1
|
Hu K, O’Neil TR, Baharlou H, Austin PJ, Karrasch JF, Sarkawt L, Li Y, Bertram KM, Cunningham AL, Patrick E, Harman AN. The spatial biology of HIV infection. PLoS Pathog 2025; 21:e1012888. [PMID: 39854613 PMCID: PMC11760614 DOI: 10.1371/journal.ppat.1012888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches. Over the last decade, emerging imaging techniques have continually redefined the limits of detection, both in terms of the scope and the scale of the targets. In doing so, this has opened up new questions that can be answered by in situ studies. This review discusses the high-dimensional imaging modalities that are now available and their application towards understanding the spatial biology of HIV infection.
Collapse
Affiliation(s)
- Kevin Hu
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Thomas R. O’Neil
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul J. Austin
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Jackson F. Karrasch
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, School of Medical of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Lara Sarkawt
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuchen Li
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M. Bertram
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellis Patrick
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Mathematics and Statistics, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Warner van Dijk FA, Tong O, O’Neil TR, Bertram KM, Hu K, Baharlou H, Vine EE, Jenns K, Gosselink MP, Toh JW, Papadopoulos T, Barnouti L, Jenkins GJ, Sandercoe G, Haniffa M, Sandgren KJ, Harman AN, Cunningham AL, Nasr N. Characterising plasmacytoid and myeloid AXL+ SIGLEC-6+ dendritic cell functions and their interactions with HIV. PLoS Pathog 2024; 20:e1012351. [PMID: 38924030 PMCID: PMC11233022 DOI: 10.1371/journal.ppat.1012351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/09/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.
Collapse
Affiliation(s)
- Freja A. Warner van Dijk
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Orion Tong
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
| | - Thomas R. O’Neil
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Kirstie M. Bertram
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
| | - Kevin Hu
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Erica E. Vine
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Kate Jenns
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | | | - James W. Toh
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
- Department of Colorectal Surgery, Westmead Hospital, Westmead, Australia
| | - Tim Papadopoulos
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Westmead Private Hospital, Westmead, Australia
| | - Laith Barnouti
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Westmead Private Hospital, Westmead, Australia
| | - Gregory J. Jenkins
- Department of Obstetrics and Gynaecology, Westmead Hospital, Westmead, Australia
| | - Gavin Sandercoe
- Department of Plastic Surgery, Norwest Private Hospital, Bella Vista, Australia
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Knigdom
- Biosciences Institute, Newcastle University, Newcastle, United Knigdom
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Knigdom
| | - Kerrie J. Sandgren
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Andrew N. Harman
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Anthony L. Cunningham
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, Australia
| |
Collapse
|
3
|
Shahidehpour RK, Nelson AS, Sanders LG, Embry CR, Nelson PT, Bachstetter AD. The localization of molecularly distinct microglia populations to Alzheimer's disease pathologies using QUIVER. Acta Neuropathol Commun 2023; 11:45. [PMID: 36934255 PMCID: PMC10024857 DOI: 10.1186/s40478-023-01541-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/03/2023] [Indexed: 03/20/2023] Open
Abstract
New histological techniques are needed to examine protein distribution in human tissues, which can reveal cell shape and disease pathology connections. Spatial proteomics has changed the study of tumor microenvironments by identifying spatial relationships of immunomodulatory cells and proteins and contributing to the discovery of new cancer immunotherapy biomarkers. However, the fast-expanding toolkit of spatial proteomic approaches has yet to be systematically applied to investigate pathological alterations in the aging human brain in health and disease states. Moreover, post-mortem human brain tissue presents distinct technical problems due to fixation procedures and autofluorescence, which limit fluorescence methodologies. This study sought to develop a multiplex immunohistochemistry approach (visualizing the immunostain with brightfield microscopy). Quantitative multiplex Immunohistochemistry with Visual colorimetric staining to Enhance Regional protein localization (QUIVER) was developed to address these technical challenges. Using