)
- Guishen Wang
- School of Computer Science and Engineering, Changchun University of Technology, North Yuanda Street No. 3000, Changchun 130012, Jilin, China
| | - Honghan Chen
- School of Computer Science and Engineering, Changchun University of Technology, North Yuanda Street No. 3000, Changchun 130012, Jilin, China
| | - Handan Wang
- School of Computer Science and Engineering, Changchun University of Technology, North Yuanda Street No. 3000, Changchun 130012, Jilin, China
| | - Yuyouqiang Fu
- School of Computer Science and Engineering, Changchun University of Technology, North Yuanda Street No. 3000, Changchun 130012, Jilin, China
| | - Caiye Shi
- School of Computer Science and Engineering, Changchun University of Technology, North Yuanda Street No. 3000, Changchun 130012, Jilin, China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Longmian Avenue No. 101, Nanjing 211166, Jiangsu, China
| | - Xiaowen Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Longmian Avenue No. 101, Nanjing 211166, Jiangsu, China
| |
Collapse
|
4
|
Alnasra O, Khalili FI, Hamadneh L, Alwahsh M, Omar R, AlDoridee A, Hasan A. A dual-modal approach to lung cancer treatment: in vitro and in silico. Evaluation of a hybrid nanocomposite for synergistic chemotherapy. Biometals 2025:10.1007/s10534-025-00694-6. [PMID: 40369325 DOI: 10.1007/s10534-025-00694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
This study investigates the therapeutic potential of a nanosilica-cysteine composite loaded with arsenic trioxide (SC-As) in combination with cisplatin (CIS), paclitaxel (PTX), and doxorubicin (DOX) for lung/breast cancer treatment. Through comprehensive synthesis, characterization (ATR-FTIR, XRD, SEM, TEM, DLS), and cytotoxicity assessments, SC-As demonstrated superior potency with IC₅₀ values as low as 7.29 ± 1.40 µM in lung cancer (A549) and 8.60 ± 1.20 µM in breast cancer (MCF-7) cell lines. This study employs a dual-modal approach, combining in silico computational predictions (CompuSyn) with in vitro experiments to evaluate synergistic chemotherapy regimens, ensuring robust validation of therapeutic outcomes. The computational synergy analysis and the experimental validation in lung cancer cell lines revealed synergistic interactions between SC-As and CIS (CI < 1), enabling significant dose reductions (DRI > 1). Conversely, antagonism was observed with PTX and DOX in A549 cells, though H1299 cells exhibited unanticipated synergistic interactions with PTX/DOX. Given that H1299 cells represent a more aggressive and metastatic form of lung cancer, these results suggest that PTX and DOX combinations may have enhanced therapeutic potential in treating highly malignant lung cancer subtypes. These findings underscore the composite's potential as a targeted delivery system and highlight the necessity of integrating computational predictions with empirical validation to optimize combinatorial efficacy and minimize toxicity, providing a foundation for future in vivo and clinical studies.
Collapse
Affiliation(s)
- Omar Alnasra
- Department of Chemistry, Faculty of Science, Jerash Private University, Jerash, 26150, Jordan.
| | - Fawwaz I Khalili
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Salt, 19117, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Rana Omar
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Amani AlDoridee
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| | - Aya Hasan
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, 11733, Jordan
| |
Collapse
|
5
|
Shang Y, Wang Z, Chen Y, Yang X, Ren Z, Zeng X, Xu L. HNF-DDA: subgraph contrastive-driven transformer-style heterogeneous network embedding for drug-disease association prediction. BMC Biol 2025; 23:101. [PMID: 40241152 PMCID: PMC12004644 DOI: 10.1186/s12915-025-02206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Drug-disease association (DDA) prediction aims to identify potential links between drugs and diseases, facilitating the discovery of new therapeutic potentials and reducing the cost and time associated with traditional drug development. However, existing DDA prediction methods often overlook the global relational information provided by other biological entities, and the complex association structure between drug diseases, limiting the potential correlations of drug and disease embeddings. RESULTS In this study, we propose HNF-DDA, a subgraph contrastive-driven transformer-style heterogeneous network embedding model for DDA prediction. Specifically, HNF-DDA adopts all-pairs message passing strategy to capture the global structure of the network, fully integrating multi-omics information. HNF-DDA also proposes the concept of subgraph contrastive learning to capture the local structure of drug-disease subgraphs, learning the high-order semantic information of nodes. Experimental results on two benchmark datasets demonstrate that HNF-DDA outperforms several state-of-the-art methods. Additionally, it shows superior performance across different dataset splitting schemes, indicating HNF-DDA's capability to generalize to novel drug and disease categories. Case studies for breast cancer and prostate cancer reveal that 9 out of the top 10 predicted candidate drugs for breast cancer and 8 out of the top 10 for prostate cancer have documented therapeutic effects. CONCLUSIONS HNF-DDA incorporates all-pairs message passing and subgraph capture strategies into heterogeneous network embedding, enabling effective learning of drug and disease representations enriched with heterogeneous information, while also demonstrating significant potential for applications in drug repositioning.
Collapse
Affiliation(s)
- Yifan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zixu Wang
- Department of Computer Science, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Yangyang Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xinyu Yang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Gan Y, Li S, Xu G, Yan C, Zou G. Multidependency Graph Convolutional Networks and Contrastive Learning for Drug Repositioning. J Chem Inf Model 2025; 65:3090-3103. [PMID: 40071716 DOI: 10.1021/acs.jcim.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The goal of drug repositioning is to expedite the drug development process by finding novel therapeutic applications for approved drugs. Using multifeature learning, different computational drug repositioning techniques have recently been introduced to predict possible drug-disease relationships. Nevertheless, current graph-based methods tend to model drug-disease interaction relationships without considering the semantic influence of node-specific side information on graphs. These approaches also suffer from the noise and sparsity inherent in the data. To address these limitations, we propose MDGCN, a novel drug repositioning method that incorporates multidependency graph convolutional networks and contrastive learning. Based on drug and disease similarity matrices and the drug-disease relationships matrix, this approach constructs multidependency graphs. It subsequently employs graph convolutional networks to spread side information between various graphs in each layer. Meanwhile, the weak supervision of drug-disease connections is effectively addressed by introducing cross-view and cross-layer contrastive learning to align node embedding across various views. Extensive experiments show that MDGCN performs better in drug-disease association prediction than seven advanced methods, offering strong support for investigating novel therapeutic indications for medications of interest.
Collapse
Affiliation(s)
- Yanglan Gan
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Shengnan Li
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Guangwei Xu
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Cairong Yan
- School of Computer Science and Technology, Donghua University, Shanghai 201620, China
| | - Guobing Zou
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
7
|
Chen L, Lu Y, Xu J, Zhou B. Prediction of drug's anatomical therapeutic chemical (ATC) code by constructing biological profiles of ATC codes. BMC Bioinformatics 2025; 26:86. [PMID: 40119265 PMCID: PMC11927162 DOI: 10.1186/s12859-025-06102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/04/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND The Anatomical Therapeutic Chemical (ATC) classification system, proposed and maintained by the World Health Organization, is among the most widely used drug classification schemes. Recently, it has become a key research focus in drug repositioning. Computational models often pair drugs with ATC codes to explore drug-ATC code associations. However, the limited information available for ATC codes constrains these models, leaving significant room for improvement. RESULTS This study presents an inference method to identify highly related target proteins, structural features, and side effects for each ATC code, constructing comprehensive biological profiles. Association networks for target proteins, structural features, and side effects are established, and a random walk with restart algorithm is applied to these networks to extract raw associations. A permutation test is then conducted to exclude false positives, yielding robust biological profiles for ATC codes. These profiles are used to construct new ATC code kernels, which are integrated with ATC code kernels from the existing model PDATC-NCPMKL. The recommendation matrix is subsequently generated using the procedures of PDATC-NCPMKL. Cross-validation results demonstrate that the new model achieves AUROC and AUPR values exceeding 0.96. CONCLUSION The proposed model outperforms PDATC-NCPMKL and other previous models. Analysis of the contributions of the newly added ATC code kernels confirms the value of biological profiles in enhancing the prediction of drug-ATC code associations.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China.
