1
|
Hassanali Aragh A, Moslemi Amirani R, Givehchian P, Eskafi M, Abbasian Bajgiran Y, Eslahchi C. MiRAGE-DTI: A novel approach for drug-target interaction prediction by integrating drug and target similarity metrics. Comput Biol Med 2025; 192:110249. [PMID: 40359678 DOI: 10.1016/j.compbiomed.2025.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
MOTIVATION Accurately predicting drug-target interactions (DTIs) is critical for accelerating drug discovery, repositioning, and development. Traditional experimental methods are often expensive and time-consuming, emphasizing the need for efficient computational models to streamline these processes. To address this challenge, we developed MiRAGE-DTI, a novel computational framework that integrates diverse drug and target similarity measures with robust machine learning techniques to achieve superior predictive accuracy. RESULTS MiRAGE-DTI introduces a novel framework that integrates structural, functional, and interaction-based features into a unified model. Leveraging the strengths of Random Forest classifiers, MiRAGE-DTI ensures robust and interpretable predictions while addressing challenges such as class imbalance and data variability. Comprehensive evaluations across multiple benchmark datasets, including GPCR, IC, NR, and Enzyme, reveal that MiRAGE-DTI consistently outperforms state-of-the-art algorithms such as DTI-CNN, GCNMDA, MVGCN, MMGCN, GraphCDA, DTINet, and MIDTI. It achieves significant improvements in key metrics such as AUROC, AUPR, and accuracy. To validate its predictions, molecular docking studies were conducted, highlighting strong binding affinities for key drug-target interactions, including Oxandrolone-PGR and Metyrapone-CYP2E1, which demonstrate high therapeutic potential. Beyond predictive accuracy, MiRAGE-DTI has practical implications in drug repositioning and personalized medicine, as well as the potential to streamline preclinical workflows. Its ability to uncover novel drug-target relationships enhances the understanding of molecular mechanisms underlying diseases, paving the way for innovative therapeutic strategies. Furthermore, by predicting off-target interactions and potential side effects, MiRAGE-DTI contributes to improving drug safety profiles and regulatory evaluations. CONCLUSION MiRAGE-DTI represents a versatile and powerful tool for advancing drug discovery and development. Its ability to identify novel therapeutic opportunities, repurpose existing drugs, and enable precision medicine highlights its transformative potential in tackling unmet medical needs. The framework's robust performance, validated predictions, and wide-ranging practical applications position MiRAGE-DTI as a critical resource for modern drug discovery.
Collapse
Affiliation(s)
- Aria Hassanali Aragh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Razieh Moslemi Amirani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Pegah Givehchian
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Maryam Eskafi
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | | | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, 1983969411, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 193955746, Iran.
| |
Collapse
|
2
|
Li P, Shao B, Zhao G, Liu ZP. Negative sampling strategies impact the prediction of scale-free biomolecular network interactions with machine learning. BMC Biol 2025; 23:123. [PMID: 40346567 PMCID: PMC12065207 DOI: 10.1186/s12915-025-02231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Understanding protein-molecular interaction is crucial for unraveling the mechanisms underlying diverse biological processes. Machine learning (ML) techniques have been extensively employed in predicting these interactions and have garnered substantial research focus. Previous studies have predominantly centered on improving model performance through novel and efficient ML approaches, often resulting in overoptimistic predictive estimates. However, these advancements frequently neglect the inherent biases stemming from network properties, particularly in biological contexts. RESULTS In this study, we examined the biases inherent in ML models during the learning and prediction of protein-molecular interactions, particularly those arising from the scale-free property of biological networks-a characteristic where in a few nodes have many connections while most have very few. Our comprehensive analysis across diverse tasks, datasets, and ML methods provides compelling evidence of these biases. We discovered that the training and evaluation of ML models are profoundly influenced by network topology, potentially distorting model performance assessments. To mitigate this issue, we propose the degree distribution balanced (DDB) sampling strategy, a straightforward yet potent approach that alleviates biases stemming from network properties. This method further underscores the limitations of certain ML models in learning protein-molecular interactions solely from intrinsic molecular features. CONCLUSIONS Our findings present a novel perspective for assessing the performance of ML models in inferring protein-molecular interactions with greater fairness. By addressing biases introduced by network properties, the DDB sampling approach provides a more balanced and precise assessment of model capabilities. These insights hold the potential to bolster the reliability of ML models in bioinformatics, fostering a more stringent evaluation framework for predicting protein-molecular interactions.
