1
|
Valdebenito GE, Chacko AR, Chung CY, Sheshadri P, Chi H, O'Callaghan B, Madej MJ, Houlden H, Rouse H, Morales V, Bianchi K, Tedesco FS, Pitceathly RDS, Duchen MR. Metabolic remodeling in hiPSC-derived myofibers carrying the m.3243A>G mutation. Stem Cell Reports 2025; 20:102448. [PMID: 40086445 PMCID: PMC12069895 DOI: 10.1016/j.stemcr.2025.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Mutations in mitochondrial DNA cause severe multisystem disease frequently associated with muscle weakness. The m.3243A>G mutation is the major cause of mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). Experimental models that recapitulate the disease phenotype in vitro for disease modeling or drug screening are very limited. We have therefore generated hiPSC-derived muscle fibers with variable heteroplasmic mtDNA mutation load without significantly affecting muscle differentiation potential. The cells exhibit physiological characteristics of muscle fibers and show a well-organized myofibrillar structure. In cells carrying the m.3243A>G mutation, the mitochondrial membrane potential and oxygen consumption were reduced in relation to the mutant load. We have shown through proteomic, phosphoproteomic, and metabolomic analyses that the m.3243A>G mutation variably affects the cell phenotype in relation to the mutant load. This variation is reflected by an increase in the NADH/NAD+ ratio, which in turn influences key nutrient-sensing pathways in the myofibers. This model enables a detailed study of the impact of the mutation on cellular bioenergetics and on muscle physiology with the potential to provide a platform for drug screening.
Collapse
Affiliation(s)
- Gabriel E Valdebenito
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK.
| | - Anitta R Chacko
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Chih-Yao Chung
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Preethi Sheshadri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Haoyu Chi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Benjamin O'Callaghan
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Monika J Madej
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Ryvu Therapeutics S.A., Krakow, Poland
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Hannah Rouse
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Valle Morales
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katiuscia Bianchi
- Bart's Cancer Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Stem Cells and Neuromuscular Regeneration Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael R Duchen
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Consortium for Mitochondrial Research, UCL, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Cheng H, Liang Z, Wu Y, Hu J, Cao B, Liu Z, Liu B, Cheng H, Liu ZX. Inferring kinase-phosphosite regulation from phosphoproteome-enriched cancer multi-omics datasets. Brief Bioinform 2025; 26:bbaf143. [PMID: 40194556 PMCID: PMC11975364 DOI: 10.1093/bib/bbaf143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Phosphorylation in eukaryotic cells plays a key role in regulating cell signaling and disease progression. Despite the ability to detect thousands of phosphosites in a single experiment using high-throughput technologies, the kinases responsible for regulating these sites are largely unidentified. To solve this, we collected the quantitative data at the transcriptional, protein, and phosphorylation levels of 10 159 samples from 23 tumor datasets and 15 adjacent normal tissue datasets. Our analysis aimed to uncover the potential impact and linkage of kinase-phosphosite (KPS) pairs through experimental evidence in publications and prediction tools commonly used. We discovered that both experimentally validated and tool-predicted KPS pairs were enriched in groups where there is a significant correlation between kinase expression/phosphorylation level and the phosphorylation level of phosphosite. This suggested that a quantitative correlation could infer the KPS interconnections. Furthermore, the Spearman's correlation coefficient for these pairs were notably higher in tumor samples, indicating that these regulatory interactions are particularly pronounced in tumors. Consequently, building on the KPS correlations of different datasets as predictive features, we have developed an innovative approach that employed an oversampling method combined with and XGBoost algorithm (SMOTE-XGBoost) to predict potential kinase-specific phosphorylation sites in proteins. Moreover, the computed correlations and predictions of kinase-phosphosite interconnections were integrated into the eKPI database (https://ekpi.omicsbio.info/). In summary, our study could provide helpful information and facilitate further research on the regulatory relationship between kinases and phosphosites.
