1
|
Lehmann B, Bräuninger L, Cho Y, Falck F, Jayadeva S, Katell M, Nguyen T, Perini A, Tallman S, Mackintosh M, Silver M, Kuchenbäcker K, Leslie D, Chatterjee N, Holmes C. Methodological opportunities in genomic data analysis to advance health equity. Nat Rev Genet 2025:10.1038/s41576-025-00839-w. [PMID: 40369311 DOI: 10.1038/s41576-025-00839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/16/2025]
Abstract
The causes and consequences of inequities in genomic research and medicine are complex and widespread. However, it is widely acknowledged that underrepresentation of diverse populations in human genetics research risks exacerbating existing health disparities. Efforts to improve diversity are ongoing, but an often-overlooked source of inequity is the choice of analytical methods used to process, analyse and interpret genomic data. This choice can influence all areas of genomic research, from genome-wide association studies and polygenic score development to variant prioritization and functional genomics. New statistical and machine learning techniques to understand, quantify and correct for the impact of biases in genomic data are emerging within the wider genomic research and genomic medicine ecosystems. At this crucial time point, it is important to clarify where improvements in methods and practices can, or cannot, have a role in improving equity in genomics. Here, we review existing approaches to promote equity and fairness in statistical analysis for genomics, and propose future methodological developments that are likely to yield the most impact for equity.
Collapse
Affiliation(s)
- Brieuc Lehmann
- Department of Statistical Science, University College London, London, UK.
| | - Leandra Bräuninger
- Department of Statistical Science, University College London, London, UK
- The Alan Turing Institute, London, UK
| | - Yoonsu Cho
- Genomics England, London, UK
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Fabian Falck
- The Alan Turing Institute, London, UK
- Department of Statistics, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Matt Silver
- Genomics England, London, UK
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Karoline Kuchenbäcker
- Genomics England, London, UK
- Division of Psychiatry, University College London, London, UK
| | | | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Chris Holmes
- Department of Statistics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Xu L, Zhou G, Jiang W, Zhang H, Dong Y, Guan L, Zhao H. JointPRS: A data-adaptive framework for multi-population genetic risk prediction incorporating genetic correlation. Nat Commun 2025; 16:3841. [PMID: 40268942 PMCID: PMC12019179 DOI: 10.1038/s41467-025-59243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Genetic risk prediction for non-European populations is hindered by limited Genome-Wide Association Study (GWAS) sample sizes and small tuning datasets. We propose JointPRS, a data-adaptive framework that leverages genetic correlations across multiple populations using GWAS summary statistics. It achieves accurate predictions without individual-level tuning data and remains effective in the presence of a small tuning set thanks to its data-adaptive approach. Through extensive simulations and real data applications to 22 quantitative and four binary traits in five continental populations evaluated using the UK Biobank (UKBB) and All of Us (AoU), JointPRS consistently outperforms six state-of-the-art methods across three data scenarios: no tuning data, same-cohort tuning and testing, and cross-cohort tuning and testing. Notably, in the Admixed American population, JointPRS improves lipid trait prediction in AoU by 6.46%-172.00% compared to the other existing methods.
