1
|
Wang K, Li Y, Liu F, Luan X, Wang X, Zhou J. GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data. BMC Bioinformatics 2025; 26:108. [PMID: 40251476 PMCID: PMC12008888 DOI: 10.1186/s12859-025-06116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/18/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug design, and metabolic systems, and the rapid development of single-cell RNA sequencing (scRNA-seq) technology provides important opportunities while posing significant challenges for reconstructing GRNs. A number of methods for inferring GRNs have been proposed in recent years based on traditional machine learning and deep learning algorithms. However, inferring the GRN from scRNA-seq data remains challenging owing to cellular heterogeneity, measurement noise, and data dropout. RESULTS In this study, we propose a deep learning model called graph representational learning GRN (GRLGRN) to infer the latent regulatory dependencies between genes based on a prior GRN and data on the profiles of single-cell gene expressions. GRLGRN uses a graph transformer network to extract implicit links from the prior GRN, and encodes the features of genes by using both an adjacency matrix of implicit links and a matrix of the profile of gene expression. Moreover, it uses attention mechanisms to improve feature extraction, and feeds the refined gene embeddings into an output module to infer gene regulatory relationships. To evaluate the performance of GRLGRN, we compared it with prevalent models and performed ablation experiments on seven cell-line datasets with three ground-truth networks. The results showed that GRLGRN achieved the best predictions in AUROC and AUPRC on 78.6% and 80.9% of the datasets, and achieved an average improvement of 7.3% in AUROC and 30.7% in AUPRC. The interpretation discussion and the network visualization were conducted. CONCLUSIONS The experimental results and case studies illustrate the considerable performance of GRLGRN in predicting gene interactions and provide interpretability for the prediction tasks, such as identifying hub genes in the network and uncovering implicit links.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yulong Li
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Fei Liu
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaoli Luan
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xinglong Wang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Gill JK, Chetty M, Lim S, Hallinan J. BioBERT based text mining for incorporating prior knowledge in the inference of genetic network models. Comput Biol Med 2025; 186:109623. [PMID: 39753024 DOI: 10.1016/j.compbiomed.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Reconstruction of Gene Regulatory Networks (GRNs) is essential for understanding gene interactions, their impact on cellular processes, and manifestation of diseases, including drug discovery. Among various mathematical and dynamic models used for GRN reconstruction, S-system model, comprising non-linear differential equations, is widely utilised to capture the behaviour of complex biological systems with non-linear and time-dependent interactions. However, as the network size increases, computational demand for network inference grows due to a greater number of estimation parameters, significantly impacting the performance of optimisation algorithms. Incorporating biologically relevant prior knowledge using advanced Natural Language Processing methods can effectively address this limitation by reducing the need for computing large parameters, thereby enhancing speed and accuracy. In this study, we introduce PRESS, an integrated Prior Knowledge Enhanced S-system model for accurate GRN reconstructions, which seamlessly automates the incorporation of prior knowledge obtained through systematic extraction from published literature. PRESS exploits our recently reported BioBERT-based Gene Interaction Extraction Framework with enhanced targeted genetic relation extraction and the prediction of regulatory genes. Effectiveness of the optimisation algorithm in learning model parameters is further enhanced through a novel fitness evaluation, which limits the maximum number of regulatory genes to mimic real GRNs. This integrated method, combining a robust relation extraction framework for automated prior knowledge with a GRN reconstruction model, is novel and has not been reported previously. Experimental results obtained using Escherichia coli subnetworks and the benchmark SOS dataset demonstrate substantial reductions in computational cost while simultaneously improving prediction accuracy.
Collapse
Affiliation(s)
- Jaskaran Kaur Gill
- Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia.
| | - Madhu Chetty
- Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia
| | - Suryani Lim
- Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia
| | - Jennifer Hallinan
- Health Innovation and Transformation Centre, Federation University, Victoria, 3842, Australia; BioThink, Queensland, 4020, Australia
| |
Collapse
|
3
|
Sun Y, Gao J. HGATLink: single-cell gene regulatory network inference via the fusion of heterogeneous graph attention networks and transformer. BMC Bioinformatics 2025; 26:49. [PMID: 39934680 PMCID: PMC11817978 DOI: 10.1186/s12859-025-06071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Gene regulatory networks (GRNs) involve complex regulatory relationships between genes and play important roles in the study of various biological systems and diseases. The introduction of single-cell sequencing (scRNA-seq) technology has allowed gene regulation studies to be carried out on specific cell types, providing the opportunity to accurately infer gene regulatory networks. However, the sparsity and noise problems of single-cell sequencing data pose challenges for gene regulatory network inference, and although many gene regulatory network inference methods have been proposed, they often fail to eliminate transitive interactions or do not address multilevel relationships and nonlinear features in the graph data well. RESULTS On the basis of the above limitations, we propose a gene regulatory network inference framework named HGATLink. HGATLink combines the heterogeneous graph attention network and simplified transformer to capture complex interactions effectively between genes in low-dimensional space via matrix decomposition techniques, which not only enhances the ability to model complex heterogeneous graph structures and alleviate transitive interactions, but also effectively captures the long-range dependencies between genes to ensure more accurate prediction. CONCLUSIONS Compared with 10 state-of-the-art GRN inference methods on 14 scRNA-seq datasets under two metrics, AUROC and AUPRC, HGATLink shows good stability and accuracy in gene regulatory network inference tasks.
Collapse
Affiliation(s)
- Yao Sun
- Department of Computer Science and Technology, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, 010011, Inner Mongolia, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research, Hohhot, 010018, Inner Mongolia, China
| | - Jing Gao
- Department of Computer Science and Technology, College of Computer and Information Engineering, Inner Mongolia Agricultural University, Hohhot, 010011, Inner Mongolia, China.
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
4
|
Niloofar P, Aghdam R, Eslahchi C. GAEM: Genetic Algorithm based Expectation-Maximization for inferring Gene Regulatory Networks from incomplete data. Comput Biol Med 2024; 183:109238. [PMID: 39426072 DOI: 10.1016/j.compbiomed.2024.109238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024]
Abstract
In Bioinformatics, inferring the structure of a Gene Regulatory Network (GRN) from incomplete gene expression data is a difficult task. One popular method for inferring the structure GRNs is to apply the Path Consistency Algorithm based on Conditional Mutual Information (PCA-CMI). Although PCA-CMI excels at extracting GRN skeletons, it struggles with missing values in datasets. As a result, applying PCA-CMI to infer GRNs, necessitates a preprocessing method for data imputation. In this paper, we present the GAEM algorithm, which uses an iterative approach based on a combination of Genetic Algorithm and Expectation-Maximization to infer the structure of GRN from incomplete gene expression datasets. GAEM learns the GRN structure from the incomplete dataset via an algorithm that iteratively updates the imputed values based on the learnt GRN until the convergence criteria are met. We evaluate the performance of this algorithm under various missingness mechanisms (ignorable and nonignorable) and percentages (5%, 15%, and 40%). The traditional approach to handling missing values in gene expression datasets involves estimating them first and then constructing the GRN. However, our methodology differs in that both missing values and the GRN are updated iteratively until convergence. Results from the DREAM3 dataset demonstrate that the GAEM algorithm appears to be a more reliable method overall, especially for smaller network sizes, GAEM outperforms methods where the incomplete dataset is imputed first, followed by learning the GRN structure from the imputed data. We have implemented the GAEM algorithm within the GAEM R package, which is accessible at the following GitHub repository: https://github.com/parniSDU/GAEM.
