1
|
Muniz VA, de Melo Katak R, Caesar L, de Oliveira JC, Rocha EM, de Oliveira MR, da Silva GF, Roque RA, Marinotti O, Terenius O, de Andrade EV. Genomic and morphological features of an Amazonian Bacillus thuringiensis with mosquito larvicidal activity. AMB Express 2025; 15:39. [PMID: 40045023 PMCID: PMC11882490 DOI: 10.1186/s13568-025-01850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The occurrence of mosquito-borne diseases is increasing, and their geographical range is expanding due to climate change. New control measures are urgently needed to combat these debilitating and, in some cases, fatal diseases. Bacteria of the genus Bacillus are of interest due to the production of bioactive compounds, including those useful for insect control. The discovery and characterization of new species of Bacillus with mosquito larvicidal activity may offer opportunities to develop new products for vector control. In this study, we evaluated larvicidal activity, described morphological characteristics, and sequenced and analyzed the genome of a bacterial strain (GD02.13) isolated from the Amazon region. The metabolites produced by GD02.13 are as effective in killing Aedes aegypti larvae as the commercial product Natular™ DT (Spinosad). Furthermore, the morphological characteristics of the GD02.13 spores and crystal inclusions resemble those previously described for B. thuringiensis. A phylogenetic analysis based on 443 single-copy orthologs indicated that the bacterial strain GD02.13 belongs to the Bacillus thuringiensis species. Its genome, which was assembled and has a size of 6.6 Mb, contains 16 secondary metabolite biosynthetic gene clusters and genes encoding insecticidal proteins, predicted based on sequence similarity. The data obtained in this study support the development of new insecticide products based on the strain GD02.13 of B. thuringiensis.
Collapse
Affiliation(s)
| | - Ricardo de Melo Katak
- Oswaldo Cruz Foundation - Leônidas and Maria Deane Institute, Manaus, Amazonas, Brazil
| | - Lílian Caesar
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Marta Rodrigues de Oliveira
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, ESALQ - USP - Piracicaba, São Paulo, Brazil
| | | | | | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Olle Terenius
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, 751 24, Uppsala, Sweden.
| | | |
Collapse
|
2
|
Van Laere Y, Fraiture MA, Gobbo A, De Keersmaecker SCJ, Marchal K, Roosens NHC, Vanneste K. Assessing the authenticity and purity of a commercial Bacillus thuringiensis bioinsecticide through whole genome sequencing and metagenomics approaches. Front Microbiol 2025; 16:1532788. [PMID: 39963497 PMCID: PMC11831548 DOI: 10.3389/fmicb.2025.1532788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Biopesticides, biological agents for pest control in plants, are becoming increasingly prevalent in agricultural practices. However, no established methodology currently exists to assess their quality, and there are currently no publicly available authenticity and purity evaluations of commercial products. This lack of data may represent risks because of their widespread dispersal in the environment. We evaluated the potential of whole genome sequencing (WGS) and metagenomics approaches, including nanopore long-read sequencing, to verify both authenticity (i.e., the labeled strain) and biological purity (i.e., the absence of any undesired genetic material) of commercial Bacillus thuringiensis bioinsecticides. Four commercially available bioinsecticidal products containing Bacillus thuringiensis serovar kurstaki strain HD-1 were collected from the European market as a case study. Two sequencing approaches were employed: WGS of isolates and metagenomics sequencing of all genetic material in a product. To assess authenticity, isolate WGS data were compared against the publicly available reference genome of the expected strain. Antimicrobial resistance gene content, insecticidal gene content, and single nucleotide polymorphism differences were characterized to evaluate similarity to the reference genome. To assess purity, metagenomic sequencing data were analyzed using read classification and strain differentiation methods. Additionally, long- and short-read data were used to assess potential large-scale structural variations. Our results confirmed all investigated products to be authentic and pure. With the increasing usage of biopesticides, it is crucial to have adequate quality control methods. Our proposed approach could be adapted for other biopesticides, and similar products, providing a standardized and robust approach to contribute to biopesticide safety.