| | - Yiwen Lu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Jing Xu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - Bo Zhou
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| |
Collapse
|
8
|
Abbasi H, Lakizadeh A. Drug Repurposing Using Hypergraph Embedding Based on Common Therapeutic Targets of a Drug. J Comput Biol 2025; 32:316-329. [PMID: 39648844 DOI: 10.1089/cmb.2023.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Developing a new drug is a long and expensive process that typically takes 10-15 years and costs billions of dollars. This has led to an increasing interest in drug repositioning, which involves finding new therapeutic uses for existing drugs. Computational methods become an increasingly important tool for identifying associations between drugs and new diseases. Graph- and hypergraph-based approaches are a type of computational method that can be used to identify potential associations between drugs and new diseases. Here, we present a drug repurposing method based on hypergraph neural network for predicting drug-disease association in three stages. First, it constructs a heterogeneous graph that contains drug and disease nodes and links between them; in the second stage, it converts the heterogeneous simple graph to a hypergraph with only disease nodes. This is achieved by grouping diseases that use the same drug into a hyperedge. Indeed, all the diseases that are the common therapeutic goal of a drug are placed on a hyperedge. Finally, a graph neural network is used to predict drug-disease association based on the structure of the hypergraph. This model is more efficient than other methods because it uses a hypergraph to model relationships more effectively than graphs. Furthermore, it constructs the hypergraph using only a drug-disease association matrix, eliminating the need for extensive amounts of data. Experimental results show that the hypergraph-based approach effectively captures complex interrelationships between drugs and diseases, leading to improved accuracy of drug-disease association prediction compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Computer Engineering Department, University of Qom, Qom, Iran
| | - Amir Lakizadeh
- Computer Engineering Department, University of Qom, Qom, Iran
| |
Collapse
|
9
|
Cheng Z, Xu D, Ding D, Ding Y. Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework. IEEE J Biomed Health Inform 2025; 29:1567-1578. [PMID: 38227407 DOI: 10.1109/jbhi.2024.3354953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug development. In recent years, numerous machine learning-based methods have been proposed for predicting potential DTIs. However, a common limitation among these methods is the absence of high-quality negative samples. Moreover, the effective extraction of multisource information of drugs and proteins for DTI prediction remains a significant challenge. In this paper, we investigated two aspects: the selection of high-quality negative samples and the construction of a high-performance DTI prediction framework. Specifically, we found two types of hidden biases when randomly selecting negative samples from unlabeled drug-protein pairs and proposed a negative sample selection approach based on complex network theory. Furthermore, we proposed a novel DTI prediction method named HNetPa-DTI, which integrates topological information from the drug-protein-disease heterogeneous network and gene ontology (GO) and pathway annotation information of proteins. Specifically, we extracted topological information of the drug-protein-disease heterogeneous network using heterogeneous graph neural networks, and obtained GO and pathway annotation information of proteins from the GO term semantic similarity networks, GO term-protein bipartite networks, and pathway-protein bipartite network using graph neural networks. Experimental results show that HNetPa-DTI outperforms the baseline methods on four types of prediction tasks, demonstrating the superiority of our method.
Collapse
|
10
|
Luo H, Yang H, Zhang G, Wang J, Luo J, Yan C. KGRDR: a deep learning model based on knowledge graph and graph regularized integration for drug repositioning. Front Pharmacol 2025; 16:1525029. [PMID: 40008124 PMCID: PMC11850324 DOI: 10.3389/fphar.2025.1525029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Computational drug repositioning, serving as an effective alternative to traditional drug discovery plays a key role in optimizing drug development. This approach can accelerate the development of new therapeutic options while reducing costs and mitigating risks. In this study, we propose a novel deep learning-based framework KGRDR containing multi-similarity integration and knowledge graph learning to predict potential drug-disease interactions. Specifically, a graph regularized approach is applied to integrate multiple drug and disease similarity information, which can effectively eliminate noise data and obtain integrated similarity features of drugs and diseases. Then, topological feature representations of drugs and diseases are learned from constructed biomedical knowledge graphs (KGs) which encompasses known drug-related and disease-related interactions. Next, the similarity features and topological features are fused by utilizing an attention-based feature fusion method. Finally, drug-disease associations are predicted using the graph convolutional network. Experimental results demonstrate that KGRDR achieves better performance when compared with the state-of-the-art drug-disease prediction methods. Moreover, case study results further validate the effectiveness of KGRDR in predicting novel drug-disease interactions.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Hui Yang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, China
| |
Collapse
|
11
|
Su YY, Huang HC, Lin YT, Chuang YF, Sheu SY, Lin CC. HEDDI-Net: heterogeneous network embedding for drug-disease association prediction and drug repurposing, with application to Alzheimer's disease. J Transl Med 2025; 23:57. [PMID: 39891114 PMCID: PMC11786366 DOI: 10.1186/s12967-024-05938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/03/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The traditional process of developing new drugs is time-consuming and often unsuccessful, making drug repurposing an appealing alternative due to its speed and safety. Graph neural networks (GCNs) have emerged as a leading approach for predicting drug-disease associations by integrating drug and disease-related networks with advanced deep learning algorithms. However, GCNs generally infer association probabilities only for existing drugs and diseases, requiring network re-establishment and retraining for novel entities. Additionally, these methods often struggle with sparse networks and fail to elucidate the biological mechanisms underlying newly predicted drugs. METHODS To address the limitations of traditional methods, we developed HEDDI-Net, a heterogeneous embedding architecture designed to accurately detect drug-disease associations while preserving the interpretability of biological mechanisms. HEDDI-Net integrates graph and shallow learning techniques to extract representative diseases and proteins, respectively. These representative diseases and proteins are used to embed the input features, which are then utilized in a multilayer perceptron for predicting drug-disease associations. RESULTS In experiments, HEDDI-Net achieves areas under the receiver operating characteristic curve of over 0.98, outperforming state-of-the-art methods. Rigorous recovery analyses reveal a median recovery rate of 73% for the top 100 diseases, demonstrating its efficacy in identifying novel target diseases for existing drugs, known as drug repurposing. A case study on Alzheimer's disease highlighted the model's practical applicability and interpretability, identifying potential drug candidates like Baclofen, Fluoxetine, Pentoxifylline and Phenytoin. Notably, over 40% of the predicted candidates in the clusters of commonly prescribed clinical drugs Donepezil and Galantamine had been tested in clinical trials, validating the model's predictive accuracy and practical relevance. CONCLUSIONS HEDDI-NET represents a significant advancement by allowing direct application to new diseases and drugs without the need for retraining, a limitation of most GCN-based methods. Furthermore, HEDDI-Net provides detailed affinity patterns with representative proteins for predicted candidate drugs, facilitating an understanding of their physiological effects. This capability also supports the design and testing of alternative drugs that are similar to existing medications, enhancing the reliability and interpretability of potential repurposed drugs. The case study on Alzheimer's disease further underscores HEDDI-Net's ability to predict promising drugs and its applicability in drug repurposing.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ting Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Chuang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Life Science and Institute of Genome Science, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Gu Y, Zheng S, Zhang B, Kang H, Jiang R, Li J. Deep multiple instance learning on heterogeneous graph for drug-disease association prediction. Comput Biol Med 2025; 184:109403. [PMID: 39577348 DOI: 10.1016/j.compbiomed.2024.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Drug repositioning offers promising prospects for accelerating drug discovery by identifying potential drug-disease associations (DDAs) for existing drugs and diseases. Previous methods have generated meta-path-augmented node or graph embeddings for DDA prediction in drug-disease heterogeneous networks. However, these approaches rarely develop end-to-end frameworks for path instance-level representation learning as well as the further feature selection and aggregation. By leveraging the abundant topological information in path instances, more fine-grained and interpretable predictions can be achieved. To this end, we introduce deep multiple instance learning into drug repositioning by proposing a novel method called MilGNet. MilGNet employs a heterogeneous graph neural network (HGNN)-based encoder to learn drug and disease node embeddings. Treating each drug-disease pair as a bag, we designed a special quadruplet meta-path form and implemented a pseudo meta-path generator in MilGNet to obtain multiple meta-path instances based on network topology. Additionally, a bidirectional instance encoder enhances the representation of meta-path instances. Finally, MilGNet utilizes a multi-scale interpretable predictor to aggregate bag embeddings with an attention mechanism, providing predictions at both the bag and instance levels for accurate and explainable predictions. Comprehensive experiments on five benchmarks demonstrate that MilGNet significantly outperforms ten advanced methods. Notably, three case studies on one drug (Methotrexate) and two diseases (Renal Failure and Mismatch Repair Cancer Syndrome) highlight MilGNet's potential for discovering new indications, therapies, and generating rational meta-path instances to investigate possible treatment mechanisms. The source code is available at https://github.com/gu-yaowen/MilGNet.