Collapse
Affiliation(s)
- Haoyang Cheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region 999077, China
| | - Zhuoran Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yijin Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Jiamin Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bijin Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Life Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Zekun Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Bo Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
- School of Life Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| |
Collapse
|
3
|
Peixoto A, Ferreira D, Miranda A, Relvas-Santos M, Freitas R, Veth TS, Brandão A, Ferreira E, Paulo P, Cardoso M, Gaiteiro C, Cotton S, Soares J, Lima L, Teixeira F, Ferreira R, Palmeira C, Heck AJ, Oliveira MJ, Silva AM, Santos LL, Ferreira JA. Multilevel plasticity and altered glycosylation drive aggressiveness in hypoxic and glucose-deprived bladder cancer cells. iScience 2025; 28:111758. [PMID: 39906564 PMCID: PMC11791300 DOI: 10.1016/j.isci.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bladder tumors with aggressive characteristics often present microenvironmental niches marked by low oxygen levels (hypoxia) and limited glucose supply due to inadequate vascularization. The molecular mechanisms facilitating cellular adaptation to these stimuli remain largely elusive. Employing a multi-omics approach, we discovered that hypoxic and glucose-deprived cancer cells enter a quiescent state supported by mitophagy, fatty acid β-oxidation, and amino acid catabolism, concurrently enhancing their invasive capabilities. Reoxygenation and glucose restoration efficiently reversed cell quiescence without affecting cellular viability, highlighting significant molecular plasticity in adapting to microenvironmental challenges. Furthermore, cancer cells exhibited substantial perturbation of protein O-glycosylation, leading to simplified glycophenotypes with shorter glycosidic chains. Exploiting glycoengineered cell models, we established that immature glycosylation contributes to reduced cell proliferation and increased invasion. Our findings collectively indicate that hypoxia and glucose deprivation trigger cancer aggressiveness, reflecting an adaptive escape mechanism underpinned by altered metabolism and protein glycosylation, providing grounds for clinical intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Miranda
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rui Freitas
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Andreia Brandão
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Eduardo Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Paula Paulo
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Marta Cardoso
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Cristiana Gaiteiro
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia Cotton
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Janine Soares
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | | | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Palmeira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Department of Immunology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - André M.N. Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Müller J, Bayer FP, Wilhelm M, Schuh MG, Kuster B, The M. PTMNavigator: interactive visualization of differentially regulated post-translational modifications in cellular signaling pathways. Nat Commun 2025; 16:510. [PMID: 39779715 PMCID: PMC11711753 DOI: 10.1038/s41467-024-55533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational modifications (PTMs) play pivotal roles in regulating cellular signaling, fine-tuning protein function, and orchestrating complex biological processes. Despite their importance, the lack of comprehensive tools for studying PTMs from a pathway-centric perspective has limited our ability to understand how PTMs modulate cellular pathways on a molecular level. Here, we present PTMNavigator, a tool integrated into the ProteomicsDB platform that offers an interactive interface for researchers to overlay experimental PTM data with pathway diagrams. PTMNavigator provides ~3000 canonical pathways from manually curated databases, enabling users to modify and create custom diagrams tailored to their data. Additionally, PTMNavigator automatically runs kinase and pathway enrichment algorithms whose results are directly integrated into the visualization. This offers a comprehensive view of the intricate relationship between PTMs and signaling pathways. We demonstrate the utility of PTMNavigator by applying it to two phosphoproteomics datasets, showing how it can enhance pathway enrichment analysis, visualize how drug treatments result in a discernable flow of PTM-driven signaling, and aid in proposing extensions to existing pathways. By enhancing our understanding of cellular signaling dynamics and facilitating the discovery of PTM-pathway interactions, PTMNavigator advances our knowledge of PTM biology and its implications in health and disease.