Collapse
Affiliation(s)
- Yari Van Laere
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
| | | | - Andrea Gobbo
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| | | | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent, Zwijnaarde, Belgium
- Department of Information Technology, UGent, Zwijnaarde, Belgium
| | | | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Elsene, Belgium
| |
Collapse
|
3
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Romanenko MN, Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Whole-Genome Sequencing of Peribacillus frigoritolerans Strain d21.2 Isolated in the Republic of Dagestan, Russia. Microorganisms 2024; 12:2410. [PMID: 39770615 PMCID: PMC11678259 DOI: 10.3390/microorganisms12122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Pesticide-free agriculture is a fundamental pillar of environmentally friendly agriculture. To this end, there is an active search for new bacterial strains capable of synthesizing secondary metabolites and toxins that protect crops from pathogens and pests. In this study, we isolated a novel strain d21.2 of Peribacillus frigoritolerans from a soil sample collected in the Republic of Dagestan, Russia. Leveraging several bioinformatic approaches on Illumina-based whole-genome assembly, we revealed that the strain harbors certain insecticidal loci (coding for putative homologs of Bmp and Vpa) and also contains multiple BGCs (biosynthetic gene clusters), including paeninodin, koranimine, schizokinen, and fengycin. In total, 21 BGCs were predicted as synthesizing metabolites with bactericidal and/or fungicidal effects. Importantly, by applying a re-scaffolding pipeline, we managed to robustly predict MGEs (mobile genetic elements) associated with BGCs, implying high genetic plasticity. In addition, the d21.2's genome was free from genes encoding for enteric toxins, implying its safety in use. A comparison with available genomes of the Peribacillus frigoritolerans strain revealed that the strain described here contains more functionally important loci than other members of the species. Therefore, strain d21.2 holds potential for use in agriculture due to the probable manifestation of bactericidal, fungicidal, growth-stimulating, and other useful properties. The assembled genome is available in the NCBI GeneBank under ASM4106054v1.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
5
|
Kukreti A, Kotasthane AS, Tandon AL, Nekkanti A, Prasannakumar MK, Devanna P, Aravindaram K, Sreedevi K, Sushil SN, Manjunatha C. Hybrid de novo whole genome assembly of lipopeptide producing novel Bacillus thuringiensis strain NBAIR BtAr exhibiting antagonistic activity against Sclerotium rolfsii. Microb Pathog 2024; 195:106867. [PMID: 39168357 DOI: 10.1016/j.micpath.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100 % inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 μL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06 % guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100 %, 85 %, 40 %, and 35 % similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.
Collapse
Affiliation(s)
- Aditya Kukreti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Anil Sudhakar Kotasthane
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Ashwarya Lalit Tandon
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Aarthi Nekkanti
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India; ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | | | - Pramesh Devanna
- Agricultural Research Station, Gangavathi, University of Agricultural Sciences, Raichur, 583 227, India
| | - Kandan Aravindaram
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Kolla Sreedevi
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Satya Nand Sushil
- Department of Plant Pathology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Channappa Manjunatha
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| |
Collapse
|
6
|
Aarthi N, Dubey VK, Shylesha AN, Kukreti A, Patil J, Chandrashekara KM, Aravindaram K, Seegenahalli R, Shivakumar N, Channappa M. Insights into the whole genome sequence of Bacillus thuringiensis NBAIR BtPl, a strain toxic to the melon fruit fly, Zeugodacus cucurbitae. Curr Genet 2024; 70:13. [PMID: 39101952 DOI: 10.1007/s00294-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 μg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 μg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.