Collapse
Affiliation(s)
- Yaowen Gu
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Department of Chemistry, New York University, NY, 10027, USA.
| | - Si Zheng
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China; Institute for Artificial Intelligence, Department of Computer Science and Technology, BNRist, Tsinghua University, Beijing, 100084, China
| | - Bowen Zhang
- Beijing StoneWise Technology Co Ltd., Beijing, 100080, China
| | - Hongyu Kang
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China
| | - Rui Jiang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division at the Beijing National Research Center for Information Science and Technology, Center for Synthetic and Systems Biology, Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Jiao Li
- Institute of Medical Information, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS&PUMC), Beijing, 100020, China.
| |
Collapse
|
13
|
Tanaka T, Katayama T, Imai T. Predicting the effects of drugs and unveiling their mechanisms of action using an interpretable pharmacodynamic mechanism knowledge graph (IPM-KG). Comput Biol Med 2025; 184:109419. [PMID: 39556916 DOI: 10.1016/j.compbiomed.2024.109419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Multiple studies have aimed to consolidate drug-related data and predict drug effects. However, most of these studies have focused on integrating diverse data through correlation rather than representing them based on the pharmacodynamic mechanism of action (MOA). It is thus crucial to obtain interpretability to validate prediction results. In this study, we propose a novel framework to construct knowledge graphs that represent pharmacodynamic MOA, predict drug effects, and derive conceivable mechanistic pathways. METHODS AND RESULTS We constructed an interpretable pharmacodynamic mechanism knowledge graph (IPM-KG) by integrating various existing databases and combining them with the approach of this study to automatically fill in the missing data. This yielded a knowledge graph comprising 1455 drugs and 2547 diseases. Additionally, a graph neural network (GNN)-based approach was used to predict therapeutic medication and indication, which outperformed previous approaches that relied on correlation-based knowledge graphs lacking pharmacodynamic MOA representations. Furthermore, we proposed and assessed a method to interpret pharmacodynamic MOA using gene perturbation data. This feasibility study demonstrated the successful derivation of an accurate mechanism in approximately 50 % of cases. Additionally, it facilitated the identification of candidate drugs, which are currently unapproved but exhibit potential for drug repositioning, and their mechanisms of action. CONCLUSIONS This framework not only enables the derivation of highly accurate "drug-indication" predictions but also offers a basic mechanistic understanding, thereby facilitating future drug repositioning efforts.
Collapse
Affiliation(s)
- Tatsuya Tanaka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Katayama
- Bio Data Science Initiative and Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Chiba, Japan
| | - Takeshi Imai
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Gunji D, Abe Y, Muraoka S, Narumi R, Isoyama J, Ikemoto N, Ishida M, Shinkura A, Tomonaga T, Nagayama S, Takahashi Y, Fukunaga Y, Sakai Y, Obama K, Adachi J. Longitudinal phosphoproteomics reveals the PI3K-PAK1 axis as a potential target for recurrent colorectal liver metastases. Cell Rep 2024; 43:115061. [PMID: 39689713 DOI: 10.1016/j.celrep.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/07/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
The resistance of colorectal cancer liver metastases (CRLMs) to 5-fluorouracil (5-FU) chemotherapy remains a significant global health challenge. We investigated the phosphoproteomic dynamics of serial tissue sections obtained from initial metastases and recurrent tumors collected from 24 patients to address this unmet need for innovative therapeutic strategies for patients with CRLM with a poor prognosis. Our analysis revealed the activation of PAK kinase in patients with CRLM with a poor prognosis. Using an unbiased computational approach, we conducted a correlation analysis between PAK1 kinase activity and 545 drug sensitivity profiles across 35 colorectal cancer cell lines and identified PI3K inhibitors as potential therapeutic candidates. The efficacy of the FDA-approved PI3K inhibitor copanlisib was validated in 5-FU-resistant cell lines with high PAK1 kinase activity both in vitro and in vivo. This study presents an effective strategy for drug target discovery based on kinase activity, and the concept of this approach is widely applicable.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Akina Shinkura
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Department of Surgery, Uji-Tokusyukai Medical Center, Kyoto 611-0041, Japan
| | - Yu Takahashi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yosuke Fukunaga
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
15
|
Tang X, Zhou Y, Yang M, Li W. TC-DTA: Predicting Drug-Target Binding Affinity With Transformer and Convolutional Neural Networks. IEEE Trans Nanobioscience 2024; 23:572-578. [PMID: 39133595 DOI: 10.1109/tnb.2024.3441590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Bioinformatics is a rapidly evolving field that applies computational methods to analyze and interpret biological data. A key task in bioinformatics is identifying novel drug-target interactions (DTIs), which plays a crucial role in drug discovery. Most computational approaches treat DTI prediction as a binary classification problem, determining whether drug-target pairs interact. However, with the growing availability of drug-target binding affinity data, this binary task can be reframed as a regression problem focused on drug-target affinity (DTA). DTA quantifies the strength of drug-target binding, offering more detailed insights than DTI and serving as a valuable tool for virtual screening in drug discovery. Accurately predicting compound interactions with targets can accelerate the drug development process. In this study, we introduce a deep learning model named TC-DTA for DTA prediction, leveraging convolutional neural networks (CNN) and the encoder module of the transformer architecture. We begin by extracting raw drug SMILES strings and protein amino acid sequences from the dataset, which are then represented using various encoding methods. Subsequently, we employ CNN and the transformer's encoder module to extract features from the drug SMILES strings and protein sequences, respectively. Finally, the feature information is concatenated and input into a multi-layer perceptron to predict binding affinity scores. We evaluated our model on two benchmark DTA datasets, Davis and KIBA, comparing it with methods such as KronRLS, SimBoost, and DeepDTA. Our model, TC-DTA, outperformed these baseline methods based on evaluation metrics like Mean Squared Error (MSE), Concordance Index (CI), and Regression towards the Mean Index ( rm2 ). These results highlight the effectiveness of the Transformer's encoder and CNN in extracting meaningful representations from sequences, thereby enhancing DTA prediction accuracy. This deep learning model can accelerate drug discovery by identifying drug candidates with high binding affinity to specific targets. Compared to traditional methods, machine learning technology offers a more effective and efficient approach to drug discovery.
Collapse
|
16
|
Gu Y, Xu Z, Yang C. Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation. Interdiscip Sci 2024:10.1007/s12539-024-00654-7. [PMID: 39325266 DOI: 10.1007/s12539-024-00654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDANode Feat, LLM-DDADual GNN, LLM-DDAGNN-AE) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDAGNN-AE achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.
Collapse
Affiliation(s)
- Yaowen Gu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zidu Xu
- School of Nursing, Columbia University, 560 W 168th Street, New York, NY, 10032, USA.
| | - Carl Yang
- Department of Computer Science, Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
17
|
Ohnuki Y, Akiyama M, Sakakibara Y. Deep learning of multimodal networks with topological regularization for drug repositioning. J Cheminform 2024; 16:103. [PMID: 39180095 PMCID: PMC11342530 DOI: 10.1186/s13321-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
MOTIVATION Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies. RESULTS STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git .
Collapse
Affiliation(s)
- Yuto Ohnuki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
18
|
Yuan Y, Hu R, Chen S, Zhang X, Liu Z, Zhou G. CKG-IMC: An inductive matrix completion method enhanced by CKG and GNN for Alzheimer's disease compound-protein interactions prediction. Comput Biol Med 2024; 177:108612. [PMID: 38838556 DOI: 10.1016/j.compbiomed.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is one of the most prevalent chronic neurodegenerative disorders globally, with a rapidly growing population of AD patients and currently no effective therapeutic interventions available. Consequently, the development of therapeutic anti-AD drugs and the identification of AD targets represent one of the most urgent tasks. In this study, in addition to considering known drugs and targets, we explore compound-protein interactions (CPIs) between compounds and proteins relevant to AD. We propose a deep learning model called CKG-IMC to predict Alzheimer's disease compound-protein interaction relationships. CKG-IMC comprises three modules: a collaborative knowledge graph (CKG), a principal neighborhood aggregation graph neural network (PNA), and an inductive matrix completion (IMC). The collaborative knowledge graph is used to learn semantic associations between entities, PNA is employed to extract structural features of the relationship network, and IMC is utilized for CPIs prediction. Compared with a total of 16 baseline models based on similarities, knowledge graphs, and graph neural networks, our model achieves state-of-the-art performance in experiments of 10-fold cross-validation and independent test. Furthermore, we use CKG-IMC to predict compounds interacting with two confirmed AD targets, 42-amino-acid β-amyloid (Aβ42) protein and microtubule-associated protein tau (tau protein), as well as proteins interacting with five FDA-approved anti-AD drugs. The results indicate that the majority of predictions are supported by literature, and molecular docking experiments demonstrate a strong affinity between the predicted compounds and targets.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China.
| | - Rizhen Hu
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Siming Chen
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Xiaopeng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Zhenyu Liu
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China; School of Cyberspace Security, Gansu University of Political Science and Law, Anning West Road, Lanzhou, 730070, Gansu, China
| | - Gonghai Zhou
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| |
Collapse
|
19
|
He H, Xie J, Huang D, Zhang M, Zhao X, Ying Y, Wang J. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. J Mol Graph Model 2024; 130:108783. [PMID: 38677034 DOI: 10.1016/j.jmgm.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Drug repurposing is an effective method to reduce the time and cost of drug development. Computational drug repurposing can quickly screen out the most likely associations from large biological databases to achieve effective drug repurposing. However, building a comprehensive model that integrates drugs, proteins, and diseases for drug repurposing remains challenging. This study proposes a drug repurposing method based on the ternary heterogeneous graph attention network (DRTerHGAT). DRTerHGAT designs a novel protein feature extraction process consisting of a large-scale protein language model and a multi-task autoencoder, so that protein features can be extracted accurately and efficiently from amino acid sequences. The ternary heterogeneous graph of drug-protein-disease comprehensively considering the relationships among the three types of nodes, including three homogeneous and three heterogeneous relationships. Based on the graph and the extracted protein features, the deep features of the drugs and the diseases are extracted by graph convolutional networks (GCN) and heterogeneous graph node attention networks (HGNA). In the experiments, DRTerHGAT is proven superior to existing advanced methods and DRTerHGAT variants. DRTerHGAT's powerful ability for drug repurposing is also demonstrated in Alzheimer's disease.