QUIVER, a ten-channel pseudo-fluorescent image was generated using chromogen removal and digital microscopy to identify unique molecular microglia phenotypes. Next, the study asked if the tissue environment, specifically the amyloid plaques and neurofibrillary tangles characteristic of Alzheimer's disease, has any bearing on microglia's cellular and molecular phenotypes. QUIVER allowed the visualization of five molecular microglia/macrophage phenotypes using digital pathology tools. The recognizable reactive and homeostatic microglia/macrophage phenotypes demonstrated spatial polarization towards and away from amyloid plaques, respectively. Yet, microglia morphology appearance did not always correspond to molecular phenotype. This research not only sheds light on the biology of microglia but also offers QUIVER, a new tool for examining pathological alterations in the brains of the elderly.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Abraham S Nelson
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Lydia G Sanders
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Chloe R Embry
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA
| | - Peter T Nelson
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
4
|
Locke D, Hoyt CC. Companion diagnostic requirements for spatial biology using multiplex immunofluorescence and multispectral imaging. Front Mol Biosci 2023; 10:1051491. [PMID: 36845550 PMCID: PMC9948403 DOI: 10.3389/fmolb.2023.1051491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Immunohistochemistry has long been held as the gold standard for understanding the expression patterns of therapeutically relevant proteins to identify prognostic and predictive biomarkers. Patient selection for targeted therapy in oncology has successfully relied upon standard microscopy-based methodologies, such as single-marker brightfield chromogenic immunohistochemistry. As promising as these results are, the analysis of one protein, with few exceptions, no longer provides enough information to draw effective conclusions about the probability of treatment response. More multifaceted scientific queries have driven the development of high-throughput and high-order technologies to interrogate biomarker expression patterns and spatial interactions between cell phenotypes in the tumor microenvironment. Such multi-parameter data analysis has been historically reserved for technologies that lack the spatial context that is provided by immunohistochemistry. Over the past decade, technical developments in multiplex fluorescence immunohistochemistry and discoveries made with improving image data analysis platforms have highlighted the importance of spatial relationships between certain biomarkers in understanding a patient's likelihood to respond to, typically, immune checkpoint inhibitors. At the same time, personalized medicine has instigated changes in both clinical trial design and its conduct in a push to make drug development and cancer treatment more efficient, precise, and economical. Precision medicine in immuno-oncology is being steered by data-driven approaches to gain insight into the tumor and its dynamic interaction with the immune system. This is particularly necessary given the rapid growth in the number of trials involving more than one immune checkpoint drug, and/or using those in combination with conventional cancer treatments. As multiplex methods, like immunofluorescence, push the boundaries of immunohistochemistry, it becomes critical to understand the foundation of this technology and how it can be deployed for use as a regulated test to identify the prospect of response from mono- and combination therapies. To that end, this work will focus on: 1) the scientific, clinical, and economic requirements for developing clinical multiplex immunofluorescence assays; 2) the attributes of the Akoya Phenoptics workflow to support predictive tests, including design principles, verification, and validation needs; 3) regulatory, safety and quality considerations; 4) application of multiplex immunohistochemistry through lab-developed-tests and regulated in vitro diagnostic devices.
Collapse
Affiliation(s)
- Darren Locke
- Clinical Assay Development, Akoya Biosciences, Marlborough, MA, United States,*Correspondence: Darren Locke,
| | - Clifford C. Hoyt
- Translational and Scientific Affairs, Akoya Biosciences, Marlborough, MA, United States
| |
Collapse
|
5
|
Baharlou H, Canete N, Vine EE, Hu K, Yuan D, Sandgren KJ, Bertram KM, Nasr N, Rhodes JW, Gosselink MP, Di Re A, Reza F, Ctercteko G, Pathma-Nathan N, Collins G, Toh J, Patrick E, Haniffa MA, Estes JD, Byrne SN, Cunningham AL, Harman AN. An in situ analysis pipeline for initial host-pathogen interactions reveals signatures of human colorectal HIV transmission. Cell Rep 2022; 40:111385. [PMID: 36130503 DOI: 10.1016/j.celrep.2022.111385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022] Open
Abstract
The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.