Collapse
Affiliation(s)
- Pengpai Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Bowen Shao
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Guoqing Zhao
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China.
- National Center for Applied Mathematics, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
3
|
Lu Z, Song G, Zhu H, Lei C, Sun X, Wang K, Qin L, Chen Y, Tang J, Li M. DTIAM: a unified framework for predicting drug-target interactions, binding affinities and drug mechanisms. Nat Commun 2025; 16:2548. [PMID: 40089473 PMCID: PMC11910601 DOI: 10.1038/s41467-025-57828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Accurate and robust prediction of drug-target interactions (DTIs) plays a vital role in drug discovery but remains challenging due to limited labeled data, cold start problems, and insufficient understanding of mechanisms of action (MoA). Distinguishing activation and inhibition mechanisms is particularly critical in clinical applications. Here, we propose DTIAM, a unified framework for predicting interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets. DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training, which accurately extracts their substructure and contextual information, and thus benefits the downstream prediction based on these representations. DTIAM achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario. Moreover, independent validation demonstrates the strong generalization ability of DTIAM. All these results suggest that DTIAM can provide a practically useful tool for predicting novel DTIs and further distinguishing the MoA of candidate drugs.
Collapse
Affiliation(s)
- Zhangli Lu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Guoqiang Song
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Huimin Zhu
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Chuqi Lei
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Kaili Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Libo Qin
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Yafei Chen
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
- Xiangjiang Laboratory, Changsha, 410205, China.
- Furong Laboratory, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Shen X, Yan S, Zeng T, Xia F, Jiang D, Wan G, Cao D, Wu R. TarIKGC: A Target Identification Tool Using Semantics-Enhanced Knowledge Graph Completion with Application to CDK2 Inhibitor Discovery. J Med Chem 2025; 68:1793-1809. [PMID: 39745279 DOI: 10.1021/acs.jmedchem.4c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Target identification is a critical stage in the drug discovery pipeline. Various computational methodologies have been dedicated to enhancing the classification performance of compound-target interactions, yet significant room remains for improving the recommendation performance. To address this challenge, we developed TarIKGC, a tool for target prioritization that leverages semantics enhanced knowledge graph (KG) completion. This method harnesses knowledge representation learning within a heterogeneous compound-target-disease network. Specifically, TarIKGC combines an attention-based aggregation graph neural network with a multimodal feature extractor network to simultaneously learn internal semantic features from biomedical entities and topological features from the KG. Furthermore, a KG embedding model is employed to identify missing relationships among compounds and targets. In silico evaluations highlighted the superior performance of TarIKGC in drug repositioning tasks. In addition, TarIKGC successfully identified two potential cyclin-dependent kinase 2 (CDK2) inhibitors with novel scaffolds through reverse target fishing. Both compounds exhibited antiproliferative activities across multiple therapeutic indications targeting CDK2.