Collapse
Affiliation(s)
- Hongjian He
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Jiang Xie
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Dingkai Huang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Mengfei Zhang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xuyu Zhao
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Yiwei Ying
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences,Shanghai University, Shanghai, China.
| |
Collapse
|
20
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
21
|
Chen X, Huang J, Shen T, Zhang H, Xu L, Yang M, Xie X, Yan Y, Yan J. DEAttentionDTA: protein-ligand binding affinity prediction based on dynamic embedding and self-attention. Bioinformatics 2024; 40:btae319. [PMID: 38897656 PMCID: PMC11193059 DOI: 10.1093/bioinformatics/btae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
MOTIVATION Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges. RESULTS We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family. AVAILABILITY AND IMPLEMENTATION The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.
Collapse
Affiliation(s)
- Xiying Chen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinsha Huang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianqiao Shen
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Houjin Zhang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Zhang Q, Zuo L, Ren Y, Wang S, Wang W, Ma L, Zhang J, Xia B. FMCA-DTI: a fragment-oriented method based on a multihead cross attention mechanism to improve drug-target interaction prediction. Bioinformatics 2024; 40:btae347. [PMID: 38810106 PMCID: PMC11256963 DOI: 10.1093/bioinformatics/btae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
MOTIVATION Identifying drug-target interactions (DTI) is crucial in drug discovery. Fragments are less complex and can accurately characterize local features, which is important in DTI prediction. Recently, deep learning (DL)-based methods predict DTI more efficiently. However, two challenges remain in existing DL-based methods: (i) some methods directly encode drugs and proteins into integers, ignoring the substructure representation; (ii) some methods learn the features of the drugs and proteins separately instead of considering their interactions. RESULTS In this article, we propose a fragment-oriented method based on a multihead cross attention mechanism for predicting DTI, named FMCA-DTI. FMCA-DTI obtains multiple types of fragments of drugs and proteins by branch chain mining and category fragment mining. Importantly, FMCA-DTI utilizes the shared-weight-based multihead cross attention mechanism to learn the complex interaction features between different fragments. Experiments on three benchmark datasets show that FMCA-DTI achieves significantly improved performance by comparing it with four state-of-the-art baselines. AVAILABILITY AND IMPLEMENTATION The code for this workflow is available at: https://github.com/jacky102022/FMCA-DTI.
Collapse
Affiliation(s)
- Qi Zhang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Le Zuo
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Ying Ren
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Siyuan Wang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Wenfa Wang
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Lerong Ma
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
- Medical Research and Experimental Center, The Second Affiliated Hospital of Xi'an Medical University, Xi'an 710021, China
| | - Bisheng Xia
- College of Mathematics and Computer Science, Yan'an University, Yan'an 716000, China
| |
Collapse
|
23
|
Huan JM, Wang XJ, Li Y, Zhang SJ, Hu YL, Li YL. The biomedical knowledge graph of symptom phenotype in coronary artery plaque: machine learning-based analysis of real-world clinical data. BioData Min 2024; 17:13. [PMID: 38773619 PMCID: PMC11110203 DOI: 10.1186/s13040-024-00365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 05/17/2024] [Indexed: 05/24/2024] Open
Abstract
A knowledge graph can effectively showcase the essential characteristics of data and is increasingly emerging as a significant means of integrating information in the field of artificial intelligence. Coronary artery plaque represents a significant etiology of cardiovascular events, posing a diagnostic challenge for clinicians who are confronted with a multitude of nonspecific symptoms. To visualize the hierarchical relationship network graph of the molecular mechanisms underlying plaque properties and symptom phenotypes, patient symptomatology was extracted from electronic health record data from real-world clinical settings. Phenotypic networks were constructed utilizing clinical data and protein‒protein interaction networks. Machine learning techniques, including convolutional neural networks, Dijkstra's algorithm, and gene ontology semantic similarity, were employed to quantify clinical and biological features within the network. The resulting features were then utilized to train a K-nearest neighbor model, yielding 23 symptoms, 41 association rules, and 61 hub genes across the three types of plaques studied, achieving an area under the curve of 92.5%. Weighted correlation network analysis and pathway enrichment were subsequently utilized to identify lipid status-related genes and inflammation-associated pathways that could help explain the differences in plaque properties. To confirm the validity of the network graph model, we conducted coexpression analysis of the hub genes to evaluate their potential diagnostic value. Additionally, we investigated immune cell infiltration, examined the correlations between hub genes and immune cells, and validated the reliability of the identified biological pathways. By integrating clinical data and molecular network information, this biomedical knowledge graph model effectively elucidated the potential molecular mechanisms that collude symptoms, diseases, and molecules.
Collapse
Affiliation(s)
- Jia-Ming Huan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiao-Jie Wang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shi-Jun Zhang
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuan-Long Hu
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yun-Lun Li
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Precision Diagnosis and Treatment of Cardiovascular Diseases with Traditional Chinese Medicine Shandong Engineering Research Center, Jinan, 250355, China.
| |
Collapse
|
24
|
Park JH, Cho YR. Computational drug repositioning with attention walking. Sci Rep 2024; 14:10072. [PMID: 38698208 PMCID: PMC11066070 DOI: 10.1038/s41598-024-60756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, the importance of computational drug repositioning has been highlighted because it can reduce the costs, development time, and risks compared to traditional drug discovery. Most approaches in this area use networks for systematic analysis. Inferring drug-disease associations is then defined as a link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, we present a novel method of computational drug repositioning, named drug repositioning with attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for prediction is extracted. Second, a graph convolutional network captures the structural features of the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention mechanisms and converted into random walk profiles. Finally, a multi-layer perceptron takes random walk profiles and predicts whether a target link exists. As an experiment, we constructed two heterogeneous networks with drug-drug similarities based on chemical structures and anatomical therapeutic chemical classification (ATC) codes. Using 10-fold cross-validation, DRAW achieved an area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state-of-the-art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to further confirm the capability of DRAW to predict drug-disease associations.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
| |
Collapse
|
25
|
Waseem T, Rajput TA, Mushtaq MS, Babar MM, Rajadas J. Computational biology approaches for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:91-109. [PMID: 38789189 DOI: 10.1016/bs.pmbts.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.
Collapse
Affiliation(s)
- Tanya Waseem
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tausif Ahmed Rajput
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | | | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan; Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States.
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute and Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
26
|
Yang R, Fu Y, Zhang Q, Zhang L. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Artif Intell Med 2024; 150:102805. [PMID: 38553169 DOI: 10.1016/j.artmed.2024.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
Predicting drug-disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug-disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug-disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug-disease information, a drug-disease heterogeneous graph structure is constructed based on all known drug-disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug-disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug-disease associations by learning drug-disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug-disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
Collapse
Affiliation(s)
- Runtao Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Yao Fu
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Qian Zhang
- Heze Institute of Science and Technology Information, Heze, 274000, China.
| | - Lina Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| |
Collapse
|
27
|
Luo H, Zhu C, Wang J, Zhang G, Luo J, Yan C. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network. Front Pharmacol 2024; 15:1337764. [PMID: 38384286 PMCID: PMC10879308 DOI: 10.3389/fphar.2024.1337764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately identifying novel indications for drugs is crucial in drug research and discovery. Traditional drug discovery is costly and time-consuming. Computational drug repositioning can provide an effective strategy for discovering potential drug-disease associations. However, the known experimentally verified drug-disease associations is relatively sparse, which may affect the prediction performance of the computational drug repositioning methods. Moreover, while the existing drug-disease prediction method based on metric learning algorithm has achieved better performance, it simply learns features of drugs and diseases only from the drug-centered perspective, and cannot comprehensively model the latent features of drugs and diseases. In this study, we propose a novel drug repositioning method named RSML-GCN, which applies graph convolutional network and reinforcement symmetric metric learning to predict potential drug-disease associations. RSML-GCN first constructs a drug-disease heterogeneous network by integrating the association and feature information of drugs and diseases. Then, the graph convolutional network (GCN) is applied to complement the drug-disease association information. Finally, reinforcement symmetric metric learning with adaptive margin is designed to learn the latent vector representation of drugs and diseases. Based on the learned latent vector representation, the novel drug-disease associations can be identified by the metric function. Comprehensive experiments on benchmark datasets demonstrated the superior prediction performance of RSML-GCN for drug repositioning.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Chunli Zhu
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| |
Collapse
|
28
|
Nitulescu GM. Techniques and Strategies in Drug Design and Discovery. Int J Mol Sci 2024; 25:1364. [PMID: 38338643 PMCID: PMC10855429 DOI: 10.3390/ijms25031364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
The process of drug discovery constitutes a highly intricate and formidable undertaking, encompassing the identification and advancement of novel therapeutic entities [...].