Collapse
Affiliation(s)
- Leqi Xu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Mathematics, University of Texas at Arlington, Arlington, Texas, USA
- Division of Data Science, College of Science, University of Texas at Arlington, Arlington, Texas, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yikai Dong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Gao C, Tubbs JD, Han Y, Guo M, Li S, Ma E, Luo D, Smoller JW, Lee PH, Duan R. Unsupervised Ensemble Learning for Efficient Integration of Pre-trained Polygenic Risk Scores. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.06.25320058. [PMID: 39830281 PMCID: PMC11741443 DOI: 10.1101/2025.01.06.25320058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The growing availability of pre-trained polygenic risk score (PRS) models has enabled their integration into real-world applications, reducing the need for extensive data labeling, training, and calibration. However, selecting the most suitable PRS model for a specific target population remains challenging, due to issues such as limited transferability, data heterogeneity, and the scarcity of observed phenotype in real-world settings. Ensemble learning offers a promising avenue to enhance the predictive accuracy of genetic risk assessments, but most existing methods often rely on observed phenotype data or additional genome-wide association studies (GWAS) from the target population to optimize ensemble weights, limiting their utility in real-time implementation. Here, we present the UN supervised en Semble PRS ( UNSemblePRS ), an unsupervised ensemble learning framework, that combines pre-trained PRS models without requiring phenotype data or summaries from the target population. Unlike traditional supervised approaches, UNSemblePRS aggregates models based on prediction concordance across a curated subset of candidate PRS models. We evaluated UNSemblePRS using both continuous and binary traits in the All of Us database, demonstrating its scalability and robust performance across diverse populations. These results underscore UNSemblePRS as an accessible tool for integrating PRS models into real-world contexts, offering broad applicability as the availability of PRS models continues to expand.
Collapse
|
4
|
Jayasinghe D, Eshetie S, Beckmann K, Benyamin B, Lee SH. Advancements and limitations in polygenic risk score methods for genomic prediction: a scoping review. Hum Genet 2024; 143:1401-1431. [PMID: 39542907 DOI: 10.1007/s00439-024-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
This scoping review aims to identify and evaluate the landscape of Polygenic Risk Score (PRS)-based methods for genomic prediction from 2013 to 2023, highlighting their advancements, key concepts, and existing gaps in knowledge, research, and technology. Over the past decade, various PRS-based methods have emerged, each employing different statistical frameworks aimed at enhancing prediction accuracy, processing speed and memory efficiency. Despite notable advancements, challenges persist, including unrealistic assumptions regarding sample sizes and the polygenicity of traits necessary for accurate predictions, as well as limitations in exploring hyper-parameter spaces and considering environmental interactions. We included studies focusing on PRS-based methods for risk prediction that underwent methodological evaluations using valid approaches and released computational tools/software. Additionally, we restricted our selection to studies involving human participants that were published in English language. This review followed the standard protocol recommended by Joanna Briggs Institute Reviewer's Manual, systematically searching Ovid MEDLINE, Ovid Embase, Scopus and Web of Science databases. Additionally, searches included grey literature sources like pre-print servers such as bioRxiv, and articles recommended by experts to ensure comprehensive and diverse coverage of relevant records. This study identified 34 studies detailing 37 genomic prediction methods, the majority of which rely on linkage disequilibrium (LD) information and necessitate hyper-parameter tuning. Nine methods integrate functional/gene annotation, while 12 are suitable for cross-ancestry genomic prediction, with only one considering gene-environment (GxE) interaction. While some methods require individual-level data, most leverage summary statistics, offering flexibility. Despite progress, challenges remain. These include computational complexity and the need for large sample sizes for high prediction accuracy. Furthermore, recent methods exhibit varying effectiveness across traits, with absolute accuracies often falling short of clinical utility. Transferability across ancestries varies, influenced by trait heritability and diversity of training data, while handling admixed populations remains challenging. Additionally, the absence of standard error measurements for individual PRSs, crucial in clinical settings, underscores a critical gap. Another issue is the lack of customizable graphical visualization tools among current software packages. While genomic prediction methods have advanced significantly, there is still room for improvement. Addressing current challenges and embracing future research directions will lead to the development of more universally applicable, robust, and clinically relevant genomic prediction tools.