Collapse
Affiliation(s)
- Xiaojuan Shen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shijia Yan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Xia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dejun Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Guohui Wan
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ruibo Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Xie Y, Wang X, Wang P, Bi X. A pseudo-label supervised graph fusion attention network for drug–target interaction prediction. EXPERT SYSTEMS WITH APPLICATIONS 2025; 259:125264. [DOI: 10.1016/j.eswa.2024.125264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Yang B, Liu Y, Wu J, Bai F, Zheng M, Zheng J. GENNDTI: Drug-Target Interaction Prediction Using Graph Neural Network Enhanced by Router Nodes. IEEE J Biomed Health Inform 2024; 28:7588-7598. [PMID: 40030413 DOI: 10.1109/jbhi.2024.3402529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Identifying drug-target interactions (DTI) is crucial in drug discovery and repurposing, and in silico techniques for DTI predictions are becoming increasingly important for reducing time and cost. Most interaction-based DTI models rely on the guilt-by-association principle that "similar drugs can interact with similar targets". However, such methods utilize precomputed similarity matrices and cannot dynamically discover intricate correlations. Meanwhile, some methods enrich DTI networks by incorporating additional networks like DDI and PPI networks, enriching biological signals to enhance DTI prediction. While these approaches have achieved promising performance in DTI prediction, such coarse-grained association data do not explain the specific biological mechanisms underlying DTIs. In this work, we propose GENNDTI, which constructs biologically meaningful routers to represent and integrate the salient properties of drugs and targets. Similar drugs or targets connect to more same router nodes, capturing property sharing. In addition, heterogeneous encoders are designed to distinguish different types of interactions, modeling both real and constructed interactions. This strategy enriches graph topology and enhances prediction efficiency as well. We evaluate the proposed method on benchmark datasets, demonstrating comparative performance over existing methods. We specifically analyze router nodes to validate their efficacy in improving predictions and providing biological explanations.
Collapse
|
7
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
8
|
Liu B, Tsoumakas G. Integrating Similarities via Local Interaction Consistency and Optimizing Area Under the Curve Measures via Matrix Factorization for Drug-Target Interaction Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2212-2225. [PMID: 39226198 DOI: 10.1109/tcbb.2024.3453499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
In drug discovery, identifying drug-target interactions (DTIs) via experimental approaches is a tedious and expensive procedure. Computational methods efficiently predict DTIs and recommend a small part of potential interacting pairs for further experimental confirmation, accelerating the drug discovery process. Although fusing heterogeneous drug and target similarities can improve the prediction ability, the existing similarity combination methods ignore the interaction consistency for neighbour entities. Furthermore, area under the precision-recall curve (AUPR) and area under the receiver operating characteristic curve (AUC) are two widely used evaluation metrics in DTI prediction. However, the two metrics are seldom considered as losses within existing DTI prediction methods. We propose a local interaction consistency (LIC) aware similarity integration method to fuse vital information from diverse views for DTI prediction models. Furthermore, we propose two matrix factorization (MF) methods that optimize AUPR and AUC using convex surrogate losses respectively, and then develop an ensemble MF approach that takes advantage of the two area under the curve metrics by combining the two single metric based MF models. Experimental results under different prediction settings show that the proposed methods outperform various competitors in terms of the metric(s) they optimize and are reliable in discovering potential new DTIs.
Collapse
|
9
|
Li Y, Zhang X, Chen Z, Yang H, Liu Y, Wang H, Yan T, Xiang J, Wang B. Accurate prediction of drug-target interactions in Chinese and western medicine by the CWI-DTI model. Sci Rep 2024; 14:25054. [PMID: 39443630 PMCID: PMC11499656 DOI: 10.1038/s41598-024-76367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Accurate prediction of drug-target interactions (DTIs) is crucial for advancing drug discovery and repurposing. Computational methods have significantly improved the efficiency of experimental predictions for drug-target interactions in Western medicine. However, accurately predicting the complex relationships between Chinese medicine ingredients and targets remains a formidable challenge due to the vast number and high heterogeneity of these ingredients. In this study, we introduce the CWI-DTI method, which achieves high-accuracy prediction of DTIs using a large dataset of interactive relationships of drug ingredients or candidate targets. Moreover, we present a novel dataset to evaluate the prediction accuracy of both Chinese and Western medicine. Through meticulous collection and preprocessing of data on ingredients and targets, we employ an innovative autoencoder framework to fuse multiple drug (target) topological similarity matrices. Additionally, we employ denoising blocks, sparse blocks, and stacked blocks to extract crucial features from the similarity matrix, reducing noise and enhancing accuracy across diverse datasets. Our results indicate that the CWI-DTI model shows improved performance compared to several existing state-of-the-art methods on the datasets tested in both Western and Chinese medicine databases. The findings of this study hold immense promise for advancing DTI prediction in Chinese and Western medicine, thus fostering more efficient drug discovery and repurposing endeavors. Our model is available at https://github.com/WANG-BIN-LAB/CWIDTI .