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| |
Collapse
|
29
|
Meng Q, Cai Y, Zhou K, Xu F, Huo D, Xie H, Yu M, Zhang D, Chen X. DAPredict: a database for drug action phenotype prediction. Database (Oxford) 2024; 2024:baad095. [PMID: 38242684 PMCID: PMC10799211 DOI: 10.1093/database/baad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
The phenotypes of drug action, including therapeutic actions and adverse drug reactions (ADRs), are important indicators for evaluating the druggability of new drugs and repositioning the approved drugs. Here, we provide a user-friendly database, DAPredict (http://bio-bigdata.hrbmu.edu.cn/DAPredict), in which our novel original drug action phenotypes prediction algorithm (Yang,J., Zhang,D., Liu,L. et al. (2021) Computational drug repositioning based on the relationships between substructure-indication. Brief. Bioinformatics, 22, bbaa348) was embedded. Our algorithm integrates characteristics of chemical genomics and pharmacogenomics, breaking through the limitations that traditional drug development process based on phenotype cannot analyze the mechanism of drug action. Predicting phenotypes of drug action based on the local active structures of drugs and proteins can achieve more innovative drug discovery across drug categories and simultaneously evaluate drug efficacy and safety, rather than traditional one-by-one evaluation. DAPredict contains 305 981 predicted relationships between 1748 approved drugs and 454 ADRs, 83 117 predicted relationships between 1478 approved drugs and 178 Anatomical Therapeutic Chemicals (ATC). More importantly, DAPredict provides an online prediction tool, which researchers can use to predict the action phenotypic spectrum of more than 110 000 000 compounds (including about 168 000 natural products) and corresponding proteins to analyze their potential effect mechanisms. DAPredict can also help researchers obtain the phenotype-corresponding active structures for structural optimization of new drug candidates, making it easier to evaluate the druggability of new drug candidates and develop more innovative drugs across drug categories. Database URL: http://bio-bigdata.hrbmu.edu.cn/DAPredict/.
Collapse
Affiliation(s)
- Qingkang Meng
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yiyang Cai
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kun Zhou
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Fei Xu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Diwei Huo
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongbo Xie
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Meini Yu
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Denan Zhang
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xiujie Chen
- Department of Pharmacogenomics, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
30
|
Sun X, Jia X, Lu Z, Tang J, Li M. Drug repositioning with adaptive graph convolutional networks. Bioinformatics 2024; 40:btad748. [PMID: 38070161 PMCID: PMC10761094 DOI: 10.1093/bioinformatics/btad748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
MOTIVATION Drug repositioning is an effective strategy to identify new indications for existing drugs, providing the quickest possible transition from bench to bedside. With the rapid development of deep learning, graph convolutional networks (GCNs) have been widely adopted for drug repositioning tasks. However, prior GCNs based methods exist limitations in deeply integrating node features and topological structures, which may hinder the capability of GCNs. RESULTS In this study, we propose an adaptive GCNs approach, termed AdaDR, for drug repositioning by deeply integrating node features and topological structures. Distinct from conventional graph convolution networks, AdaDR models interactive information between them with adaptive graph convolution operation, which enhances the expression of model. Concretely, AdaDR simultaneously extracts embeddings from node features and topological structures and then uses the attention mechanism to learn adaptive importance weights of the embeddings. Experimental results show that AdaDR achieves better performance than multiple baselines for drug repositioning. Moreover, in the case study, exploratory analyses are offered for finding novel drug-disease associations. AVAILABILITY AND IMPLEMENTATION The soure code of AdaDR is available at: https://github.com/xinliangSun/AdaDR.
Collapse
Affiliation(s)
- Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiao Jia
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhangli Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, FI00014 Helsinki, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
31
|
Ganesh S, Chithambaram T, Krishnan NR, Vincent DR, Kaliappan J, Srinivasan K. Exploring Huntington's Disease Diagnosis via Artificial Intelligence Models: A Comprehensive Review. Diagnostics (Basel) 2023; 13:3592. [PMID: 38066833 PMCID: PMC10706174 DOI: 10.3390/diagnostics13233592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 10/16/2024] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder characterized by progressive motor dysfunction, cognitive impairment, and psychiatric symptoms. The early and accurate diagnosis of HD is crucial for effective intervention and patient care. This comprehensive review provides a comprehensive overview of the utilization of Artificial Intelligence (AI) powered algorithms in the diagnosis of HD. This review systematically analyses the existing literature to identify key trends, methodologies, and challenges in this emerging field. It also highlights the potential of ML and DL approaches in automating HD diagnosis through the analysis of clinical, genetic, and neuroimaging data. This review also discusses the limitations and ethical considerations associated with these models and suggests future research directions aimed at improving the early detection and management of Huntington's disease. It also serves as a valuable resource for researchers, clinicians, and healthcare professionals interested in the intersection of machine learning and neurodegenerative disease diagnosis.
Collapse
Affiliation(s)
- Sowmiyalakshmi Ganesh
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; (S.G.); (T.C.); (J.K.)
| | - Thillai Chithambaram
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; (S.G.); (T.C.); (J.K.)
| | - Nadesh Ramu Krishnan
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Durai Raj Vincent
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Jayakumar Kaliappan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; (S.G.); (T.C.); (J.K.)
| | - Kathiravan Srinivasan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; (S.G.); (T.C.); (J.K.)
| |
Collapse
|
32
|
Liyaqat T, Ahmad T, Saxena C. TeM-DTBA: time-efficient drug target binding affinity prediction using multiple modalities with Lasso feature selection. J Comput Aided Mol Des 2023; 37:573-584. [PMID: 37777631 DOI: 10.1007/s10822-023-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
Drug discovery, especially virtual screening and drug repositioning, can be accelerated through deeper understanding and prediction of Drug Target Interactions (DTIs). The advancement of deep learning as well as the time and financial costs associated with conventional wet-lab experiments have made computational methods for DTI prediction more popular. However, the majority of these computational methods handle the DTI problem as a binary classification task, ignoring the quantitative binding affinity that determines the drug efficacy to their target proteins. Moreover, computational space as well as execution time of the model is often ignored over accuracy. To address these challenges, we introduce a novel method, called Time-efficient Multimodal Drug Target Binding Affinity (TeM-DTBA), which predicts the binding affinity between drugs and targets by fusing different modalities based on compound structures and target sequences. We employ the Lasso feature selection method, which lowers the dimensionality of feature vectors and speeds up the proposed model training time by more than 50%. The results from two benchmark datasets demonstrate that our method outperforms state-of-the-art methods in terms of performance. The mean squared errors of 18.8% and 23.19%, achieved on the KIBA and Davis datasets, respectively, suggest that our method is more accurate in predicting drug-target binding affinity.
Collapse
Affiliation(s)
- Tanya Liyaqat
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India.
| | - Tanvir Ahmad
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
| | - Chandni Saxena
- The Chinese University of Hong Kong, Sha Tin, SAR, China
| |
Collapse
|
33
|
Meng Y, Wang Y, Xu J, Lu C, Tang X, Peng T, Zhang B, Tian G, Yang J. Drug repositioning based on weighted local information augmented graph neural network. Brief Bioinform 2023; 25:bbad431. [PMID: 38019732 PMCID: PMC10686358 DOI: 10.1093/bib/bbad431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.