Collapse
Affiliation(s)
- Dovini Jayasinghe
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia.
| | - Setegn Eshetie
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia
- College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Kerri Beckmann
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia
| | - S Hong Lee
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
5
|
Zhu Y, Chen W, Zhu K, Liu Y, Huang S, Zeng P. Polygenic prediction for underrepresented populations through transfer learning by utilizing genetic similarity shared with European populations. Brief Bioinform 2024; 26:bbaf048. [PMID: 39905953 PMCID: PMC11794457 DOI: 10.1093/bib/bbaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Because current genome-wide association studies are primarily conducted in individuals of European ancestry and information disparities exist among different populations, the polygenic score derived from Europeans thus exhibits poor transferability. Borrowing the idea of transfer learning, which enables the utilization of knowledge acquired from auxiliary samples to enhance learning capability in target samples, we propose transPGS, a novel polygenic score method, for genetic prediction in underrepresented populations by leveraging genetic similarity shared between the European and non-European populations while explaining the trans-ethnic difference in linkage disequilibrium (LD) and effect sizes. We demonstrate the usefulness and robustness of transPGS in elevated prediction accuracy via individual-level and summary-level simulations and apply it to seven continuous phenotypes and three diseases in the African, Chinese, and East Asian populations of the UK Biobank and Genetic Epidemiology Research Study on Adult Health and Aging cohorts. We further reveal that distinct LD and minor allele frequency patterns across ancestral groups are responsible for the dissatisfactory portability of PGS.
Collapse
Affiliation(s)
- Yiyang Zhu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wenying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Kexuan Zhu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Shuiping Huang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
6
|
Xu L, Zhou G, Jiang W, Zhang H, Dong Y, Guan L, Zhao H. JointPRS: A Data-Adaptive Framework for Multi-Population Genetic Risk Prediction Incorporating Genetic Correlation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.29.564615. [PMID: 37961111 PMCID: PMC10634936 DOI: 10.1101/2023.10.29.564615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Genetic prediction accuracy for non-European populations is hindered by the limited sample size of Genome-wide association studies (GWAS) data in these populations. Additionally, it is challenging to tune model parameters with a small tuning dataset for methods that require tuning data, which is often the case for non-European samples. To address these challenges, we propose JointPRS, a novel, data-adaptive framework that simultaneously models multiple populations using GWAS summary statistics. JointPRS incorporates genetic correlation structures into the prediction framework, enabling accurate performance even without individual-level tuning data. Additionally, it uniquely employs a data-adaptive approach, providing a robust solution when only a small tuning dataset is available. Through extensive simulations and real data applications to 22 quantitative traits and four binary traits in five continental populations (European (EUR); East Asian (EAS); African (AFR); South Asian (SAS); and Admixed American (AMR)) evaluated using the UK Biobank (UKBB) and All of Us (AoU), we demonstrate that JointPRS outperforms six other state-of-art methods across three different data scenarios (no tuning data, tuning and testing data from the same cohort, and tuning and testing data from different cohorts) for most traits in non-European populations, while maintaining model simplicity and computational efficiency.
Collapse
Affiliation(s)
- Leqi Xu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Geyu Zhou
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Wei Jiang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yikai Dong
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Gao Y, Cui Y. Optimizing clinico-genomic disease prediction across ancestries: a machine learning strategy with Pareto improvement. Genome Med 2024; 16:76. [PMID: 38835075 PMCID: PMC11149372 DOI: 10.1186/s13073-024-01345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Accurate prediction of an individual's predisposition to diseases is vital for preventive medicine and early intervention. Various statistical and machine learning models have been developed for disease prediction using clinico-genomic data. However, the accuracy of clinico-genomic prediction of diseases may vary significantly across ancestry groups due to their unequal representation in clinical genomic datasets. METHODS We introduced a deep transfer learning approach to improve the performance of clinico-genomic prediction models for data-disadvantaged ancestry groups. We conducted machine learning experiments on multi-ancestral genomic datasets of lung cancer, prostate cancer, and Alzheimer's disease, as well as on synthetic datasets with built-in data inequality and distribution shifts across ancestry groups. RESULTS Deep transfer learning significantly improved disease prediction accuracy for data-disadvantaged populations in our multi-ancestral machine learning experiments. In contrast, transfer learning based on linear frameworks did not achieve comparable improvements for these data-disadvantaged populations. CONCLUSIONS This study shows that deep transfer learning can enhance fairness in multi-ancestral machine learning by improving prediction accuracy for data-disadvantaged populations without compromising prediction accuracy for other populations, thus providing a Pareto improvement towards equitable clinico-genomic prediction of diseases.