Collapse
Affiliation(s)
- Parisa Niloofar
- Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark.
| | - Rosa Aghdam
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, WI, Madison, USA; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Iran
| |
Collapse
|
5
|
Dong H, Ma B, Meng Y, Wu Y, Liu Y, Zeng T, Huang J. GRNMOPT: Inference of gene regulatory networks based on a multi-objective optimization approach. Comput Biol Chem 2024; 113:108223. [PMID: 39340962 DOI: 10.1016/j.compbiolchem.2024.108223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND AND OBJECTIVE The reconstruction of gene regulatory networks (GRNs) stands as a vital approach in deciphering complex biological processes. The application of nonlinear ordinary differential equations (ODEs) models has demonstrated considerable efficacy in predicting GRNs. Notably, the decay rate and time delay are pivotal in authentic gene regulation, yet their systematic determination in ODEs models remains underexplored. The development of a comprehensive optimization framework for the effective estimation of these key parameters is essential for accurate GRN inference. METHOD This study introduces GRNMOPT, an innovative methodology for inferring GRNs from time-series and steady-state data. GRNMOPT employs a combined use of decay rate and time delay in constructing ODEs models to authentically represent gene regulatory processes. It incorporates a multi-objective optimization approach, optimizing decay rate and time delay concurrently to derive Pareto optimal sets for these factors, thereby maximizing accuracy metrics such as AUROC (Area Under the Receiver Operating Characteristic curve) and AUPR (Area Under the Precision-Recall curve). Additionally, the use of XGBoost for calculating feature importance aids in identifying potential regulatory gene links. RESULTS Comprehensive experimental evaluations on two simulated datasets from DREAM4 and three real gene expression datasets (Yeast, In vivo Reverse-engineering and Modeling Assessment [IRMA], and Escherichia coli [E. coli]) reveal that GRNMOPT performs commendably across varying network scales. Furthermore, cross-validation experiments substantiate the robustness of GRNMOPT. CONCLUSION We propose a novel approach called GRNMOPT to infer GRNs based on a multi-objective optimization framework, which effectively improves inference accuracy and provides a powerful tool for GRNs inference.
Collapse
Affiliation(s)
- Heng Dong
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Baoshan Ma
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yangyang Meng
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Yiming Wu
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Yongjing Liu
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Zeng
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jinyan Huang
- Biomedical big data center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou 310003, China; Zhejiang University Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Nourisa J, Passemiers A, Shakeri F, Omidi M, Helmholz H, Raimondi D, Moreau Y, Tomforde S, Schlüter H, Luthringer-Feyerabend B, Cyron CJ, Aydin RC, Willumeit-Römer R, Zeller-Plumhoff B. Gene regulatory network analysis identifies MYL1, MDH2, GLS, and TRIM28 as the principal proteins in the response of mesenchymal stem cells to Mg 2+ ions. Comput Struct Biotechnol J 2024; 23:1773-1785. [PMID: 38689715 PMCID: PMC11058716 DOI: 10.1016/j.csbj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Magnesium (Mg)-based implants have emerged as a promising alternative for orthopedic applications, owing to their bioactive properties and biodegradability. As the implants degrade, Mg2+ ions are released, influencing all surrounding cell types, especially mesenchymal stem cells (MSCs). MSCs are vital for bone tissue regeneration, therefore, it is essential to understand their molecular response to Mg2+ ions in order to maximize the potential of Mg-based biomaterials. In this study, we conducted a gene regulatory network (GRN) analysis to examine the molecular responses of MSCs to Mg2+ ions. We used time-series proteomics data collected at 11 time points across a 21-day period for the GRN construction. We studied the impact of Mg2+ ions on the resulting networks and identified the key proteins and protein interactions affected by the application of Mg2+ ions. Our analysis highlights MYL1, MDH2, GLS, and TRIM28 as the primary targets of Mg2+ ions in the response of MSCs during 1-21 days phase. Our results also identify MDH2-MYL1, MDH2-RPS26, TRIM28-AK1, TRIM28-SOD2, and GLS-AK1 as the critical protein relationships affected by Mg2+ ions. By offering a comprehensive understanding of the regulatory role of Mg2+ ions on MSCs, our study contributes valuable insights into the molecular response of MSCs to Mg-based materials, thereby facilitating the development of innovative therapeutic strategies for orthopedic applications.
Collapse
Affiliation(s)
- Jalil Nourisa
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Farhad Shakeri
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg, Hamburg, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | | - Sven Tomforde
- Department of Computer Science, Intelligent Systems, University of Kiel, Kiel, Germany
| | - Hartmuth Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, University of Hamburg, Hamburg, Germany
| | | | - Christian J. Cyron
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Roland C. Aydin
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | | | | |
Collapse
|
7
|
Wang J, Zhang Y, Chen L, Liu X. Reconstructing Molecular Networks by Causal Diffusion Do-Calculus Analysis with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409170. [PMID: 39440482 PMCID: PMC11633463 DOI: 10.1002/advs.202409170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Quantifying molecular regulations between genes/molecules causally from observed data is crucial for elucidating the molecular mechanisms underlying biological processes at the network level. Presently, most methods for inferring gene regulatory and biological networks rely on association studies or observational causal-analysis approaches. This study introduces a novel approach that combines intervention operations and diffusion models within a do-calculus framework by deep learning, i.e., Causal Diffusion Do-calculus (CDD) analysis, to infer causal networks between molecules. CDD can extract causal relations from observed data owing to its intervention operations, thereby significantly enhancing the accuracy and generalizability of causal network inference. Computationally, CDD has been applied to both simulated data and real omics data, which demonstrates that CDD outperforms existing methods in accurately inferring gene regulatory networks and identifying causal links from genes to disease phenotypes. Especially, compared with the Mendelian randomization algorithm and other existing methods, the CDD can reliably identify the disease genes or molecules for complex diseases with better performances. In addition, the causal analysis between various diseases and the potential factors in different populations from the UK Biobank database is also conducted, which further validated the effectiveness of CDD.