Collapse
Affiliation(s)
- Yajie Meng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Yi Wang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Changcheng Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Xianfang Tang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Tao Peng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Bengong Zhang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Geng Tian
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| |
Collapse
|
34
|
Wang S, Li J, Wang D, Xu D, Jin J, Wang Y. Predicting Drug-Disease Associations Through Similarity Network Fusion and Multi-View Feature Projection Representation. IEEE J Biomed Health Inform 2023; 27:5165-5176. [PMID: 37527303 DOI: 10.1109/jbhi.2023.3300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Predicting drug-disease associations (DDAs) through computational methods has become a prevalent trend in drug development because of their high efficiency and low cost. Existing methods usually focus on constructing heterogeneous networks by collecting multiple data resources to improve prediction ability. However, potential association possibilities of numerous unconfirmed drug-related or disease-related pairs are not sufficiently considered. In this article, we propose a novel computational model to predict new DDAs. First, a heterogeneous network is constructed, including four types of nodes (drugs, targets, cell lines, diseases) and three types of edges (associations, association scores, similarities). Second, an updating and merging-based similarity network fusion method, termed UM-SF, is presented to fuse various similarity networks with diverse weights. Finally, an intermediate layer-mediated multi-view feature projection representation method, termed IM-FP, is proposed to calculate the predicted DDA scores. This method uses multiple association scores to construct multi-view drug features, then projects them into disease space through the intermediate layer, where an intermediate layer similarity constraint is designed to learn the projection matrices. Results of comparative experiments reveal the effectiveness of our innovations. Comparisons with other state-of-the-art models by the 10-fold cross-validation experiment indicate our model's advantage on AUROC and AUPR metrics. Moreover, our proposed model successfully predicted 107 novel high-ranked DDAs.
Collapse
|
35
|
Ye S, Zhao W, Shen X, Jiang X, He T. An effective multi-task learning framework for drug repurposing based on graph representation learning. Methods 2023; 218:48-56. [PMID: 37516260 DOI: 10.1016/j.ymeth.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Drug repurposing, which typically applies the procedure of drug-disease associations (DDAs) prediction, is a feasible solution to drug discovery. Compared with traditional methods, drug repurposing can reduce the cost and time for drug development and advance the success rate of drug discovery. Although many methods for drug repurposing have been proposed and the obtained results are relatively acceptable, there is still some room for improving the predictive performance, since those methods fail to consider fully the issue of sparseness in known drug-disease associations. In this paper, we propose a novel multi-task learning framework based on graph representation learning to identify DDAs for drug repurposing. In our proposed framework, a heterogeneous information network is first constructed by combining multiple biological datasets. Then, a module consisting of multiple layers of graph convolutional networks is utilized to learn low-dimensional representations of nodes in the constructed heterogeneous information network. Finally, two types of auxiliary tasks are designed to help to train the target task of DDAs prediction in the multi-task learning framework. Comprehensive experiments are conducted on real data and the results demonstrate the effectiveness of the proposed method for drug repurposing.
Collapse
Affiliation(s)
- Shengwei Ye
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Weizhong Zhao
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China.
| | - Xianjun Shen
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, Hubei 430079, PR China; School of Computer, Central China Normal University, Wuhan, Hubei 430079, PR China; National Language Resources Monitoring & Research Center for Network Media, Central China Normal University, Wuhan, Hubei 430079, PR China
| |
Collapse
|
36
|
Yang M, Yang B, Duan G, Wang J. ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis. Front Genet 2023; 14:1271311. [PMID: 37795241 PMCID: PMC10545866 DOI: 10.3389/fgene.2023.1271311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a hot issue in bioinformatics. However, there are sparse samples, multi-source information, and even some noises, which makes it difficult to accurately identify potential drug-associated indications. Methods: In this article, we propose a new scheme with improved tensor robust principal component analysis (ITRPCA) in multi-source data to predict promising drug-disease associations. First, we use a weighted k-nearest neighbor (WKNN) approach to increase the overall density of the drug-disease association matrix that will assist in prediction. Second, a drug tensor with five frontal slices and a disease tensor with two frontal slices are constructed using multi-similarity matrices and an updated association matrix. The two target tensors naturally integrate multiple sources of data from the drug-side aspect and the disease-side aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and noise information in the tensor. In this step, an additional range constraint is incorporated to ensure that all the predicted entry values of a low-rank tensor are within the specific interval. Finally, we focus on identifying promising drug indications by analyzing drug-disease association pairs derived from the low-rank drug and low-rank disease tensors. Results: We evaluate the effectiveness of the ITRPCA method by comparing it with five prominent existing drug repositioning methods. This evaluation is carried out using 10-fold cross-validation and independent testing experiments. Our numerical results show that ITRPCA not only yields higher prediction accuracy but also exhibits remarkable computational efficiency. Furthermore, case studies demonstrate the practical effectiveness of our method.
Collapse
Affiliation(s)
- Mengyun Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
- School of Computer Science, Hunan First Normal University, Changsha, China
| | - Bin Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
37
|
Yang X, Yang G, Chu J. Self-Supervised Learning for Label Sparsity in Computational Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3245-3256. [PMID: 37028367 DOI: 10.1109/tcbb.2023.3254163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The computational drug repositioning aims to discover new uses for marketed drugs, which can accelerate the drug development process and play an important role in the existing drug discovery system. However, the number of validated drug-disease associations is scarce compared to the number of drugs and diseases in the real world. Too few labeled samples will make the classification model unable to learn effective latent factors of drugs, resulting in poor generalization performance. In this work, we propose a multi-task self-supervised learning framework for computational drug repositioning. The framework tackles label sparsity by learning a better drug representation. Specifically, we take the drug-disease association prediction problem as the main task, and the auxiliary task is to use data augmentation strategies and contrast learning to mine the internal relationships of the original drug features, so as to automatically learn a better drug representation without supervised labels. And through joint training, it is ensured that the auxiliary task can improve the prediction accuracy of the main task. More precisely, the auxiliary task improves drug representation and serving as additional regularization to improve generalization. Furthermore, we design a multi-input decoding network to improve the reconstruction ability of the autoencoder model. We evaluate our model using three real-world datasets. The experimental results demonstrate the effectiveness of the multi-task self-supervised learning framework, and its predictive ability is superior to the state-of-the-art model.
Collapse
|
38
|
Zhao H, Duan G, Ni P, Yan C, Li Y, Wang J. RNPredATC: A Deep Residual Learning-Based Model With Applications to the Prediction of Drug-ATC Code Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2712-2723. [PMID: 34110998 DOI: 10.1109/tcbb.2021.3088256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Anatomical Therapeutic Chemical (ATC) classification system, designated by the World Health Organization Collaborating Center (WHOCC), has been widely used in drug screening, repositioning, and similarity research. The ATC classification system assigns different codes to drugs according to the organ or system on which they act and/or their therapeutic and chemical characteristics. Correctly identifying the potential ATC codes for drugs can accelerate drug development and reduce the cost of experiments. Several classifiers have been proposed in this regard. However, they lack of ability to learn basic features from sparsely known drug-ATC code associations. Therefore, there is an urgent need for novel computational methods to precisely predict potential drug-ATC code associations in multiple levels of the ATC classification system based on known associations between drugs and ATC codes. In this paper, we provide a novel end-to-end model, so-called RNPredATC, to predict potential drug-ATC code associations in five ATC classification levels. RNPredATC can extract dense feature vectors from sparsely known drug-ATC code associations and reduce the impact from the degradation problem by a novel deep residual learning. We extensively compare our method with some state-of-the-art methods, including NetPredATC, SPACE, and some multi-label-based methods. Our experimental results show that RNPredATC achieves better performances in five-fold and ten-fold cross validations. Furthermore, the visualization analysis of hidden layers and case studies of predicted associations at the fifth ATC classification level confirm that RNPredATC can effectively identify the potential ATC codes of drugs.
Collapse
|
39
|
Ai C, Yang H, Ding Y, Tang J, Guo F. Low Rank Matrix Factorization Algorithm Based on Multi-Graph Regularization for Detecting Drug-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3033-3043. [PMID: 37159322 DOI: 10.1109/tcbb.2023.3274587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting potential associations between drugs and diseases plays an indispensable role in drug development, which has also become a research hotspot in recent years. Compared with traditional methods, some computational approaches have the advantages of fast speed and low cost, which greatly accelerate the progress of predicting the drug-disease association. In this study, we propose a novel similarity-based method of low-rank matrix decomposition based on multi-graph regularization. On the basis of low-rank matrix factorization with L2 regularization, the multi-graph regularization constraint is constructed by combining a variety of similarity matrices from drugs and diseases respectively. In the experiments, we analyze the difference in the combination of different similarities, resulting that combining all the similarity information on drug space is unnecessary, and only a part of the similarity information can achieve the desired performance. Then our method is compared with other existing models on three data sets (Fdataset, Cdataset and LRSSLdataset) and have a good advantage in the evaluation measurement of AUPR. Besides, a case study experiment is conducted and showing that the superior ability for predicting the potential disease-related drugs of our model. Finally, we compare our model with some methods on six real world datasets, and our model has a good performance in detecting real world data.