Collapse
Affiliation(s)
- Yan Gao
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yan Cui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
8
|
Zhang T, Zhou G, Klei L, Liu P, Chouldechova A, Zhao H, Roeder K, G'Sell M, Devlin B. Evaluating and improving health equity and fairness of polygenic scores. HGG ADVANCES 2024; 5:100280. [PMID: 38402414 PMCID: PMC10937319 DOI: 10.1016/j.xhgg.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024] Open
Abstract
Polygenic scores (PGSs) are quantitative metrics for predicting phenotypic values, such as human height or disease status. Some PGS methods require only summary statistics of a relevant genome-wide association study (GWAS) for their score. One such method is Lassosum, which inherits the model selection advantages of Lasso to select a meaningful subset of the GWAS single-nucleotide polymorphisms as predictors from their association statistics. However, even efficient scores like Lassosum, when derived from European-based GWASs, are poor predictors of phenotype for subjects of non-European ancestry; that is, they have limited portability to other ancestries. To increase the portability of Lassosum, when GWAS information and estimates of linkage disequilibrium are available for both ancestries, we propose Joint-Lassosum (JLS). In the simulation settings we explore, JLS provides more accurate PGSs compared to other methods, especially when measured in terms of fairness. In analyses of UK Biobank data, JLS was computationally more efficient but slightly less accurate than a Bayesian comparator, SDPRX. Like all PGS methods, JLS requires selection of predictors, which are determined by data-driven tuning parameters. We describe a new approach to selecting tuning parameters and note its relevance for model selection for any PGS. We also draw connections to the literature on algorithmic fairness and discuss how JLS can help mitigate fairness-related harms that might result from the use of PGSs in clinical settings. While no PGS method is likely to be universally portable, due to the diversity of human populations and unequal information content of GWASs for different ancestries, JLS is an effective approach for enhancing portability and reducing predictive bias.
Collapse
Affiliation(s)
- Tianyu Zhang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Geyu Zhou
- Department of Biostatistics, Yale University, New Haven, CT 06511, USA
| | - Lambertus Klei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peng Liu
- Merck Research Laboratories, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Alexandra Chouldechova
- Microsoft Research NYC, New York, NY 10012, USA; Heinz College of Information Systems and Public Policy, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale University, New Haven, CT 06511, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Max G'Sell
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Sun Q, Rowland BT, Chen J, Mikhaylova AV, Avery C, Peters U, Lundin J, Matise T, Buyske S, Tao R, Mathias RA, Reiner AP, Auer PL, Cox NJ, Kooperberg C, Thornton TA, Raffield LM, Li Y. Improving polygenic risk prediction in admixed populations by explicitly modeling ancestral-differential effects via GAUDI. Nat Commun 2024; 15:1016. [PMID: 38310129 PMCID: PMC10838303 DOI: 10.1038/s41467-024-45135-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Polygenic risk scores (PRS) have shown successes in clinics, but most PRS methods focus only on participants with distinct primary continental ancestry without accommodating recently-admixed individuals with mosaic continental ancestry backgrounds for different segments of their genomes. Here, we develop GAUDI, a novel penalized-regression-based method specifically designed for admixed individuals. GAUDI explicitly models ancestry-differential effects while borrowing information across segments with shared ancestry in admixed genomes. We demonstrate marked advantages of GAUDI over other methods through comprehensive simulation and real data analyses for traits with associated variants exhibiting ancestral-differential effects. Leveraging data from the Women's Health Initiative study, we show that GAUDI improves PRS prediction of white blood cell count and C-reactive protein in African Americans by > 64% compared to alternative methods, and even outperforms PRS-CSx with large European GWAS for some scenarios. We believe GAUDI will be a valuable tool to mitigate disparities in PRS performance in admixed individuals.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryce T Rowland
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna V Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Tara Matise
- Department of Genetics, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Steve Buyske
- Department of Statistics, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
10
|
Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ, Kenny EE, Pasaniuc B, Witte JS, Ge T. Principles and methods for transferring polygenic risk scores across global populations. Nat Rev Genet 2024; 25:8-25. [PMID: 37620596 PMCID: PMC10961971 DOI: 10.1038/s41576-023-00637-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or disease and may become a valuable tool for advancing precision medicine. However, PRSs that are developed in populations of predominantly European genetic ancestries can increase health disparities due to poor predictive performance in individuals of diverse and complex genetic ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs across populations and review the strengths and weaknesses of existing PRS construction methods for diverse ancestries. Developing PRSs that benefit global populations in research and clinical settings provides an opportunity for innovation and is essential for health equity.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jibril Hirbo
- Department of Medicine Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Iman Martin
- Division of Genomic Medicine, National Human Genome Research Institute, Bethesda, MD, USA
| | - Iftikhar J Kullo
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - John S Witte
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Cai M, Wang Z, Xiao J, Hu X, Chen G, Yang C. XMAP: Cross-population fine-mapping by leveraging genetic diversity and accounting for confounding bias. Nat Commun 2023; 14:6870. [PMID: 37898663 PMCID: PMC10613261 DOI: 10.1038/s41467-023-42614-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Fine-mapping prioritizes risk variants identified by genome-wide association studies (GWASs), serving as a critical step to uncover biological mechanisms underlying complex traits. However, several major challenges still remain for existing fine-mapping methods. First, the strong linkage disequilibrium among variants can limit the statistical power and resolution of fine-mapping. Second, it is computationally expensive to simultaneously search for multiple causal variants. Third, the confounding bias hidden in GWAS summary statistics can produce spurious signals. To address these challenges, we develop a statistical method for cross-population fine-mapping (XMAP) by leveraging genetic diversity and accounting for confounding bias. By using cross-population GWAS summary statistics from global biobanks and genomic consortia, we show that XMAP can achieve greater statistical power, better control of false positive rate, and substantially higher computational efficiency for identifying multiple causal signals, compared to existing methods. Importantly, we show that the output of XMAP can be integrated with single-cell datasets, which greatly improves the interpretation of putative causal variants in their cellular context at single-cell resolution.
Collapse
Affiliation(s)
- Mingxuan Cai
- Department of Biostatistics, City University of Hong Kong, Hong Kong SAR, China.
| | - Zhiwei Wang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jiashun Xiao
- Shenzhen Research Institute of Big Data, Shenzhen, 518172, China
| | - Xianghong Hu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gang Chen
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd, Shenzhen, 518040, China
- Graduate Affairs, Faculty of Medicine, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Can Yang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, 511458, China.
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
12
|
Xu C, Ganesh SK, Zhou X. mtPGS: Leverage multiple correlated traits for accurate polygenic score construction. Am J Hum Genet 2023; 110:1673-1689. [PMID: 37716346 PMCID: PMC10577082 DOI: 10.1016/j.ajhg.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/18/2023] Open
Abstract
Accurate polygenic scores (PGSs) facilitate the genetic prediction of complex traits and aid in the development of personalized medicine. Here, we develop a statistical method called multi-trait assisted PGS (mtPGS), which can construct accurate PGSs for a target trait of interest by leveraging multiple traits relevant to the target trait. Specifically, mtPGS borrows SNP effect size similarity information between the target trait and its relevant traits to improve the effect size estimation on the target trait, thus achieving accurate PGSs. In the process, mtPGS flexibly models the shared genetic architecture between the target and the relevant traits to achieve robust performance, while explicitly accounting for the environmental covariance among them to accommodate different study designs with various sample overlap patterns. In addition, mtPGS uses only summary statistics as input and relies on a deterministic algorithm with several algebraic techniques for scalable computation. We evaluate the performance of mtPGS through comprehensive simulations and applications to 25 traits in the UK Biobank, where in the real data mtPGS achieves an average of 0.90%-52.91% accuracy gain compared to the state-of-the-art PGS methods. Overall, mtPGS represents an accurate, fast, and robust solution for PGS construction in biobank-scale datasets.