Collapse
Affiliation(s)
- Nekkanti Aarthi
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Vinod K Dubey
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Arakalagud N Shylesha
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Aditya Kukreti
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Jagadeesh Patil
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Keerthi M Chandrashekara
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, 560 089, India
| | - Kandan Aravindaram
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Ruqiya Seegenahalli
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Nanditha Shivakumar
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Manjunatha Channappa
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| |
Collapse
|
7
|
Dunlap CA, Johnson ET, Burkett-Cadena M, Cadena J, Muturi EJ. Lysinibacillus pinottii sp. nov., a novel species with anti-mosquito and anti-mollusk activity. Antonie Van Leeuwenhoek 2024; 117:100. [PMID: 39001997 DOI: 10.1007/s10482-024-01993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
An isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350T (99.7%) and Lysinibacillus sphaericus NRRL B-23268T (99.2%). In phenotypic characterization, the novel strain was found to grow between 10 and 45 °C and tolerate up to 8% (w/v) NaCl. Furthermore, the strain grew in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15: 0 (52.3%), anteiso-C15: 0 (14.8%), C16:1ω7C alcohol (11.2%), and C16: 0 (9.5%). The cell-wall peptidoglycan contained lysine-aspartic acid, the same as congeners. A draft genome was assembled and the DNA G+C content was determined to be 37.1% (mol content). A phylogenomic analysis on the core genome of the new strain and 5 closest type strains of Lysinibacillus revealed this strain formed a distinct monophyletic clade with the nearest neighbor being Lysinibacillus fusiformis. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed this species was below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus pinottii sp. nov. is proposed, with type strain PB211T (= NRRL B-65672T, = CCUG 77181T).
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA.
| | - Eric T Johnson
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | | | | | - Ephantus J Muturi
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
8
|
Chung T, Salazar A, Harm G, Johler S, Carroll LM, Kovac J. Comparison of the performance of multiple whole-genome sequence-based tools for the identification of Bacillus cereus sensu stricto biovar Thuringiensis. Appl Environ Microbiol 2024; 90:e0177823. [PMID: 38470126 PMCID: PMC11026089 DOI: 10.1128/aem.01778-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
The Bacillus cereus sensu stricto (s.s.) species comprises strains of biovar Thuringiensis (Bt) known for their bioinsecticidal activity, as well as strains with foodborne pathogenic potential. Bt strains are identified (i) based on the production of insecticidal crystal proteins, also known as Bt toxins, or (ii) based on the presence of cry, cyt, and vip genes, which encode Bt toxins. Multiple bioinformatics tools have been developed for the detection of crystal protein-encoding genes based on whole-genome sequencing (WGS) data. However, the performance of these tools is yet to be evaluated using phenotypic data. Thus, the goal of this study was to assess the performance of four bioinformatics tools for the detection of crystal protein-encoding genes. The accuracy of sequence-based identification of Bt was determined in reference to phenotypic microscope-based screening for the production of crystal proteins. A total of 58 diverse B. cereus sensu lato strains isolated from clinical, food, environmental, and commercial biopesticide products underwent WGS. Isolates were examined for crystal protein production using phase contrast microscopy. Crystal protein-encoding genes were detected using BtToxin_Digger, BTyper3, IDOPS (identification of pesticidal sequences), and Cry_processor. Out of 58 isolates, the phenotypic production of crystal proteins was confirmed for 18 isolates. Specificity and sensitivity of Bt identification based on sequences were 0.85 and 0.94 for BtToxin_Digger, 0.97 and 0.89 for BTyper3, 0.95 and 0.94 for IDOPS, and 0.88 and 1.00 for Cry_processor, respectively. Cry_processor predicted crystal protein production with the highest specificity, and BtToxin_Digger and IDOPS predicted crystal protein production with the highest sensitivity. Three out of four tested bioinformatics tools performed well overall, with IDOPS achieving high sensitivity and specificity (>0.90).IMPORTANCEStrains of Bacillus cereus sensu stricto (s.s.) biovar Thuringiensis (Bt) are used as organic biopesticides. Bt is differentiated from the foodborne pathogen Bacillus cereus s.s. by the production of insecticidal crystal proteins. Thus, reliable genomic identification of biovar Thuringiensis is necessary to ensure food safety and facilitate risk assessment. This study assessed the accuracy of whole-genome sequencing (WGS)-based identification of Bt compared to phenotypic microscopy-based screening for crystal protein production. Multiple bioinformatics tools were compared to assess their performance in predicting crystal protein production. Among them, identification of pesticidal sequences performed best overall at WGS-based Bt identification.