Collapse
Affiliation(s)
- Julian Müller
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Florian P Bayer
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias Wilhelm
- Computational Mass Spectrometry, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Maximilian G Schuh
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Organic Chemistry II, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Matthew The
- Proteomics and Bioanalytics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
5
|
Levitskaya Z, Ser Z, Koh H, Mei WS, Chee S, Sobota RM, Ghadessy JF. Engineering cell-free systems by chemoproteomic-assisted phenotypic screening. RSC Chem Biol 2024; 5:372-385. [PMID: 38576719 PMCID: PMC10989505 DOI: 10.1039/d4cb00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Phenotypic screening is a valuable tool to both understand and engineer complex biological systems. We demonstrate the functionality of this approach in the development of cell-free protein synthesis (CFPS) technology. Phenotypic screening identified numerous compounds that enhanced protein production in yeast lysate CFPS reactions. Notably, many of these were competitive ATP kinase inhibitors, with the exploitation of their inherent substrate promiscuity redirecting ATP flux towards heterologous protein expression. Chemoproteomic-guided strain engineering partially phenocopied drug effects, with a 30% increase in protein yield observed upon deletion of the ATP-consuming SSA1 component of the HSP70 chaperone. Moreover, drug-mediated metabolic rewiring coupled with template optimization generated the highest protein yields in yeast CFPS to date using a hitherto less efficient, but more cost-effective glucose energy regeneration system. Our approach highlights the utility of target-agnostic phenotypic screening and target identification to deconvolute cell-lysate complexity, adding to the expanding repertoire of strategies for improving CFPS.
Collapse
Affiliation(s)
- Zarina Levitskaya
- Protein and Peptide Engineering and Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - Zheng Ser
- Function Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - Hiromi Koh
- Function Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - Wang Shi Mei
- Function Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - Sharon Chee
- Protein and Peptide Engineering and Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - Radoslaw Mikolaj Sobota
- Function Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| | - John F Ghadessy
- Protein and Peptide Engineering and Research Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR) 8A Biomedical Grove Singapore 138648
| |
Collapse
|
6
|
Maclachlan KH, Gitareja K, Kang J, Cuddihy A, Cao Y, Hein N, Cullinane C, Ang CS, Brajanovski N, Pearson RB, Khot A, Sanij E, Hannan RD, Poortinga G, Harrison SJ. Targeting the ribosome to treat multiple myeloma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200771. [PMID: 38596309 PMCID: PMC10905045 DOI: 10.1016/j.omton.2024.200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/11/2024]
Abstract
The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.
Collapse
Affiliation(s)
- Kylee H. Maclachlan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kezia Gitareja
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Cuddihy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Yuxi Cao
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nadine Hein
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carleen Cullinane
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard B. Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Amit Khot
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Ross D. Hannan
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon J. Harrison
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Zhang H, Steele JR, Kahrood HV, Lucas DD, Shah AD, Schittenhelm RB. Phospho-Analyst: An Interactive, Easy-to-Use Web Platform To Analyze Quantitative Phosphoproteomics Data. J Proteome Res 2023; 22:2890-2899. [PMID: 37584946 DOI: 10.1021/acs.jproteome.3c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Phosphoproteomics is nowadays the method of choice to comprehensively identify and quantify thousands of phosphorylated peptides and their associated proteins with the goal of interrogating changes in signal transduction pathways and other cellular processes. One of the most popular software suites to analyze phosphoproteomic data sets is MaxQuant, which converts mass spectrometric raw data into quantitative information on phosphopeptides and proteins. However, despite the increased utilization of phosphoproteomics in biomedical research, simple and user-friendly tools supporting downstream statistical analysis and interpretation of these highly complex outputs are still lacking. We have therefore developed Phospho-Analyst, which─similar to its sibling LFQ-Analyst─is an easy-to-use, interactive web application specifically designed to reproducibly perform differential expression analyses with "one click" and to visualize phosphoproteomic results in a meaningful and practical manner. Furthermore, if quantitative total proteomic information is available for the same samples, Phospho-Analyst automatically normalizes all phosphoproteomic results to underlying protein abundance levels, thereby ensuring that only genuine changes in phosphorylation events are considered. As such, Phospho-Analyst can not only be used by experienced proteomic veterans but also by researchers without any prior knowledge in (phospho)proteomics, statistics, or bioinformatics. Phospho-Analyst, including a detailed manual, is freely available at https://analyst-suites.org/apps/phospho-analyst/.