Collapse
Affiliation(s)
- Chang Xu
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Zhang H, Zhan J, Jin J, Zhang J, Lu W, Zhao R, Ahearn TU, Yu Z, O'Connell J, Jiang Y, Chen T, Okuhara D, Garcia-Closas M, Lin X, Koelsch BL, Chatterjee N. A new method for multiancestry polygenic prediction improves performance across diverse populations. Nat Genet 2023; 55:1757-1768. [PMID: 37749244 PMCID: PMC10923245 DOI: 10.1038/s41588-023-01501-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/16/2023] [Indexed: 09/27/2023]
Abstract
Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal performance in non-European populations raise concerns about clinical applications and health inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, using ancestry-specific genome-wide association study summary statistics from multiancestry training samples, integrating clumping and thresholding, empirical Bayes and superlearning. We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of diverse ancestry, with 1.18 million individuals from four non-European populations across 13 complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance in non-European populations compared with simple alternatives, with comparable or superior performance to a recent, computationally intensive method. Moreover, our simulation studies offered insights into sample size requirements and SNP density effects on multiancestry risk prediction.
Collapse
Affiliation(s)
- Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | | | - Jin Jin
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingning Zhang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wenxuan Lu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, USA
| | - Ruzhang Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Zhi Yu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Tony Chen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | | | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Zhang T, Klei L, Liu P, Chouldechova A, Roeder K, G'Sell M, Devlin B. Evaluating and Improving Health Equity and Fairness of Polygenic Scores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559051. [PMID: 37790341 PMCID: PMC10542523 DOI: 10.1101/2023.09.22.559051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Polygenic scores (PGS) are quantitative metrics for predicting phenotypic values, such as human height or disease status. Some PGS methods require only summary statistics of a relevant genome-wide association study (GWAS) for their score. One such method is Lassosum, which inherits the model selection advantages of Lasso to select a meaningful subset of the GWAS single nucleotide polymorphisms as predictors from their association statistics. However, even efficient scores like Lassosum, when derived from European-based GWAS, are poor predictors of phenotype for subjects of non-European ancestry; that is, they have limited portability to other ancestries. To increase the portability of Lassosum, when GWAS information and estimates of linkage disequilibrium are available for both ancestries, we propose Joint-Lassosum. In the simulation settings we explore, Joint-Lassosum provides more accurate PGS compared with other methods, especially when measured in terms of fairness. Like all PGS methods, Joint-Lassosum requires selection of predictors, which are determined by data-driven tuning parameters. We describe a new approach to selecting tuning parameters and note its relevance for model selection for any PGS. We also draw connections to the literature on algorithmic fairness and discuss how Joint-Lassosum can help mitigate fairness-related harms that might result from the use of PGS scores in clinical settings. While no PGS method is likely to be universally portable, due to the diversity of human populations and unequal information content of GWAS for different ancestries, Joint-Lassosum is an effective approach for enhancing portability and reducing predictive bias.