Collapse
Affiliation(s)
- Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Abimel Salazar
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Grant Harm
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Laura M. Carroll
- Department of Clinical Microbiology, SciLifeLab, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Integrated Science Lab (IceLab), Umeå University, Umeå, Sweden
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Abdelli M, Falaise C, Morineaux-Hilaire V, Cumont A, Taysse L, Raynaud F, Ramisse V. Get to Know Your Neighbors: Characterization of Close Bacillus anthracis Isolates and Toxin Profile Diversity in the Bacillus cereus Group. Microorganisms 2023; 11:2721. [PMID: 38004733 PMCID: PMC10673079 DOI: 10.3390/microorganisms11112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Unexpected atypical isolates of Bacillus cereus s.l. occasionally challenge conventional microbiology and even the most advanced techniques for anthrax detection. For anticipating and gaining trust, 65 isolates of Bacillus cereus s.l. of diverse origin were sequenced and characterized. The BTyper3 tool was used for assignation to genomospecies B. mosaicus (34), B. cereus s.s (29) and B. toyonensis (2), as well as virulence factors and toxin profiling. None of them carried any capsule or anthrax-toxin genes. All harbored the non-hemolytic toxin nheABC and sphygomyelinase spH genes, whereas 41 (63%), 30 (46%), 11 (17%) and 6 (9%) isolates harbored cytK-2, hblABCD, cesABCD and at least one insecticidal toxin gene, respectively. Matrix-assisted laser desorption ionization-time of flight mass spectrometry confirmed the production of cereulide (ces genes). Phylogeny inferred from single-nucleotide polymorphisms positioned isolates relative to the B. anthracis lineage. One isolate (BC38B) was of particular interest as it appeared to be the closest B. anthracis neighbor described so far. It harbored a large plasmid similar to other previously described B. cereus s.l. megaplasmids and at a lower extent to pXO1. Whereas bacterial collection is enriched, these high-quality public genetic data offer additional knowledge for better risk assessment using future NGS-based technologies of detection.
Collapse
Affiliation(s)
- Mehdi Abdelli
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charlotte Falaise
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Valérie Morineaux-Hilaire
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Amélie Cumont
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Laurent Taysse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Françoise Raynaud
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| | - Vincent Ramisse
- DGA CBRN Defence Center, Biology Division, French Ministry of the Armed Forces, 91710 Vert-le-Petit, France; (M.A.); (V.M.-H.); (A.C.); (L.T.); (F.R.)
| |
Collapse
|
10
|
Alves GB, de Oliveira EE, Jumbo LOV, dos Santos GR, dos Santos MM, Ootani MA, Ribeiro BM, Aguiar RWDS. Genomic–proteomic analysis of a novel Bacillus thuringiensis strain: toxicity against two lepidopteran pests, abundance of Cry1Ac5 toxin, and presence of InhA1 virulence factor. Arch Microbiol 2023; 205:143. [PMID: 36967401 DOI: 10.1007/s00203-023-03479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023]
Abstract
Bacillus thuringiensis (Bt) is a biological alternative to the indiscriminate use of chemical insecticides in agriculture. Due to resistance development on insect pests to Bt crops, isolating novel Bt strains is a strategy for screening new pesticidal proteins or strains containing toxin profile variety that can delay resistance. Besides, the combined genomic and proteomic approaches allow identifying pesticidal proteins and virulence factors accurately. Here, the genome of a novel Bt strain (Bt TOL651) was sequenced, and the proteins from the spore-crystal mixture were identified by proteomic analysis. Toxicity bioassays with the spore-crystal mixture against larvae of Diatraea saccharalis and Anticarsia gemmatalis, key pests of sugarcane and soybean, respectively, were performed. The toxicity of Bt TOL651 varies with the insect; A. gemmatalis (LC50 = 1.45 ng cm-2) is more susceptible than D. saccharalis (LC50 = 73.77 ng cm-2). Phylogenetic analysis of the gyrB gene indicates that TOL651 is related to Bt kenyae strains. The genomic analysis revealed the presence of cry1Aa18, cry1Ac5, cry1Ia44, and cry2Aa9 pesticidal genes. Virulence factor genes such as phospholipases (plcA, piplc), metalloproteases (inhA), hemolysins (cytK, hlyIII, hblA, hblC, hblD), and enterotoxins (nheA, nheB, nheC) were also identified. The combined use of the genomic and proteomic data indicated the expression of Cry1Aa18, Cry1Ac5, and Cry2Aa9 proteins, with Cry1Ac5 being the most abundant. InhA1 also was expressed and may contribute to Bt TOL651 pathogenicity. These results provide Bt TOL651 as a new tool for the biocontrol of lepidopteran pests.