Collapse
Affiliation(s)
- Jiachen Wang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Yuelei Zhang
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| | - Luonan Chen
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Key Laboratory of Systems BiologyShanghai Institute of Biochemistry and Cell BiologyCenter for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghai200031China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang ProvinceSchool of Life ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
8
|
Karamveer, Uzun Y. Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods. Bioinform Biol Insights 2024; 18:11779322241287120. [PMID: 39502448 PMCID: PMC11536393 DOI: 10.1177/11779322241287120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Gene regulatory networks are powerful tools for modeling genetic interactions that control the expression of genes driving cell differentiation, and single-cell sequencing offers a unique opportunity to build these networks with high-resolution genomic data. There are many proposed computational methods to build these networks using single-cell data, and different approaches are used to benchmark these methods. However, a comprehensive discussion specifically focusing on benchmarking approaches is missing. In this article, we lay the GRN terminology, present an overview of common gold-standard studies and data sets, and define the performance metrics for benchmarking network construction methodologies. We also point out the advantages and limitations of different benchmarking approaches, suggest alternative ground truth data sets that can be used for benchmarking, and specify additional considerations in this context.
Collapse
Affiliation(s)
- Karamveer
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
9
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
10
|
Emadi M, Boroujeni FZ, Pirgazi J. Improved Fuzzy Cognitive Maps for Gene Regulatory Networks Inference Based on Time Series Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1816-1829. [PMID: 38963747 DOI: 10.1109/tcbb.2024.3423383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Microarray data provide lots of information regarding gene expression levels. Due to the large amount of such data, their analysis requires sufficient computational methods for identifying and analyzing gene regulation networks; however, researchers in this field are faced with numerous challenges such as consideration for too many genes and at the same time, the limited number of samples and their noisy nature of the data. In this paper, a hybrid method base on fuzzy cognitive map and compressed sensing is used to identify interactions between genes. For this purpose, in inference of the gene regulation network, the Ensemble Kalman filtered compressed sensing is used to learn the fuzzy cognitive map. Using the Ensemble Kalman filter and compressed sensing, the fuzzy cognitive map will be robust against noise. The proposed algorithm is evaluated using several metrics and compared with several well know methods such as LASSOFCM, KFRegular, CMI2NI. The experimental results show that the proposed method outperforms methods proposed in recent years in terms of SSmean, Data Error and accuracy.
Collapse
|
11
|
Ji R, Geng Y, Quan X. Inferring gene regulatory networks with graph convolutional network based on causal feature reconstruction. Sci Rep 2024; 14:21342. [PMID: 39266676 PMCID: PMC11393083 DOI: 10.1038/s41598-024-71864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Inferring gene regulatory networks through deep learning and causal inference methods is a crucial task in the field of computational biology and bioinformatics. This study presents a novel approach that uses a Graph Convolutional Network (GCN) guided by causal information to infer Gene Regulatory Networks (GRN). The transfer entropy and reconstruction layer are utilized to achieve causal feature reconstruction, mitigating the information loss problem caused by multiple rounds of neighbor aggregation in GCN, resulting in a causal and integrated representation of node features. Separable features are extracted from gene expression data by the Gaussian-kernel Autoencoder to improve computational efficiency. Experimental results on the DREAM5 and the mDC dataset demonstrate that our method exhibits superior performance compared to existing algorithms, as indicated by the higher values of the AUPRC metrics. Furthermore, the incorporation of causal feature reconstruction enhances the inferred GRN, rendering them more reasonable, accurate, and reliable.
Collapse
Affiliation(s)
- Ruirui Ji
- School of Automation and Information Engineering, Xi 'an University of Technology, No.5, Jinhua South Road, Xi'an, 710048, Shaanxi, China.
- Key Laboratory of Shaanxi Province for Complex System Control and Intelligent Information Processing, Xi'an, 710048, Shaanxi, China.
| | - Yi Geng
- School of Automation and Information Engineering, Xi 'an University of Technology, No.5, Jinhua South Road, Xi'an, 710048, Shaanxi, China
| | - Xin Quan
- School of Automation and Information Engineering, Xi 'an University of Technology, No.5, Jinhua South Road, Xi'an, 710048, Shaanxi, China
| |
Collapse
|
12
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
13
|
Segura-Ortiz A, García-Nieto J, Aldana-Montes JF, Navas-Delgado I. Multi-objective context-guided consensus of a massive array of techniques for the inference of Gene Regulatory Networks. Comput Biol Med 2024; 179:108850. [PMID: 39013340 DOI: 10.1016/j.compbiomed.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Gene Regulatory Network (GRN) inference is a fundamental task in biology and medicine, as it enables a deeper understanding of the intricate mechanisms of gene expression present in organisms. This bioinformatics problem has been addressed in the literature through multiple computational approaches. Techniques developed for inferring from expression data have employed Bayesian networks, ordinary differential equations (ODEs), machine learning, information theory measures and neural networks, among others. The diversity of implementations and their respective customization have led to the emergence of many tools and multiple specialized domains derived from them, understood as subsets of networks with specific characteristics that are challenging to detect a priori. This specialization has introduced significant uncertainty when choosing the most appropriate technique for a particular dataset. This proposal, named MO-GENECI, builds upon the basic idea of the previous proposal GENECI and optimizes consensus among different inference techniques, through a carefully refined multi-objective evolutionary algorithm guided by various objective functions, linked to the biological context at hand. METHODS MO-GENECI has been tested on an extensive and diverse academic benchmark of 106 gene regulatory networks from multiple sources and sizes. The evaluation of MO-GENECI compared its performance to individual techniques using key metrics (AUROC and AUPR) for gene regulatory network inference. Friedman's statistical ranking provided an ordered classification, followed by non-parametric Holm tests to determine statistical significance. RESULTS MO-GENECI's Pareto front approximation facilitates easy selection of an appropriate solution based on generic input data characteristics. The best solution consistently emerged as the winner in all statistical tests, and in many cases, the median precision solution showed no statistically significant difference compared to the winner. CONCLUSIONS MO-GENECI has not only demonstrated achieving more accurate results than individual techniques, but has also overcome the uncertainty associated with the initial choice due to its flexibility and adaptability. It is shown intelligently to select the most suitable techniques for each case. The source code is hosted in a public repository at GitHub under MIT license: https://github.com/AdrianSeguraOrtiz/MO-GENECI. Moreover, to facilitate its installation and use, the software associated with this implementation has been encapsulated in a Python package available at PyPI: https://pypi.org/project/geneci/.