Collapse
|
40
|
Elkashlan M, Ahmad RM, Hajar M, Al Jasmi F, Corchado JM, Nasarudin NA, Mohamad MS. A review of SARS-CoV-2 drug repurposing: databases and machine learning models. Front Pharmacol 2023; 14:1182465. [PMID: 37601065 PMCID: PMC10436567 DOI: 10.3389/fphar.2023.1182465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
The emergence of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) posed a serious worldwide threat and emphasized the urgency to find efficient solutions to combat the spread of the virus. Drug repurposing has attracted more attention than traditional approaches due to its potential for a time- and cost-effective discovery of new applications for the existing FDA-approved drugs. Given the reported success of machine learning (ML) in virtual drug screening, it is warranted as a promising approach to identify potential SARS-CoV-2 inhibitors. The implementation of ML in drug repurposing requires the presence of reliable digital databases for the extraction of the data of interest. Numerous databases archive research data from studies so that it can be used for different purposes. This article reviews two aspects: the frequently used databases in ML-based drug repurposing studies for SARS-CoV-2, and the recent ML models that have been developed for the prospective prediction of potential inhibitors against the new virus. Both types of ML models, Deep Learning models and conventional ML models, are reviewed in terms of introduction, methodology, and its recent applications in the prospective predictions of SARS-CoV-2 inhibitors. Furthermore, the features and limitations of the databases are provided to guide researchers in choosing suitable databases according to their research interests.
Collapse
Affiliation(s)
- Marim Elkashlan
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rahaf M Ahmad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Malak Hajar
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatma Al Jasmi
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Division of Metabolic Genetics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Juan Manuel Corchado
- Departamento de Informática y Automática, Facultad de Ciencias, Grupo de Investigación BISITE, Instituto de Investigación Biomédica de Salamanca, University of Salamanca, Salamanca, Spain
| | - Nurul Athirah Nasarudin
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohd Saberi Mohamad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
41
|
Gao Z, Winhusen TJ, Gorenflo M, Ghitza UE, Davis PB, Kaelber DC, Xu R. Repurposing ketamine to treat cocaine use disorder: integration of artificial intelligence-based prediction, expert evaluation, clinical corroboration and mechanism of action analyses. Addiction 2023; 118:1307-1319. [PMID: 36792381 PMCID: PMC10631254 DOI: 10.1111/add.16168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND AND AIMS Cocaine use disorder (CUD) is a significant public health issue for which there is no Food and Drug Administration (FDA) approved medication. Drug repurposing looks for new cost-effective uses of approved drugs. This study presents an integrated strategy to identify repurposed FDA-approved drugs for CUD treatment. DESIGN Our drug repurposing strategy combines artificial intelligence (AI)-based drug prediction, expert panel review, clinical corroboration and mechanisms of action analysis being implemented in the National Drug Abuse Treatment Clinical Trials Network (CTN). Based on AI-based prediction and expert knowledge, ketamine was ranked as the top candidate for clinical corroboration via electronic health record (EHR) evaluation of CUD patient cohorts prescribed ketamine for anesthesia or depression compared with matched controls who received non-ketamine anesthesia or antidepressants/midazolam. Genetic and pathway enrichment analyses were performed to understand ketamine's potential mechanisms of action in the context of CUD. SETTING The study utilized TriNetX to access EHRs from more than 90 million patients world-wide. Genetic- and functional-level analyses used DisGeNet, Search Tool for Interactions of Chemicals and Kyoto Encyclopedia of Genes and Genomes databases. PARTICIPANTS A total of 7742 CUD patients who received anesthesia (3871 ketamine-exposed and 3871 anesthetic-controlled) and 7910 CUD patients with depression (3955 ketamine-exposed and 3955 antidepressant-controlled) were identified after propensity score-matching. MEASUREMENTS EHR analysis outcome was a CUD remission diagnosis within 1 year of drug prescription. FINDINGS Patients with CUD prescribed ketamine for anesthesia displayed a significantly higher rate of CUD remission compared with matched individuals prescribed other anesthetics [hazard ratio (HR) = 1.98, 95% confidence interval (CI) = 1.42-2.78]. Similarly, CUD patients prescribed ketamine for depression evidenced a significantly higher CUD remission ratio compared with matched patients prescribed antidepressants or midazolam (HR = 4.39, 95% CI = 2.89-6.68). The mechanism of action analysis revealed that ketamine directly targets multiple CUD-associated genes (BDNF, CNR1, DRD2, GABRA2, GABRB3, GAD1, OPRK1, OPRM1, SLC6A3, SLC6A4) and pathways implicated in neuroactive ligand-receptor interaction, cAMP signaling and cocaine abuse/dependence. CONCLUSIONS Ketamine appears to be a potential repurposed drug for treatment of cocaine use disorder.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T. John Winhusen
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maria Gorenflo
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Udi E. Ghitza
- Center for the Clinical Trials Network (CCTN), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Pamela B. Davis
- Center for Community Health Integration, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David C. Kaelber
- Center for Clinical Informatics Research and Education, The Metro Health System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
42
|
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev 2023:114974. [PMID: 37356623 DOI: 10.1016/j.addr.2023.114974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Extracellular Vesicles (EVs), particularly exosomes, recently exploded into nanomedicine as an emerging drug delivery approach due to their superior biocompatibility, circulating stability, and bioavailability in vivo. However, EV heterogeneity makes molecular targeting precision a critical challenge. Deciphering key molecular drivers for controlling EV tissue targeting specificity is in great need. Artificial intelligence (AI) brings powerful prediction ability for guiding the rational design of engineered EVs in precision control for drug delivery. This review focuses on cutting-edge nano-delivery via integrating large-scale EV data with AI to develop AI-directed EV therapies and illuminate the clinical translation potential. We briefly review the current status of EVs in drug delivery, including the current frontier, limitations, and considerations to advance the field. Subsequently, we detail the future of AI in drug delivery and its impact on precision EV delivery. Our review discusses the current universal challenge of standardization and critical considerations when using AI combined with EVs for precision drug delivery. Finally, we will conclude this review with a perspective on future clinical translation led by a combined effort of AI and EV research.
Collapse
Affiliation(s)
- Zachary F Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA
| | - Kiley S Graim
- Department of Computer & Information Science & Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, 32610, USA.
| |
Collapse
|
43
|
Zhang G, Gao Z, Yan C, Wang J, Liang W, Luo J, Luo H. KGANSynergy: knowledge graph attention network for drug synergy prediction. Brief Bioinform 2023; 24:7147878. [PMID: 37130580 DOI: 10.1093/bib/bbad167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Combination therapy is widely used to treat complex diseases, particularly in patients who respond poorly to monotherapy. For example, compared with the use of a single drug, drug combinations can reduce drug resistance and improve the efficacy of cancer treatment. Thus, it is vital for researchers and society to help develop effective combination therapies through clinical trials. However, high-throughput synergistic drug combination screening remains challenging and expensive in the large combinational space, where an array of compounds are used. To solve this problem, various computational approaches have been proposed to effectively identify drug combinations by utilizing drug-related biomedical information. In this study, considering the implications of various types of neighbor information of drug entities, we propose a novel end-to-end Knowledge Graph Attention Network to predict drug synergy (KGANSynergy), which utilizes neighbor information of known drugs/cell lines effectively. KGANSynergy uses knowledge graph (KG) hierarchical propagation to find multi-source neighbor nodes for drugs and cell lines. The knowledge graph attention network is designed to distinguish the importance of neighbors in a KG through a multi-attention mechanism and then aggregate the entity's neighbor node information to enrich the entity. Finally, the learned drug and cell line embeddings can be utilized to predict the synergy of drug combinations. Experiments demonstrated that our method outperformed several other competing methods, indicating that our method is effective in identifying drug combinations.
Collapse
Affiliation(s)
- Ge Zhang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Zhijie Gao
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Shiji Street, 454003 Jiaozuo, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, Jinming Street, 475004 Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Jinming Street, 475004 Kaifeng, China
| |
Collapse
|
44
|
da Rosa TF, Serafin MB, Foletto VS, Franco LN, de Paula BR, Fuchs LB, Calegari L, Hörner R. Repositioning of Benzodiazepine Drugs and Synergistic Effect with Ciprofloxacin Against ESKAPE Pathogens. Curr Microbiol 2023; 80:160. [PMID: 37004588 DOI: 10.1007/s00284-023-03242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
Infectious diseases are among the leading causes of morbidity and mortality worldwide. Combating them becomes more complex when caused by the pathogens of the ESKAPE group, which are Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. The purpose of this study was to investigate the repositioning potential of the benzodiazepines clonazepam and diazepam individually and in combination with the antibacterial ciprofloxacin against ESKAPE. The minimum inhibitory concentration and minimum bactericidal concentration against seven American Type Culture Collection (ATCC) reference standard strains and 64 ESKAPE clinical isolates were determined. In addition, the interaction with ciprofloxacin was determined by the checkerboard method and fractional inhibitory concentration index (FICI) of clonazepam against 11 ESKAPE and diazepam against five ESKAPE. We also list the results found and their clinical significance. Benzodiazepines showed similar antibacterial activity against Gram-positive and Gram-negative. The checkerboard and FICI results showed a synergistic effect of these drugs when associated with ciprofloxacin against almost all tested isolates. Viewing the clinical cases studied, benzodiazepines have potential as treatment alternatives. The results allow us to conclude that clonazepam and diazepam, when in combination with ciprofloxacin, have promising activity against ESKAPE, therefore, assuming the position of candidates for repositioning.