Collapse
|
11
|
Fichant A, Felten A, Gallet A, Firmesse O, Bonis M. Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety. Foods 2022; 11:foods11233924. [PMID: 36496733 PMCID: PMC9739007 DOI: 10.3390/foods11233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Collapse
Affiliation(s)
- Arnaud Fichant
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Arnaud Felten
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosafety Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 22440 Ploufragan, France
| | - Armel Gallet
- Université Côte d’Azur, CNRS, INRAE, ISA, France
| | - Olivier Firmesse
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
| | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), 94700 Maisons-Alfort, France
- Correspondence:
| |
Collapse
|
12
|
Li Y, Wang C, Ge L, Hu C, Wu G, Sun Y, Song L, Wu X, Pan A, Xu Q, Shi J, Liang J, Li P. Environmental Behaviors of Bacillus thuringiensis ( Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1212. [PMID: 35567212 PMCID: PMC9100956 DOI: 10.3390/plants11091212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/12/2023]
Abstract
Bt proteins are crystal proteins produced by Bacillus thuringiensis (Bt) in the early stage of spore formation that exhibit highly specific insecticidal activities. The application of Bt proteins primarily includes Bt transgenic plants and Bt biopesticides. Transgenic crops with insect resistance (via Bt)/herbicide tolerance comprise the largest global area of agricultural planting. After artificial modification, Bt insecticidal proteins expressed from Bt can be released into soils through root exudates, pollen, and plant residues. In addition, the construction of Bt recombinant engineered strains through genetic engineering has become a major focus of Bt biopesticides, and the expressed Bt proteins will also remain in soil environments. Bt proteins expressed and released by Bt transgenic plants and Bt recombinant strains are structurally and functionally quite different from Bt prototoxins naturally expressed by B. thuringiensis in soils. The former can thus be regarded as an environmentally exogenous substance with insecticidal toxicity that may have potential ecological risks. Consequently, biosafety evaluations must be conducted before field tests and production of Bt plants or recombinant strains. This review summarizes the adsorption, retention, and degradation behavior of Bt insecticidal proteins in soils, in addition to their impacts on soil physical and chemical properties along with soil microbial diversity. The review provides a scientific framework for evaluating the environmental biosafety of Bt transgenic plants, Bt transgenic microorganisms, and their expression products. In addition, prospective research targets, research methods, and evaluation methods are highlighted based on current research of Bt proteins.
Collapse
Affiliation(s)
- Yujie Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cui Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lei Ge
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cong Hu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Yu Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lili Song
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Xiao Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Aihu Pan
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Qinqing Xu
- Shandong County Agricultural Technology Extension Center, Jinan 250003, China;
| | - Jialiang Shi
- Dezhou Academy of Agricultural Sciences, Dezhou 253000, China;
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| |
Collapse
|
13
|
Panneerselvam S, Mishra R, Berry C, Crickmore N, Bonning BC. BPPRC database: a web-based tool to access and analyse bacterial pesticidal proteins. Database (Oxford) 2022; 2022:6565650. [PMID: 35396594 PMCID: PMC9216523 DOI: 10.1093/database/baac022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022]
Abstract
Pesticidal proteins derived from the bacterium Bacillus thuringiensis, have provided the bases for a diverse array of pest management tools ranging from natural products used in organic agriculture, to modern biotechnological approaches. With advances in genome sequencing technologies and protein structure determination, an increasing number of pesticidal proteins from myriad bacterial species have been identified. The Bacterial Pesticidal Protein Resource Center (BPPRC) has been established to provide informational and analytical resources on the wide range of pesticidal proteins derived from bacteria that have potential utility for arthropod management. In association with a revised nomenclature for these proteins, BPPRC contains a database that allows users to browse and download sequences. Users can search the database for the best matches to sequences of interest and can incorporate their own sequences into basic informatic analyses. These analyses include the ability to draw and export guide trees from either whole protein sequences or, in the case of the three-domain Cry proteins, from individual domains. The associated website also provides a portal for users to submit protein sequences for naming. The BPPRC provides a single authoritative source of information to which all stakeholders can be referred including academics, government regulatory bodies and research and development personnel in the industrial sector. The database provides information on more than 1060 pesticidal proteins derived from 13 species of bacteria, including insecticidal activities for a subset of these proteins. Database URL: www.bpprc.org and www.bpprc-db.org/