Collapse
Affiliation(s)
- Adrián Segura-Ortiz
- Department de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain.
| | - José García-Nieto
- Department de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain; Biomedical Research Institute of Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - José F Aldana-Montes
- Department de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain; Biomedical Research Institute of Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Ismael Navas-Delgado
- Department de Lenguajes y Ciencias de la Computación, ITIS Software, Universidad de Málaga, Málaga, 29071, Spain; Biomedical Research Institute of Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
Wei PJ, Bao JJ, Gao Z, Tan JY, Cao RF, Su Y, Zheng CH, Deng L. MEFFGRN: Matrix enhancement and feature fusion-based method for reconstructing the gene regulatory network of epithelioma papulosum cyprini cells by spring viremia of carp virus infection. Comput Biol Med 2024; 179:108835. [PMID: 38996550 DOI: 10.1016/j.compbiomed.2024.108835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Gene regulatory networks (GRNs) are crucial for understanding organismal molecular mechanisms and processes. Construction of GRN in the epithelioma papulosum cyprini (EPC) cells of cyprinid fish by spring viremia of carp virus (SVCV) infection helps understand the immune regulatory mechanisms that enhance the survival capabilities of cyprinid fish. Although many computational methods have been used to infer GRNs, specialized approaches for predicting the GRN of EPC cells following SVCV infection are lacking. In addition, most existing methods focus primarily on gene expression features, neglecting the valuable network structural information in known GRNs. In this study, we propose a novel supervised deep neural network, named MEFFGRN (Matrix Enhancement- and Feature Fusion-based method for Gene Regulatory Network inference), to accurately predict the GRN of EPC cells following SVCV infection. MEFFGRN considers both gene expression data and network structure information of known GRN and introduces a matrix enhancement method to address the sparsity issue of known GRN, extracting richer network structure information. To optimize the benefits of CNN (Convolutional Neural Network) in image processing, gene expression and enhanced GRN data were transformed into histogram images for each gene pair respectively. Subsequently, these histograms were separately fed into CNNs for training to obtain the corresponding gene expression and network structural features. Furthermore, a feature fusion mechanism was introduced to comprehensively integrate the gene expression and network structural features. This integration considers the specificity of each feature and their interactive information, resulting in a more comprehensive and precise feature representation during the fusion process. Experimental results from both real-world and benchmark datasets demonstrate that MEFFGRN achieves competitive performance compared with state-of-the-art computational methods. Furthermore, study findings from SVCV-infected EPC cells suggest that MEFFGRN can predict novel gene regulatory relationships.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Jin-Jin Bao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Zhen Gao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Jing-Yun Tan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rui-Fen Cao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yansen Su
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chun-Hou Zheng
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Li Deng
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
15
|
Peng H, Xu J, Liu K, Liu F, Zhang A, Zhang X. EIEPCF: accurate inference of functional gene regulatory networks by eliminating indirect effects from confounding factors. Brief Funct Genomics 2024; 23:373-383. [PMID: 37642217 DOI: 10.1093/bfgp/elad040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Reconstructing functional gene regulatory networks (GRNs) is a primary prerequisite for understanding pathogenic mechanisms and curing diseases in animals, and it also provides an important foundation for cultivating vegetable and fruit varieties that are resistant to diseases and corrosion in plants. Many computational methods have been developed to infer GRNs, but most of the regulatory relationships between genes obtained by these methods are biased. Eliminating indirect effects in GRNs remains a significant challenge for researchers. In this work, we propose a novel approach for inferring functional GRNs, named EIEPCF (eliminating indirect effects produced by confounding factors), which eliminates indirect effects caused by confounding factors. This method eliminates the influence of confounding factors on regulatory factors and target genes by measuring the similarity between their residuals. The validation results of the EIEPCF method on simulation studies, the gold-standard networks provided by the DREAM3 Challenge and the real gene networks of Escherichia coli demonstrate that it achieves significantly higher accuracy compared to other popular computational methods for inferring GRNs. As a case study, we utilized the EIEPCF method to reconstruct the cold-resistant specific GRN from gene expression data of cold-resistant in Arabidopsis thaliana. The source code and data are available at https://github.com/zhanglab-wbgcas/EIEPCF.
Collapse
Affiliation(s)
- Huixiang Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
- University of Chinese Academy of Sciences, Beijing 100049 China
| | - Jing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
- University of Chinese Academy of Sciences, Beijing 100049 China
| | - Kangchen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
- University of Chinese Academy of Sciences, Beijing 100049 China
| | - Fang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
16
|
Gao Z, Su Y, Xia J, Cao RF, Ding Y, Zheng CH, Wei PJ. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding. Brief Bioinform 2024; 25:bbae143. [PMID: 38581416 PMCID: PMC10998536 DOI: 10.1093/bib/bbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
17
|
Li S, Liu Y, Shen LC, Yan H, Song J, Yu DJ. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference. Brief Bioinform 2024; 25:bbad529. [PMID: 38261340 PMCID: PMC10805180 DOI: 10.1093/bib/bbad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The recent advances of single-cell RNA sequencing (scRNA-seq) have enabled reliable profiling of gene expression at the single-cell level, providing opportunities for accurate inference of gene regulatory networks (GRNs) on scRNA-seq data. Most methods for inferring GRNs suffer from the inability to eliminate transitive interactions or necessitate expensive computational resources. To address these, we present a novel method, termed GMFGRN, for accurate graph neural network (GNN)-based GRN inference from scRNA-seq data. GMFGRN employs GNN for matrix factorization and learns representative embeddings for genes. For transcription factor-gene pairs, it utilizes the learned embeddings to determine whether they interact with each other. The extensive suite of benchmarking experiments encompassing eight static scRNA-seq datasets alongside several state-of-the-art methods demonstrated mean improvements of 1.9 and 2.5% over the runner-up in area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, across four time-series datasets, maximum enhancements of 2.4 and 1.3% in AUROC and AUPRC were observed in comparison to the runner-up. Moreover, GMFGRN requires significantly less training time and memory consumption, with time and memory consumed <10% compared to the second-best method. These findings underscore the substantial potential of GMFGRN in the inference of GRNs. It is publicly available at https://github.com/Lishuoyy/GMFGRN.
Collapse
Affiliation(s)
- Shuo Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yan Liu
- School of information Engineering, Yangzhou University, 196 West Huayang, Yangzhou, 225000, China
| | - Long-Chen Shen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - He Yan
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|
18
|
Xin J, Wang M, Qu L, Chen Q, Wang W, Wang Z. BIC-LP: A Hybrid Higher-Order Dynamic Bayesian Network Score Function for Gene Regulatory Network Reconstruction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:188-199. [PMID: 38127613 DOI: 10.1109/tcbb.2023.3345317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reconstructing gene regulatory networks(GRNs) is an increasingly hot topic in bioinformatics. Dynamic Bayesian network(DBN) is a stochastic graph model commonly used as a vital model for GRN reconstruction. But probabilistic characteristics of biological networks and the existence of data noise bring great challenges to GRN reconstruction and always lead to many false positive/negative edges. ScoreLasso is a hybrid DBN score function combining DBN and linear regression with good performance. Its performance is, however, limited by first-order assumption and ignorance of the initial network of DBN. In this article, an integrated model based on higher-order DBN model, higher-order Lasso linear regression model and Pearson correlation model is proposed. Based on this, a hybrid higher-order DBN score function for GRN reconstruction is proposed, namely BIC-LP. BIC-LP score function is constructed by adding terms based on Lasso linear regression coefficients and Pearson correlation coefficients on classical BIC score function. Therefore, it could capture more information from dataset and curb information loss, compared with both many existing Bayesian family score functions and many state-of-the-art methods for GRN reconstruction. Experimental results show that BIC-LP can reasonably eliminate some false positive edges while retaining most true positive edges, so as to achieve better GRN reconstruction performance.