Collapse
Affiliation(s)
- Haijian Zhang
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Joel R Steele
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Hossein Valipour Kahrood
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash Genomics & Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Deanna Deveson Lucas
- Monash Genomics & Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anup D Shah
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash Genomics & Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Platform, Monash Biomedicine Discovery Institute & Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Van den Broeck L, Bhosale DK, Song K, Fonseca de Lima CF, Ashley M, Zhu T, Zhu S, Van De Cotte B, Neyt P, Ortiz AC, Sikes TR, Aper J, Lootens P, Locke AM, De Smet I, Sozzani R. Functional annotation of proteins for signaling network inference in non-model species. Nat Commun 2023; 14:4654. [PMID: 37537196 PMCID: PMC10400656 DOI: 10.1038/s41467-023-40365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Molecular biology aims to understand cellular responses and regulatory dynamics in complex biological systems. However, these studies remain challenging in non-model species due to poor functional annotation of regulatory proteins. To overcome this limitation, we develop a multi-layer neural network that determines protein functionality directly from the protein sequence. We annotate kinases and phosphatases in Glycine max. We use the functional annotations from our neural network, Bayesian inference principles, and high resolution phosphoproteomics to infer phosphorylation signaling cascades in soybean exposed to cold, and identify Glyma.10G173000 (TOI5) and Glyma.19G007300 (TOT3) as key temperature regulators. Importantly, the signaling cascade inference does not rely upon known kinase motifs or interaction data, enabling de novo identification of kinase-substrate interactions. Conclusively, our neural network shows generalization and scalability, as such we extend our predictions to Oryza sativa, Zea mays, Sorghum bicolor, and Triticum aestivum. Taken together, we develop a signaling inference approach for non-model species leveraging our predicted kinases and phosphatases.
Collapse
Affiliation(s)
- Lisa Van den Broeck
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Dinesh Kiran Bhosale
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kuncheng Song
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cássio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Michael Ashley
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tingting Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Pia Neyt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Anna C Ortiz
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
| | - Tiffany R Sikes
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
| | - Jonas Aper
- Protealis NV, Technologiepark-Zwijnaarde 94, 9052, Ghent, Belgium
| | - Peter Lootens
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090, Melle, Belgium
| | - Anna M Locke
- USDA-ARS Soybean & Nitrogen Fixation Research Unit, Raleigh, NC, 27607, Belgium
- Department of Crop and Soil Sciences and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052, Ghent, Belgium
| | - Rosangela Sozzani
- Plant and Microbial Biology Department and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Franciosa G, Locard-Paulet M, Jensen LJ, Olsen JV. Recent advances in kinase signaling network profiling by mass spectrometry. Curr Opin Chem Biol 2023; 73:102260. [PMID: 36657259 DOI: 10.1016/j.cbpa.2022.102260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023]
Abstract
Mass spectrometry-based phosphoproteomics is currently the leading methodology for the study of global kinase signaling. The scientific community is continuously releasing technological improvements for sensitive and fast identification of phosphopeptides, and their accurate quantification. To interpret large-scale phosphoproteomics data, numerous bioinformatic resources are available that help understanding kinase network functional role in biological systems upon perturbation. Some of these resources are databases of phosphorylation sites, protein kinases and phosphatases; others are bioinformatic algorithms to infer kinase activity, predict phosphosite functional relevance and visualize kinase signaling networks. In this review, we present the latest experimental and bioinformatic tools to profile protein kinase signaling networks and provide examples of their application in biomedicine.
Collapse
Affiliation(s)
- Giulia Franciosa
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Locard-Paulet
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Biology Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol 2022; 10:1078096. [PMID: 36619864 PMCID: PMC9813391 DOI: 10.3389/fcell.2022.1078096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.
Collapse
Affiliation(s)
- Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University (LTU), Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia
| | - Lois A. Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia,*Correspondence: David W. Greening,
| |
Collapse
|
12
|
Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. Int J Mol Sci 2021; 22:ijms221810046. [PMID: 34576208 PMCID: PMC8471392 DOI: 10.3390/ijms221810046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate β-catenin-a factor essential for ovarian development. We show that oestrogen can activate β-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to β-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.
Collapse
|