Collapse
Affiliation(s)
- Ying Li
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Zhuo Chen
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Hongye Yang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Yuhui Liu
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Huiqing Wang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Department of Pathology, Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Jie Xiang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- Department of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
10
|
Siminea N, Czeizler E, Popescu VB, Petre I, Păun A. Connecting the dots: Computational network analysis for disease insight and drug repurposing. Curr Opin Struct Biol 2024; 88:102881. [PMID: 38991238 DOI: 10.1016/j.sbi.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Network biology is a powerful framework for studying the structure, function, and dynamics of biological systems, offering insights into the balance between health and disease states. The field is seeing rapid progress in all of its aspects: data availability, network synthesis, network analytics, and impactful applications in medicine and drug development. We review the most recent and significant results in network biomedicine, with a focus on the latest data, analytics, software resources, and applications in medicine. We also discuss what in our view are the likely directions of impactful development over the next few years.
Collapse
Affiliation(s)
- Nicoleta Siminea
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania
| | - Eugen Czeizler
- Faculty of Medicine, University of Helsinki, Finland; National Institute of Research and Development for Biological Sciences, Romania
| | | | - Ion Petre
- Department of Mathematics and Statistics, University of Turku, Finland; National Institute of Research and Development for Biological Sciences, Romania.
| | - Andrei Păun
- Faculty of Mathematics and Computer Science, University of Bucharest, Romania; National Institute of Research and Development for Biological Sciences, Romania.
| |
Collapse
|
11
|
Zeng X, Zhong KY, Meng PY, Li SJ, Lv SQ, Wen ML, Li Y. MvGraphDTA: multi-view-based graph deep model for drug-target affinity prediction by introducing the graphs and line graphs. BMC Biol 2024; 22:182. [PMID: 39183297 PMCID: PMC11346193 DOI: 10.1186/s12915-024-01981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Accurately identifying drug-target affinity (DTA) plays a pivotal role in drug screening, design, and repurposing in pharmaceutical industry. It not only reduces the time, labor, and economic costs associated with biological experiments but also expedites drug development process. However, achieving the desired level of computational accuracy for DTA identification methods remains a significant challenge. RESULTS We proposed a novel multi-view-based graph deep model known as MvGraphDTA for DTA prediction. MvGraphDTA employed a graph convolutional network (GCN) to extract the structural features from original graphs of drugs and targets, respectively. It went a step further by constructing line graphs with edges as vertices based on original graphs of drugs and targets. GCN was also used to extract the relationship features within their line graphs. To enhance the complementarity between the extracted features from original graphs and line graphs, MvGraphDTA fused the extracted multi-view features of drugs and targets, respectively. Finally, these fused features were concatenated and passed through a fully connected (FC) network to predict DTA. CONCLUSIONS During the experiments, we performed data augmentation on all the training sets used. Experimental results showed that MvGraphDTA outperformed the competitive state-of-the-art methods on benchmark datasets for DTA prediction. Additionally, we evaluated the universality and generalization performance of MvGraphDTA on additional datasets. Experimental outcomes revealed that MvGraphDTA exhibited good universality and generalization capability, making it a reliable tool for drug-target interaction prediction.