Collapse
|
19
|
Zu S, Li YE, Wang K, Armand EJ, Mamde S, Amaral ML, Wang Y, Chu A, Xie Y, Miller M, Xu J, Wang Z, Zhang K, Jia B, Hou X, Lin L, Yang Q, Lee S, Li B, Kuan S, Liu H, Zhou J, Pinto-Duarte A, Lucero J, Osteen J, Nunn M, Smith KA, Tasic B, Yao Z, Zeng H, Wang Z, Shang J, Behrens MM, Ecker JR, Wang A, Preissl S, Ren B. Single-cell analysis of chromatin accessibility in the adult mouse brain. Nature 2023; 624:378-389. [PMID: 38092917 PMCID: PMC10719105 DOI: 10.1038/s41586-023-06824-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023]
Abstract
Recent advances in single-cell technologies have led to the discovery of thousands of brain cell types; however, our understanding of the gene regulatory programs in these cell types is far from complete1-4. Here we report a comprehensive atlas of candidate cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing chromatin accessibility in 2.3 million individual brain cells from 117 anatomical dissections. The atlas includes approximately 1 million cCREs and their chromatin accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs to the most recent such annotation in the mouse genome. The mouse brain cCREs are moderately conserved in the human brain. The mouse-specific cCREs-specifically, those identified from a subset of cortical excitatory neurons-are strongly enriched for transposable elements, suggesting a potential role for transposable elements in the emergence of new regulatory programs and neuronal diversity. Finally, we infer the gene regulatory networks in over 260 subclasses of mouse brain cells and develop deep-learning models to predict the activities of gene regulatory elements in different brain cell types from the DNA sequence alone. Our results provide a resource for the analysis of cell-type-specific gene regulation programs in both mouse and human brains.
Collapse
Affiliation(s)
- Songpeng Zu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurosurgery and Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Kangli Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sainath Mamde
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Maria Luisa Amaral
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yuelai Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Andre Chu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jie Xu
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Kai Zhang
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Bojing Jia
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Xiaomeng Hou
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Qian Yang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Seoyeon Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Samantha Kuan
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Jacinta Lucero
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Julia Osteen
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Michael Nunn
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Zihan Wang
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Jingbo Shang
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | | | - Joseph R Ecker
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
20
|
Zhang P, Zhang D, Zhou W, Wang L, Wang B, Zhang T, Li S. Network pharmacology: towards the artificial intelligence-based precision traditional Chinese medicine. Brief Bioinform 2023; 25:bbad518. [PMID: 38197310 PMCID: PMC10777171 DOI: 10.1093/bib/bbad518] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
Network pharmacology (NP) provides a new methodological perspective for understanding traditional medicine from a holistic perspective, giving rise to frontiers such as traditional Chinese medicine network pharmacology (TCM-NP). With the development of artificial intelligence (AI) technology, it is key for NP to develop network-based AI methods to reveal the treatment mechanism of complex diseases from massive omics data. In this review, focusing on the TCM-NP, we summarize involved AI methods into three categories: network relationship mining, network target positioning and network target navigating, and present the typical application of TCM-NP in uncovering biological basis and clinical value of Cold/Hot syndromes. Collectively, our review provides researchers with an innovative overview of the methodological progress of NP and its application in TCM from the AI perspective.
Collapse
Affiliation(s)
- Peng Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dingfan Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Wuai Zhou
- China Mobile Information System Integration Co., Ltd, Beijing 100032, China
| | - Lan Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Boyang Wang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingyu Zhang
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Shao Li
- Institute for TCM-X, MOE Key Laboratory of Bioinformatics/Bioinformatics Division, BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Wu Y, Qian B, Wang A, Dong H, Zhu E, Ma B. iLSGRN: inference of large-scale gene regulatory networks based on multi-model fusion. Bioinformatics 2023; 39:btad619. [PMID: 37851379 PMCID: PMC10589915 DOI: 10.1093/bioinformatics/btad619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023] Open
Abstract
MOTIVATION Gene regulatory networks (GRNs) are a way of describing the interaction between genes, which contribute to revealing the different biological mechanisms in the cell. Reconstructing GRNs based on gene expression data has been a central computational problem in systems biology. However, due to the high dimensionality and non-linearity of large-scale GRNs, accurately and efficiently inferring GRNs is still a challenging task. RESULTS In this article, we propose a new approach, iLSGRN, to reconstruct large-scale GRNs from steady-state and time-series gene expression data based on non-linear ordinary differential equations. Firstly, the regulatory gene recognition algorithm calculates the Maximal Information Coefficient between genes and excludes redundant regulatory relationships to achieve dimensionality reduction. Then, the feature fusion algorithm constructs a model leveraging the feature importance derived from XGBoost (eXtreme Gradient Boosting) and RF (Random Forest) models, which can effectively train the non-linear ordinary differential equations model of GRNs and improve the accuracy and stability of the inference algorithm. The extensive experiments on different scale datasets show that our method makes sensible improvement compared with the state-of-the-art methods. Furthermore, we perform cross-validation experiments on the real gene datasets to validate the robustness and effectiveness of the proposed method. AVAILABILITY AND IMPLEMENTATION The proposed method is written in the Python language, and is available at: https://github.com/lab319/iLSGRN.
Collapse
Affiliation(s)
- Yiming Wu
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Bing Qian
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Anqi Wang
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong 999077, China
| | - Heng Dong
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Enqiang Zhu
- Institution of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
| | - Baoshan Ma
- School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
22
|
Li L, Xia R, Chen W, Zhao Q, Tao P, Chen L. Single-cell causal network inferred by cross-mapping entropy. Brief Bioinform 2023; 24:bbad281. [PMID: 37544659 DOI: 10.1093/bib/bbad281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Gene regulatory networks (GRNs) reveal the complex molecular interactions that govern cell state. However, it is challenging for identifying causal relations among genes due to noisy data and molecular nonlinearity. Here, we propose a novel causal criterion, neighbor cross-mapping entropy (NME), for inferring GRNs from both steady data and time-series data. NME is designed to quantify 'continuous causality' or functional dependency from one variable to another based on their function continuity with varying neighbor sizes. NME shows superior performance on benchmark datasets, comparing with existing methods. By applying to scRNA-seq datasets, NME not only reliably inferred GRNs for cell types but also identified cell states. Based on the inferred GRNs and further their activity matrices, NME showed better performance in single-cell clustering and downstream analyses. In summary, based on continuous causality, NME provides a powerful tool in inferring causal regulations of GRNs between genes from scRNA-seq data, which is further exploited to identify novel cell types/states and predict cell type-specific network modules.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rui Xia
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhao
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Tao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
23
|
Gao Z, Tang J, Xia J, Zheng CH, Wei PJ. CNNGRN: A Convolutional Neural Network-Based Method for Gene Regulatory Network Inference From Bulk Time-Series Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2853-2861. [PMID: 37267145 DOI: 10.1109/tcbb.2023.3282212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gene regulatory networks (GRNs) participate in many biological processes, and reconstructing them plays an important role in systems biology. Although many advanced methods have been proposed for GRN reconstruction, their predictive performance is far from the ideal standard, so it is urgent to design a more effective method to reconstruct GRN. Moreover, most methods only consider the gene expression data, ignoring the network structure information contained in GRN. In this study, we propose a supervised model named CNNGRN, which infers GRN from bulk time-series expression data via convolutional neural network (CNN) model, with a more informative feature. Bulk time series gene expression data imply the intricate regulatory associations between genes, and the network structure feature of ground-truth GRN contains rich neighbor information. Hence, CNNGRN integrates the above two features as model inputs. In addition, CNN is adopted to extract intricate features of genes and infer the potential associations between regulators and target genes. Moreover, feature importance visualization experiments are implemented to seek the key features. Experimental results show that CNNGRN achieved competitive performance on benchmark datasets compared to the state-of-the-art computational methods. Finally, hub genes identified based on CNNGRN have been confirmed to be involved in biological processes through literature.