Collapse
Affiliation(s)
- Suresh Panneerselvam
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Ruchir Mishra
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| | - Colin Berry
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Bryony C Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Zheng Z, Lan X, Wang Q, Zhang C, Huang G, Zhang J, Wang H. Draft Genome Sequence of Bacillus thuringiensis ZZQ-130 with Multiple Pesticidal Genes, Isolated from Caka Salt Lake, China. Microbiol Resour Announc 2022; 11:e0088721. [PMID: 35142556 PMCID: PMC8830341 DOI: 10.1128/mra.00887-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is a typical pesticide, with global application for over 40 years. Here, we report the draft genome sequence of B. thuringiensis ZZQ-130 from a salt lake; this strain has 31 pesticidal genes, including five cry genes, one vip gene, two vpa genes, and two vpb genes.
Collapse
Affiliation(s)
- Ziqiang Zheng
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Xinjiang, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaojie Lan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Qi Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Chengjun Zhang
- Division of Animal Infectious Disease, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guoqiang Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianping Zhang
- Xinjiang Production & Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Xinjiang, China
| | - Hongxun Wang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
15
|
Draft Genome Sequence of Bacillus wiedmannii Biovar thuringiensis ZZQ-138, Isolated from a Saline Lake. Microbiol Resour Announc 2022; 11:e0096421. [PMID: 35142552 PMCID: PMC8830326 DOI: 10.1128/mra.00964-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecologically sound approaches to control mosquitoes like Anopheles stephensi, which are obligatory vectors for malaria transmission, are urgently needed because of increasing insecticide resistance. Bacteria from Bacillus are important resources. Here, we report the whole-genome sequence of Bacillus wiedmannii biovar thuringiensis ZZQ-138, which was isolated from sediment from a saline lake.
Collapse
|
16
|
Díaz-Valerio S, Lev Hacohen A, Schöppe R, Liesegang H. IDOPS, a Profile HMM-Based Tool to Detect Pesticidal Sequences and Compare Their Genetic Context. Front Microbiol 2021; 12:664476. [PMID: 34276598 PMCID: PMC8279765 DOI: 10.3389/fmicb.2021.664476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Biopesticide-based crop protection is constantly challenged by insect resistance. Thus, expansion of available biopesticides is crucial for sustainable agriculture. Although Bacillus thuringiensis is the major agent for pesticide bioprotection, the number of bacteria species synthesizing proteins with biopesticidal potential is much higher. The Bacterial Pesticidal Protein Resource Center (BPPRC) offers a database of sequences for the control of insect pests, grouped in structural classes. Here we present IDOPS, a tool that detects novel biopesticidal sequences and analyzes them within their genetic environment. The backbone of the IDOPS detection unit is a curated collection of high-quality hidden Markov models that is in accordance with the BPPRC nomenclature. IDOPS was positively benchmarked with BtToxin_Digger and Cry_Processor. In addition, a scan of the UniProtKB database using the IDOPS models returned an abundance of new pesticidal protein candidates distributed across all of the structural groups. Gene expression depends on the genomic environment, therefore, IDOPS provides a comparative genomics module to investigate the genetic regions surrounding pesticidal genes. This feature enables the investigation of accessory elements and evolutionary traits relevant for optimal toxin expression and functional diversification. IDOPS contributes and expands our current arsenal of pesticidal proteins used for crop protection.
Collapse
Affiliation(s)
- Stefani Díaz-Valerio
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anat Lev Hacohen
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Raphael Schöppe
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Heiko Liesegang
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|