Collapse
Affiliation(s)
- Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| | - Nicolas Canete
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Erica E Vine
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Di Yuan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Martijn P Gosselink
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Angelina Di Re
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Faizur Reza
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Grahame Ctercteko
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Nimalan Pathma-Nathan
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Geoff Collins
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - James Toh
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; Department of Colorectal Surgery, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ellis Patrick
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Maths and Statistics, Faculty of Science, Sydney, NSW, Australia
| | - Muzlifah A Haniffa
- Biosciences Institute, The University of Newcastle, Newcastle upon Tyne, UK; Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jacob D Estes
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA; Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Scott N Byrne
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW 2145, Australia; The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Tsuneoka Y, Atsumi Y, Makanae A, Yashiro M, Funato H. Fluorescence quenching by high-power LEDs for highly sensitive fluorescence in situ hybridization. Front Mol Neurosci 2022; 15:976349. [PMID: 36117911 PMCID: PMC9479452 DOI: 10.3389/fnmol.2022.976349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Recent technical advances have made fluorescent in situ hybridization (ISH) a pivotal method to analyze neural tissue. In a highly sensitive ISH, it is important to reduce tissue autofluorescence. We developed a photobleaching device using a light-emitting diode (LED) illuminator to quench autofluorescence in neural tissue. This device was equipped with 12 high-power LEDs (30 W per single LED) and an evaporative cooling system, and these features achieved highly efficient bleaching of autofluorescence and minimized tissue damage. Even after 60 min of photobleaching with evaporative cooling, the temperature gain of the tissue slide was suppressed almost completely. The autofluorescence of lipofuscin-like granules completely disappeared after 60 min of photobleaching, as did other background autofluorescence observed in the mouse cortex and hippocampus. In combination with the recently developed fluorescent ISH method using the hybridization chain reaction (HCR), high signal/noise ratio imaging was achieved without reduction of ISH sensitivity to visualize rare mRNA at single copy resolution by quenching autofluorescence. Photobleaching by the LED illuminator was also effective in quenching the fluorescent staining of ISH-HCR. We performed multiround ISH by repeating the cycle of HCR staining, confocal imaging, and photobleaching. In addition to the two-round ISH, fluorescent immunohistochemistry or fluorescent Nissl staining was conducted on the same tissue. This LED illuminator provides a quick and simple way to reduce autofluorescence and quench fluorescent dyes for multiround ISH with minimum tissue degradation.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| | - Yusuke Atsumi
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Aki Makanae
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Mitsuru Yashiro
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- Center for Research and Product Development, Nepa Gene Co., Ltd., Chiba, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
- *Correspondence: Yousuke Tsuneoka Hiromasa Funato
| |
Collapse
|
7
|
Rodrigues NTL, Bland T, Borrego-Pinto J, Ng K, Hirani N, Gu Y, Foo S, Goehring NW. SAIBR: a simple, platform-independent method for spectral autofluorescence correction. Development 2022; 149:dev200545. [PMID: 35713287 PMCID: PMC9445497 DOI: 10.1242/dev.200545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/06/2022] [Indexed: 12/19/2022]
Abstract
Biological systems are increasingly viewed through a quantitative lens that demands accurate measures of gene expression and local protein concentrations. CRISPR/Cas9 gene tagging has enabled increased use of fluorescence to monitor proteins at or near endogenous levels under native regulatory control. However, owing to typically lower expression levels, experiments using endogenously tagged genes run into limits imposed by autofluorescence (AF). AF is often a particular challenge in wavelengths occupied by commonly used fluorescent proteins (GFP, mNeonGreen). Stimulated by our work in C. elegans, we describe and validate Spectral Autofluorescence Image Correction By Regression (SAIBR), a simple platform-independent protocol and FIJI plug-in to correct for autofluorescence using standard filter sets and illumination conditions. Validated for use in C. elegans embryos, starfish oocytes and fission yeast, SAIBR is ideal for samples with a single dominant AF source; it achieves accurate quantitation of fluorophore signal, and enables reliable detection and quantification of even weakly expressed proteins. Thus, SAIBR provides a highly accessible low-barrier way to incorporate AF correction as standard for researchers working on a broad variety of cell and developmental systems.