Collapse
|
24
|
Zhang J, Hu C, Zhang Q. Gene regulatory network inference based on a nonhomogeneous dynamic Bayesian network model with an improved Markov Monte Carlo sampling. BMC Bioinformatics 2023; 24:264. [PMID: 37355560 DOI: 10.1186/s12859-023-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
A nonhomogeneous dynamic Bayesian network model, which combines the dynamic Bayesian network and the multi-change point process, solves the limitations of the dynamic Bayesian network in modeling non-stationary gene expression data to a certain extent. However, certain problems persist, such as the low network reconstruction accuracy and poor model convergence. Therefore, we propose an MD-birth move based on the Manhattan distance of the data points to increase the rationality of the multi-change point process. The underlying concept of the MD-birth move is that the direction of movement of the change point is assumed to have a larger Manhattan distance between the variance and the mean of its left and right data points. Considering the data instability characteristics, we propose a Markov chain Monte Carlo sampling method based on node-dependent particle filtering in addition to the multi-change point process. The candidate parent nodes to be sampled, which are close to the real state, are pushed to the high probability area through the particle filter, and the candidate parent node set to be sampled that is far from the real state is pushed to the low probability area and then sampled. In terms of reconstructing the gene regulatory network, the model proposed in this paper (FC-DBN) has better network reconstruction accuracy and model convergence speed than other corresponding models on the Saccharomyces cerevisiae data and RAF data.
Collapse
Affiliation(s)
- Jiayao Zhang
- College of Artificial Intelligence and Big Data, Hefei University, Hefei, 230031, China
| | - Chunling Hu
- College of Artificial Intelligence and Big Data, Hefei University, Hefei, 230031, China.
| | - Qianqian Zhang
- College of Artificial Intelligence and Big Data, Hefei University, Hefei, 230031, China
| |
Collapse
|
25
|
Wang Q, Guo M, Chen J, Duan R. A gene regulatory network inference model based on pseudo-siamese network. BMC Bioinformatics 2023; 24:163. [PMID: 37085776 PMCID: PMC10122305 DOI: 10.1186/s12859-023-05253-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
MOTIVATION Gene regulatory networks (GRNs) arise from the intricate interactions between transcription factors (TFs) and their target genes during the growth and development of organisms. The inference of GRNs can unveil the underlying gene interactions in living systems and facilitate the investigation of the relationship between gene expression patterns and phenotypic traits. Although several machine-learning models have been proposed for inferring GRNs from single-cell RNA sequencing (scRNA-seq) data, some of these models, such as Boolean and tree-based networks, suffer from sensitivity to noise and may encounter difficulties in handling the high noise and dimensionality of actual scRNA-seq data, as well as the sparse nature of gene regulation relationships. Thus, inferring large-scale information from GRNs remains a formidable challenge. RESULTS This study proposes a multilevel, multi-structure framework called a pseudo-Siamese GRN (PSGRN) for inferring large-scale GRNs from time-series expression datasets. Based on the pseudo-Siamese network, we applied a gated recurrent unit to capture the time features of each TF and target matrix and learn the spatial features of the matrices after merging by applying the DenseNet framework. Finally, we applied a sigmoid function to evaluate interactions. We constructed two maize sub-datasets, including gene expression levels and GRNs, using existing open-source maize multi-omics data and compared them to other GRN inference methods, including GENIE3, GRNBoost2, nonlinear ordinary differential equations, CNNC, and DGRNS. Our results show that PSGRN outperforms state-of-the-art methods. This study proposed a new framework: a PSGRN that allows GRNs to be inferred from scRNA-seq data, elucidating the temporal and spatial features of TFs and their target genes. The results show the model's robustness and generalization, laying a theoretical foundation for maize genotype-phenotype associations with implications for breeding work.
Collapse
Affiliation(s)
- Qian Wang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Maozu Guo
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China.
| | - Jian Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ran Duan
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing, China
| |
Collapse
|
26
|
Galindez G, Sadegh S, Baumbach J, Kacprowski T, List M. Network-based approaches for modeling disease regulation and progression. Comput Struct Biotechnol J 2022; 21:780-795. [PMID: 36698974 PMCID: PMC9841310 DOI: 10.1016/j.csbj.2022.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular interaction networks lay the foundation for studying how biological functions are controlled by the complex interplay of genes and proteins. Investigating perturbed processes using biological networks has been instrumental in uncovering mechanisms that underlie complex disease phenotypes. Rapid advances in omics technologies have prompted the generation of high-throughput datasets, enabling large-scale, network-based analyses. Consequently, various modeling techniques, including network enrichment, differential network extraction, and network inference, have proven to be useful for gaining new mechanistic insights. We provide an overview of recent network-based methods and their core ideas to facilitate the discovery of disease modules or candidate mechanisms. Knowledge generated from these computational efforts will benefit biomedical research, especially drug development and precision medicine. We further discuss current challenges and provide perspectives in the field, highlighting the need for more integrative and dynamic network approaches to model disease development and progression.
Collapse
Affiliation(s)
- Gihanna Galindez
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Sepideh Sadegh
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
27
|
Sriraja LO, Werhli A, Petsalaki E. Phosphoproteomics data-driven signalling network inference: Does it work? Comput Struct Biotechnol J 2022; 21:432-443. [PMID: 36618990 PMCID: PMC9798138 DOI: 10.1016/j.csbj.2022.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
The advent of global phosphoproteome profiling has led to wide phosphosite coverage and therefore the opportunity to predict kinase-substrate associations from these datasets. However, the regulatory kinase is unknown for most substrates, due to biased and incomplete database annotations. In this study we compare the performance of six pairwise measures to predict kinase-substrate associations using a data driven approach on publicly available time resolved and perturbation mass spectrometry-based phosphoproteome data. First, we validated the performance of these measures using as a reference both a literature-based phosphosite-specific protein interaction network and a predicted kinase-substrate (KS) interactions set. The overall performance in predicting kinase-substrate associations using pairwise measures across both these reference sets was poor. To expand into the wider interactome space, we applied the approach on a network comprising pairs of substrates regulated by the same kinase (substrate-substrate associations) but found the performance to be equally poor. However, the addition of a sequence similarity filter for substrate-substrate associations led to a significant boost in performance. Our findings imply that the use of a filter to reduce the search space, such as a sequence similarity filter, can be used prior to the application of network inference methods to reduce noise and boost the signal. We also find that the current gold standard for reference sets is not adequate for evaluation as it is limited and context-agnostic. Therefore, there is a need for additional evaluation methods that have increased coverage and take into consideration the context-specific nature of kinase-substrate associations.