Collapse
|
15
|
Gao Y, Sharma T, Cui Y. Addressing the Challenge of Biomedical Data Inequality: An Artificial Intelligence Perspective. Annu Rev Biomed Data Sci 2023; 6:153-171. [PMID: 37104653 PMCID: PMC10529864 DOI: 10.1146/annurev-biodatasci-020722-020704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Artificial intelligence (AI) and other data-driven technologies hold great promise to transform healthcare and confer the predictive power essential to precision medicine. However, the existing biomedical data, which are a vital resource and foundation for developing medical AI models, do not reflect the diversity of the human population. The low representation in biomedical data has become a significant health risk for non-European populations, and the growing application of AI opens a new pathway for this health risk to manifest and amplify. Here we review the current status of biomedical data inequality and present a conceptual framework for understanding its impacts on machine learning. We also discuss the recent advances in algorithmic interventions for mitigating health disparities arising from biomedical data inequality. Finally, we briefly discuss the newly identified disparity in data quality among ethnic groups and its potential impacts on machine learning.
Collapse
Affiliation(s)
- Yan Gao
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Teena Sharma
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| | - Yan Cui
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA;
| |
Collapse
|
16
|
Miao J, Guo H, Song G, Zhao Z, Hou L, Lu Q. Quantifying portable genetic effects and improving cross-ancestry genetic prediction with GWAS summary statistics. Nat Commun 2023; 14:832. [PMID: 36788230 PMCID: PMC9929290 DOI: 10.1038/s41467-023-36544-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Polygenic risk scores (PRS) calculated from genome-wide association studies (GWAS) of Europeans are known to have substantially reduced predictive accuracy in non-European populations, limiting their clinical utility and raising concerns about health disparities across ancestral populations. Here, we introduce a statistical framework named X-Wing to improve predictive performance in ancestrally diverse populations. X-Wing quantifies local genetic correlations for complex traits between populations, employs an annotation-dependent estimation procedure to amplify correlated genetic effects between populations, and combines multiple population-specific PRS into a unified score with GWAS summary statistics alone as input. Through extensive benchmarking, we demonstrate that X-Wing pinpoints portable genetic effects and substantially improves PRS performance in non-European populations, showing 14.1%-119.1% relative gain in predictive R2 compared to state-of-the-art methods based on GWAS summary statistics. Overall, X-Wing addresses critical limitations in existing approaches and may have broad applications in cross-population polygenic risk prediction.
Collapse
Affiliation(s)
- Jiacheng Miao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hanmin Guo
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China
| | - Gefei Song
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zijie Zhao
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lin Hou
- Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, Beijing, 100084, China.
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
17
|
Xiao J, Cai M, Yu X, Hu X, Chen G, Wan X, Yang C. Leveraging the local genetic structure for trans-ancestry association mapping. Am J Hum Genet 2022; 109:1317-1337. [PMID: 35714612 PMCID: PMC9300880 DOI: 10.1016/j.ajhg.2022.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Over the past two decades, genome-wide association studies (GWASs) have successfully advanced our understanding of the genetic basis of complex traits. Despite the fruitful discovery of GWASs, most GWAS samples are collected from European populations, and these GWASs are often criticized for their lack of ancestry diversity. Trans-ancestry association mapping (TRAM) offers an exciting opportunity to fill the gap of disparities in genetic studies between non-Europeans and Europeans. Here, we propose a statistical method, LOG-TRAM, to leverage the local genetic architecture for TRAM. By using biobank-scale datasets, we showed that LOG-TRAM can greatly improve the statistical power of identifying risk variants in under-represented populations while producing well-calibrated p values. We applied LOG-TRAM to the GWAS summary statistics of various complex traits/diseases from BioBank Japan, UK Biobank, and African populations. We obtained substantial gains in power and achieved effective correction of confounding biases in TRAM. Finally, we showed that LOG-TRAM can be successfully applied to identify ancestry-specific loci and the LOG-TRAM output can be further used for construction of more accurate polygenic risk scores in under-represented populations.
Collapse
Affiliation(s)
- Jiashun Xiao
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Mingxuan Cai
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xinyi Yu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xianghong Hu
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Gang Chen
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Xiang Wan
- Shenzhen Research Institute of Big Data, Shenzhen 518172, China; Pazhou Lab, Guangzhou 510330, China.
| | - Can Yang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China; Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|