Collapse
Affiliation(s)
| | - Tom Bland
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - KangBo Ng
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | | | - Ying Gu
- Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Sherman Foo
- Francis Crick Institute, London NW1 1AT, UK
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Nathan W. Goehring
- Francis Crick Institute, London NW1 1AT, UK
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
8
|
Adeniyi PA, Fopiano KA, Banine F, Garcia M, Gong X, Keene CD, Sherman LS, Bagi Z, Back SA. Multispectral LEDs Eliminate Lipofuscin-Associated Autofluorescence for Immunohistochemistry and CD44 Variant Detection by in Situ Hybridization in Aging Human, non-Human Primate, and Murine Brain. ASN Neuro 2022; 14:17590914221123138. [PMID: 36164936 PMCID: PMC9520168 DOI: 10.1177/17590914221123138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
A major limitation of mechanistic studies in aging brains is the lack of routine methods to robustly visualize and discriminate the cellular distribution of tissue antigens using fluorescent immunohistochemical multi-labeling techniques. Although such approaches are routine in non-aging brains, they are not consistently feasible in the aging brain due to the progressive accumulation of autofluorescent pigments, particularly lipofuscin, which strongly excite and emit over a broad spectral range. Consequently, aging research has relied upon colorimetric antibody techniques, where discrimination of tissue antigens is often challenging. We report the application of a simple, reproducible, and affordable protocol using multispectral light-emitting diodes (mLEDs) exposure for the reduction/elimination of lipofuscin autofluorescence (LAF) in aging brain tissue from humans, non-human primates, and mice. The mLEDs lamp has a broad spectral range that spans from the UV to infrared range and includes spectra in the violet/blue and orange/red. After photo quenching, the LAF level was markedly reduced when the tissue background fluorescence before and after mLEDs exposure was compared (p < 0.0001) across the spectral range. LAF elimination was estimated at 95 ± 1%. This approach permitted robust specific fluorescent immunohistochemical co-visualization of commonly studied antigens in aging brains. We also successfully applied this method to specifically visualize CD44 variant expression in aging human cerebral white matter using RNAscope fluorescent in-situ hybridization. Photo quenching provides an attractive means to accelerate progress in aging research by increasing the number of molecules that can be topologically discriminated by fluorescence detection in brain tissue from normative or pathological aging.
Collapse
Affiliation(s)
- Philip A. Adeniyi
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Katie-Anne Fopiano
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Fatima Banine
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mariel Garcia
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Xi Gong
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Larry S. Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Stephen A. Back
- Departments of Pediatrics, Oregon Health & Science University, Portland, Oregon
- Departments of Neurology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
9
|
Zazhytska M, Kodra A, Hoagland DA, Fullard JF, Shayya H, Omer A, Firestein S, Gong Q, Canoll PD, Goldman JE, Roussos P, tenOever BR, Overdevest JB, Lomvardas S. Disruption of nuclear architecture as a cause of COVID-19 induced anosmia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.09.430314. [PMID: 33594368 PMCID: PMC7885920 DOI: 10.1101/2021.02.09.430314] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Olfaction relies on a coordinated partnership between odorant flow and neuronal communication. Disruption in our ability to detect odors, or anosmia, has emerged as a hallmark symptom of infection with SARS-CoV-2, yet the mechanism behind this abrupt sensory deficit remains elusive. Here, using molecular evaluation of human olfactory epithelium (OE) from subjects succumbing to COVID-19 and a hamster model of SARS-CoV-2 infection, we discovered widespread downregulation of olfactory receptors (ORs) as well as key components of their signaling pathway. OR downregulation likely represents a non-cell autonomous effect, since SARS-CoV-2 detection in OSNs is extremely rare both in human and hamster OEs. A likely explanation for the reduction of OR transcription is the striking reorganization of nuclear architecture observed in the OSN lineage, which disrupts multi-chromosomal compartments regulating OR expression in humans and hamsters. Our experiments uncover a novel molecular mechanism by which a virus with a very selective tropism can elicit persistent transcriptional changes in cells that evade it, contributing to the severity of COVID-19.
Collapse
Affiliation(s)
- Marianna Zazhytska
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Albana Kodra
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Daisy A Hoagland
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Hani Shayya
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Arina Omer
- Baylor Genetics, 2450 Holcombe Blvd, Houston, TX, 77021, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University New York, NY, 10027, USA
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Peter D Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mt. Sinai, New York, NY, 10029, USA
| | - Jonathan B Overdevest
- Department of Otolaryngology- Head and Neck Surgery, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain and Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| |
Collapse
|