Collapse
Affiliation(s)
- Lourdes O. Sriraja
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Adriano Werhli
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
- Centro de Ciências Computacionais - Universidade Federal do Rio Grande - FURG, Avenida Itália, km 8, s/n, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil2
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
28
|
Inference of gene regulatory networks based on the Light Gradient Boosting Machine. Comput Biol Chem 2022; 101:107769. [DOI: 10.1016/j.compbiolchem.2022.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
|
29
|
Inference of Molecular Regulatory Systems Using Statistical Path-Consistency Algorithm. ENTROPY 2022; 24:e24050693. [PMID: 35626576 PMCID: PMC9142129 DOI: 10.3390/e24050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
One of the key challenges in systems biology and molecular sciences is how to infer regulatory relationships between genes and proteins using high-throughout omics datasets. Although a wide range of methods have been designed to reverse engineer the regulatory networks, recent studies show that the inferred network may depend on the variable order in the dataset. In this work, we develop a new algorithm, called the statistical path-consistency algorithm (SPCA), to solve the problem of the dependence of variable order. This method generates a number of different variable orders using random samples, and then infers a network by using the path-consistent algorithm based on each variable order. We propose measures to determine the edge weights using the corresponding edge weights in the inferred networks, and choose the edges with the largest weights as the putative regulations between genes or proteins. The developed method is rigorously assessed by the six benchmark networks in DREAM challenges, the mitogen-activated protein (MAP) kinase pathway, and a cancer-specific gene regulatory network. The inferred networks are compared with those obtained by using two up-to-date inference methods. The accuracy of the inferred networks shows that the developed method is effective for discovering molecular regulatory systems.
Collapse
|
30
|
Jiang X, Zhang X. RSNET: inferring gene regulatory networks by a redundancy silencing and network enhancement technique. BMC Bioinformatics 2022; 23:165. [PMID: 35524190 PMCID: PMC9074326 DOI: 10.1186/s12859-022-04696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Current gene regulatory network (GRN) inference methods are notorious for a great number of indirect interactions hidden in the predictions. Filtering out the indirect interactions from direct ones remains an important challenge in the reconstruction of GRNs. To address this issue, we developed a redundancy silencing and network enhancement technique (RSNET) for inferring GRNs. Results To assess the performance of RSNET method, we implemented the experiments on several gold-standard networks by using simulation study, DREAM challenge dataset and Escherichia coli network. The results show that RSNET method performed better than the compared methods in sensitivity and accuracy. As a case of study, we used RSNET to construct functional GRN for apple fruit ripening from gene expression data. Conclusions In the proposed method, the redundant interactions including weak and indirect connections are silenced by recursive optimization adaptively, and the highly dependent nodes are constrained in the model to keep the real interactions. This study provides a useful tool for inferring clean networks. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04696-w.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
31
|
Zhang H, Chen J, Tian T. Bayesian Inference of Stochastic Dynamic Models Using Early-Rejection Methods Based on Sequential Stochastic Simulations. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1484-1494. [PMID: 33216717 DOI: 10.1109/tcbb.2020.3039490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stochastic modelling is an important method to investigate the functions of noise in a wide range of biological systems. However, the parameter inference for stochastic models is still a challenging problem partially due to the large computing time required for stochastic simulations. To address this issue, we propose a novel early-rejection method by using sequential stochastic simulations. We first show that a large number of stochastic simulations are required to obtain reliable inference results. Instead of generating a large number of simulations for each parameter sample, we propose to generate these simulations in a number of stages. The simulation process will go to the next stage only if the accuracy of simulations at the current stage satisfies a given error criterion. We propose a formula to determine the error criterion and use a stochastic differential equation model to examine the effects of different criteria. Three biochemical network models are used to evaluate the efficiency and accuracy of the proposed method. Numerical results suggest the proposed early-rejection method achieves substantial improvement in the efficiency for the inference of stochastic models.
Collapse
|
32
|
Zhao M, He W, Tang J, Zou Q, Guo F. A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data. Brief Bioinform 2022; 23:6513730. [DOI: 10.1093/bib/bbab568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022] Open
Abstract
Abstract
Inferring gene regulatory networks (GRNs) based on gene expression profiles is able to provide an insight into a number of cellular phenotypes from the genomic level and reveal the essential laws underlying various life phenomena. Different from the bulk expression data, single-cell transcriptomic data embody cell-to-cell variance and diverse biological information, such as tissue characteristics, transformation of cell types, etc. Inferring GRNs based on such data offers unprecedented advantages for making a profound study of cell phenotypes, revealing gene functions and exploring potential interactions. However, the high sparsity, noise and dropout events of single-cell transcriptomic data pose new challenges for regulation identification. We develop a hybrid deep learning framework for GRN inference from single-cell transcriptomic data, DGRNS, which encodes the raw data and fuses recurrent neural network and convolutional neural network (CNN) to train a model capable of distinguishing related gene pairs from unrelated gene pairs. To overcome the limitations of such datasets, it applies sliding windows to extract valuable features while preserving the direction of regulation. DGRNS is constructed as a deep learning model containing gated recurrent unit network for exploring time-dependent information and CNN for learning spatially related information. Our comprehensive and detailed comparative analysis on the dataset of mouse hematopoietic stem cells illustrates that DGRNS outperforms state-of-the-art methods. The networks inferred by DGRNS are about 16% higher than the area under the receiver operating characteristic curve of other unsupervised methods and 10% higher than the area under the precision recall curve of other supervised methods. Experiments on human datasets show the strong robustness and excellent generalization of DGRNS. By comparing the predictions with standard network, we discover a series of novel interactions which are proved to be true in some specific cell types. Importantly, DGRNS identifies a series of regulatory relationships with high confidence and functional consistency, which have not yet been experimentally confirmed and merit further research.
Collapse
|
33
|
Integrated Inference of Asymmetric Protein Interaction Networks Using Dynamic Model and Individual Patient Proteomics Data. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recent advances in experimental biology studies have produced large amount of molecular activity data. In particular, individual patient data provide non-time series information for the molecular activities in disease conditions. The challenge is how to design effective algorithms to infer regulatory networks using the individual patient datasets and consequently address the issue of network symmetry. This work is aimed at developing an efficient pipeline to reverse-engineer regulatory networks based on the individual patient proteomic data. The first step uses the SCOUT algorithm to infer the pseudo-time trajectory of individual patients. Then the path-consistent method with part mutual information is used to construct a static network that contains the potential protein interactions. To address the issue of network symmetry in terms of undirected symmetric network, a dynamic model of ordinary differential equations is used to further remove false interactions to derive asymmetric networks. In this work a dataset from triple-negative breast cancer patients is used to develop a protein-protein interaction network with 15 proteins.