Collapse
Affiliation(s)
- Taciéli F da Rosa
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Marissa B Serafin
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Vitória S Foletto
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Laísa N Franco
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Bruno R de Paula
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luana B Fuchs
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Luciano Calegari
- University Hospital of Santa Maria, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rosmari Hörner
- Laboratory of Bacteriology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Clinical and Toxicological Analysis, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Bacteriology Laboratory, Department of Clinical and Toxicological Analysis (DACT)-Health Sciences Center (CCS)., Building 26, Room 1201, UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
45
|
Zhao Q, Duan G, Yang M, Cheng Z, Li Y, Wang J. AttentionDTA: Drug-Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:852-863. [PMID: 35471889 DOI: 10.1109/tcbb.2022.3170365] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The identification of drug-target relations (DTRs) is substantial in drug development. A large number of methods treat DTRs as drug-target interactions (DTIs), a binary classification problem. The main drawback of these methods are the lack of reliable negative samples and the absence of many important aspects of DTR, including their dose dependence and quantitative affinities. With increasing number of publications of drug-protein binding affinity data recently, DTRs prediction can be viewed as a regression problem of drug-target affinities (DTAs) which reflects how tightly the drug binds to the target and can present more detailed and specific information than DTIs. The growth of affinity data enables the use of deep learning architectures, which have been shown to be among the state-of-the-art methods in binding affinity prediction. Although relatively effective, due to the black-box nature of deep learning, these models are less biologically interpretable. In this study, we proposed a deep learning-based model, named AttentionDTA, which uses attention mechanism to predict DTAs. Different from the models using 3D structures of drug-target complexes or graph representation of drugs and proteins, the novelty of our work is to use attention mechanism to focus on key subsequences which are important in drug and protein sequences when predicting its affinity. We use two separate one-dimensional Convolution Neural Networks (1D-CNNs) to extract the semantic information of drug's SMILES string and protein's amino acid sequence. Furthermore, a two-side multi-head attention mechanism is developed and embedded to our model to explore the relationship between drug features and protein features. We evaluate our model on three established DTA benchmark datasets, Davis, Metz, and KIBA. AttentionDTA outperforms the state-of-the-art deep learning methods under different evaluation metrics. The results show that the attention-based model can effectively extract protein features related to drug information and drug features related to protein information to better predict drug target affinities. It is worth mentioning that we test our model on IC50 dataset, which provides the binding sites between drugs and proteins, to evaluate the ability of our model to locate binding sites. Finally, we visualize the attention weight to demonstrate the biological significance of the model. The source code of AttentionDTA can be downloaded from https://github.com/zhaoqichang/AttentionDTA_TCBB.
Collapse
|
46
|
Yang X, Yang G, Chu J. The Computational Drug Repositioning Without Negative Sampling. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1506-1517. [PMID: 36197871 DOI: 10.1109/tcbb.2022.3212051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational drug repositioning technology is an effective tool to accelerate drug development. Although this technique has been widely used and successful in recent decades, many existing models still suffer from multiple drawbacks such as the massive number of unvalidated drug-disease associations and the inner product. The limitations of these works are mainly due to the following two reasons: firstly, previous works used negative sampling techniques to treat unvalidated drug-disease associations as negative samples, which is invalid in real-world settings; secondly, the inner product cannot fully take into account the feature information contained in the latent factor of drug and disease. In this paper, we propose a novel PUON framework for addressing the above deficiencies, which models the risk estimator of computational drug repositioning only using validated (Positive) and unvalidated (Unlabelled) drug-disease associations without employing negative sampling techniques. The PUON also proposed an Outer Neighborhood-based classifier for modeling the cross-feature information of the latent facotor. For a comprehensive comparison, we considered 6 popular baselines. Extensive experiments in four real-world datasets showed that PUON model achieved the best performance based on 6 evaluation metrics.
Collapse
|
47
|
Hu L, Fu C, Ren Z, Cai Y, Yang J, Xu S, Xu W, Tang D. SSELM-neg: spherical search-based extreme learning machine for drug-target interaction prediction. BMC Bioinformatics 2023; 24:38. [PMID: 36737694 PMCID: PMC9896467 DOI: 10.1186/s12859-023-05153-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The experimental verification of a drug discovery process is expensive and time-consuming. Therefore, efficiently and effectively identifying drug-target interactions (DTIs) has been the focus of research. At present, many machine learning algorithms are used for predicting DTIs. The key idea is to train the classifier using an existing DTI to predict a new or unknown DTI. However, there are various challenges, such as class imbalance and the parameter optimization of many classifiers, that need to be solved before an optimal DTI model is developed. METHODS In this study, we propose a framework called SSELM-neg for DTI prediction, in which we use a screening approach to choose high-quality negative samples and a spherical search approach to optimize the parameters of the extreme learning machine. RESULTS The results demonstrated that the proposed technique outperformed other state-of-the-art methods in 10-fold cross-validation experiments in terms of the area under the receiver operating characteristic curve (0.986, 0.993, 0.988, and 0.969) and AUPR (0.982, 0.991, 0.982, and 0.946) for the enzyme dataset, G-protein coupled receptor dataset, ion channel dataset, and nuclear receptor dataset, respectively. CONCLUSION The screening approach produced high-quality negative samples with the same number of positive samples, which solved the class imbalance problem. We optimized an extreme learning machine using a spherical search approach to identify DTIs. Therefore, our models performed better than other state-of-the-art methods.
Collapse
Affiliation(s)
- Lingzhi Hu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Chengzhou Fu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Zhonglu Ren
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yongming Cai
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Jin Yang
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| | - Siwen Xu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Wenhua Xu
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Deyu Tang
- grid.411847.f0000 0004 1804 4300School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China ,grid.79703.3a0000 0004 1764 3838School of Computer Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China ,Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People’s Republic of China
| |
Collapse
|
48
|
Parolo S, Mariotti F, Bora P, Carboni L, Domenici E. Single-cell-led drug repurposing for Alzheimer's disease. Sci Rep 2023; 13:222. [PMID: 36604493 PMCID: PMC9816180 DOI: 10.1038/s41598-023-27420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease is the most common form of dementia. Notwithstanding the huge investments in drug development, only one disease-modifying treatment has been recently approved. Here we present a single-cell-led systems biology pipeline for the identification of drug repurposing candidates. Using single-cell RNA sequencing data of brain tissues from patients with Alzheimer's disease, genome-wide association study results, and multiple gene annotation resources, we built a multi-cellular Alzheimer's disease molecular network that we leveraged for gaining cell-specific insights into Alzheimer's disease pathophysiology and for the identification of drug repurposing candidates. Our computational approach pointed out 54 candidate drugs, mainly targeting MAPK and IGF1R signaling pathways, which could be further evaluated for their potential as Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Silvia Parolo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), 38068, Rovereto, Italy.
| | - Federica Mariotti
- grid.491181.4Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy
| | - Pranami Bora
- grid.491181.4Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy
| | - Lucia Carboni
- grid.6292.f0000 0004 1757 1758Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
| | - Enrico Domenici
- grid.491181.4Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), 38068 Rovereto, Italy ,grid.11696.390000 0004 1937 0351Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
49
|
Yang X, Yang G, Chu J. The Neural Metric Factorization for Computational Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:731-741. [PMID: 35061591 DOI: 10.1109/tcbb.2022.3144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Computational drug repositioning aims to discover new therapeutic diseases for marketed drugs and has the advantages of low cost, short development cycle, and high controllability compared to traditional drug development. The matrix factorization model has become the cornerstone technique for computational drug repositioning due to its ease of implementation and excellent scalability. However, the matrix factorization model uses the inner product operation to represent the association between drugs and diseases, which is lacking in expressive ability. Moreover, the degree of similarity of drugs or diseases could not be implied on their respective latent factor vectors, which is not satisfy the common sense of drug discovery. Therefore, a neural metric factorization model for computational drug repositioning (NMFDR) is proposed in this work. We novelly consider the latent factor vector of drugs and diseases as a point in the high-dimensional coordinate system and propose a generalized euclidean distance to represent the association between drugs and diseases to compensate for the shortcomings of the inner product operation. Furthermore, by embedding multiple drug (disease) metrics information into the encoding space of the latent factor vector, the information about the similarity between drugs (diseases) can be reflected in the distance between latent factor vectors. Finally, we conduct wide analysis experiments on three real datasets to demonstrate the effectiveness of the above improvement points and the superiority of the NMFDR model.
Collapse
|
50
|
Drug-disease association prediction based on end-to-end multi-layer heterogeneous graph convolutional encoders. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|