Collapse
|
34
|
Mitra R, MacLean AL. RVAgene: Generative modeling of gene expression time series data. Bioinformatics 2021; 37:3252-3262. [PMID: 33974008 PMCID: PMC8504625 DOI: 10.1093/bioinformatics/btab260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
Motivation Methods to model dynamic changes in gene expression at a genome-wide level are not currently sufficient for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large datasets and have been used effectively to characterize features of single-cell datasets. Here, we extend these methods for use with gene expression time series data. Results We present RVAgene: a recurrent variational autoencoder to model gene expression dynamics. RVAgene learns to accurately and efficiently reconstruct temporal gene profiles. It also learns a low dimensional representation of the data via a recurrent encoder network that can be used for biological feature discovery, and from which we can generate new gene expression data by sampling the latent space. We test RVAgene on simulated and real biological datasets, including embryonic stem cell differentiation and kidney injury response dynamics. In all cases, RVAgene accurately reconstructed complex gene expression temporal profiles. Via cross validation, we show that a low-error latent space representation can be learnt using only a fraction of the data. Through clustering and gene ontology term enrichment analysis on the latent space, we demonstrate the potential of RVAgene for unsupervised discovery. In particular, RVAgene identifies new programs of shared gene regulation of Lox family genes in response to kidney injury. Availability and implementation All datasets analyzed in this manuscript are publicly available and have been published previously. RVAgene is available in Python, at GitHub: https://github.com/maclean-lab/RVAgene; Zenodo archive: http://doi.org/10.5281/zenodo.4271097. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Raktim Mitra
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA-90007, USA
| | - Adam L MacLean
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA-90007, USA
| |
Collapse
|
35
|
He W, Tang J, Zou Q, Guo F. MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction. Brief Bioinform 2021; 22:6261916. [PMID: 33939795 DOI: 10.1093/bib/bbab166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Lots of biological processes are controlled by gene regulatory networks (GRNs), such as growth and differentiation of cells, occurrence and development of the diseases. Therefore, it is important to persistently concentrate on the research of GRN. The determination of the gene-gene relationships from gene expression data is a complex issue. Since it is difficult to efficiently obtain the regularity behind the gene-gene relationship by only relying on biochemical experimental methods, thus various computational methods have been used to construct GRNs, and some achievements have been made. In this paper, we propose a novel method MMFGRN (for "Multi-source Multi-model Fusion for Gene Regulatory Network reconstruction") to reconstruct the GRN. In order to make full use of the limited datasets and explore the potential regulatory relationships contained in different data types, we construct the MMFGRN model from three perspectives: single time series data model, single steady-data model and time series and steady-data joint model. And, we utilize the weighted fusion strategy to get the final global regulatory link ranking. Finally, MMFGRN model yields the best performance on the DREAM4 InSilico_Size10 data, outperforming other popular inference algorithms, with an overall area under receiver operating characteristic score of 0.909 and area under precision-recall (AUPR) curves score of 0.770 on the 10-gene network. Additionally, as the network scale increases, our method also has certain advantages with an overall AUPR score of 0.335 on the DREAM4 InSilico_Size100 data. These results demonstrate the good robustness of MMFGRN on different scales of networks. At the same time, the integration strategy proposed in this paper provides a new idea for the reconstruction of the biological network model without prior knowledge, which can help researchers to decipher the elusive mechanism of life.
Collapse
Affiliation(s)
| | | | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Guo
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Zhao M, He W, Tang J, Zou Q, Guo F. A comprehensive overview and critical evaluation of gene regulatory network inference technologies. Brief Bioinform 2021; 22:6128842. [PMID: 33539514 DOI: 10.1093/bib/bbab009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Gene regulatory network (GRN) is the important mechanism of maintaining life process, controlling biochemical reaction and regulating compound level, which plays an important role in various organisms and systems. Reconstructing GRN can help us to understand the molecular mechanism of organisms and to reveal the essential rules of a large number of biological processes and reactions in organisms. Various outstanding network reconstruction algorithms use specific assumptions that affect prediction accuracy, in order to deal with the uncertainty of processing. In order to study why a certain method is more suitable for specific research problem or experimental data, we conduct research from model-based, information-based and machine learning-based method classifications. There are obviously different types of computational tools that can be generated to distinguish GRNs. Furthermore, we discuss several classical, representative and latest methods in each category to analyze core ideas, general steps, characteristics, etc. We compare the performance of state-of-the-art GRN reconstruction technologies on simulated networks and real networks under different scaling conditions. Through standardized performance metrics and common benchmarks, we quantitatively evaluate the stability of various methods and the sensitivity of the same algorithm applying to different scaling networks. The aim of this study is to explore the most appropriate method for a specific GRN, which helps biologists and medical scientists in discovering potential drug targets and identifying cancer biomarkers.
Collapse
Affiliation(s)
- Mengyuan Zhao
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Wenying He
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jijun Tang
- University of South Carolina, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
37
|
Turki T, Taguchi YH. SCGRNs: Novel supervised inference of single-cell gene regulatory networks of complex diseases. Comput Biol Med 2020; 118:103656. [PMID: 32174324 DOI: 10.1016/j.compbiomed.2020.103656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Single-cell gene regulatory network (SCGRN) inference refers to the process of inferring gene regulatory networks from single-cell data, which are generated via single-cell RNA-sequencing (scRNA-seq) technologies. Although scRNA-seq leads to the generation of data pertaining to cells of particular interest, the single-cell data are noisy and highly sparse, which makes the analysis of such data a challenging task. In this study, we model an SCGRN as a directed graph where an edge from a source node (also called transcription factor (TF)) to a target node (also called target gene) indicates that a TF regulates a target gene. Inferring the SCGRN via predicting TF-target gene regulations would help biologists better understand various diseases in terms of networks. Following the modeling step, we propose three machine learning approaches. The first approach considers feature vectors encoding regulatory relationships of expressed TFs-target genes as input. The resulting model is then used to predict unseen TF-target gene regulations. The second machine learning approach constructs new feature vectors via incorporating features obtained from stacked autoencoders, which are provided to a machine learning algorithm to induce a model and predict unseen regulations of TFs-target genes. The third approach extends the second approach via including topological features extracted from an SCGRN. We perform an experimental study comparing our approaches against adapted unsupervised approaches. Experimental results on SCGRNs pertaining to healthy and type 2 pancreatic diabetes demonstrate the clinical importance and the accurate prediction performance of the proposed approaches.
Collapse
Affiliation(s)
- Turki Turki
- King Abdulaziz University, Department of Computer Science, Jeddah, 21589, Saudi Arabia.
| | - Y-H Taguchi
- Chuo University, Department of Physics, Tokyo, 112-8551, Japan.
| |
Collapse
|