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Kai-Yang Zhong
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Pei-Yan Meng
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Shu-Juan Li
- Yunnan Institute of Endemic Diseases Control & Prevention, Dali, 671000, China
| | - Shuang-Qing Lv
- Institute of Surveying and Information Engineering, West Yunnan University of Applied Science, Dali, 671000, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650000, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
| |
Collapse
|
12
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
13
|
Du X, Sun X, Li M. Knowledge Graph Convolutional Network with Heuristic Search for Drug Repositioning. J Chem Inf Model 2024; 64:4928-4937. [PMID: 38837744 DOI: 10.1021/acs.jcim.4c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Drug repositioning is a strategy of repurposing approved drugs for treating new indications, which can accelerate the drug discovery process, reduce development costs, and lower the safety risk. The advancement of biotechnology has significantly accelerated the speed and scale of biological data generation, offering significant potential for drug repositioning through biomedical knowledge graphs that integrate diverse entities and relations from various biomedical sources. To fully learn the semantic information and topological structure information from the biological knowledge graph, we propose a knowledge graph convolutional network with a heuristic search, named KGCNH, which can effectively utilize the diversity of entities and relationships in biological knowledge graphs, as well as topological structure information, to predict the associations between drugs and diseases. Specifically, we design a relation-aware attention mechanism to compute the attention scores for each neighboring entity of a given entity under different relations. To address the challenge of randomness of the initial attention scores potentially impacting model performance and to expand the search scope of the model, we designed a heuristic search module based on Gumbel-Softmax, which uses attention scores as heuristic information and introduces randomness to assist the model in exploring more optimal embeddings of drugs and diseases. Following this module, we derive the relation weights, obtain the embeddings of drugs and diseases through neighborhood aggregation, and then predict drug-disease associations. Additionally, we employ feature-based augmented views to enhance model robustness and mitigate overfitting issues. We have implemented our method and conducted experiments on two data sets. The results demonstrate that KGCNH outperforms competing methods. In particular, case studies on lithium and quetiapine confirm that KGCNH can retrieve more actual drug-disease associations in the top prediction results.
Collapse
Affiliation(s)
- Xiang Du
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
- School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
| | - Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
14
|
Luo Y, Li S, Peng L, Ding P, Liang W. Predicting associations between drugs and G protein-coupled receptors using a multi-graph convolutional network. Comput Biol Chem 2024; 110:108060. [PMID: 38579550 DOI: 10.1016/j.compbiolchem.2024.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Developing new drugs is an expensive, time-consuming process that frequently involves safety concerns. By discovering novel uses for previously verified drugs, drug repurposing helps to bypass the time-consuming and costly process of drug development. As the largest family of proteins targeted by verified drugs, G protein-coupled receptors (GPCR) are vital to efficiently repurpose drugs by inferring their associations with drugs. Drug repurposing may be sped up by computational models that predict the strength of novel drug-GPCR pairs interaction. To this end, a number of models have been put forth. In existing methods, however, drug structure, drug-drug interactions, GPCR sequence, and subfamily information couldn't simultaneously be taken into account to detect novel drugs-GPCR relationships. In this study, based on a multi-graph convolutional network, an end-to-end deep model was developed to efficiently and precisely discover latent drug-GPCR relationships by combining data from multi-sources. We demonstrated that our model, based on multi-graph convolutional networks, outperformed rival deep learning techniques as well as non-deep learning models in terms of inferring drug-GPCR relationships. Our results indicated that integrating data from multi-sources can lead to further advancement.
Collapse
Affiliation(s)
- Yuxun Luo
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Shasha Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| | - Pingjian Ding
- School of Computer Science, University of South China, Hengyang, Hunan 421001, China
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China; Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China.
| |
Collapse
|
15
|
Zhang S, Tian X, Chen C, Su Y, Huang W, Lv X, Chen C, Li H. AIGO-DTI: Predicting Drug-Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms. J Chem Inf Model 2024; 64:4373-4384. [PMID: 38743013 DOI: 10.1021/acs.jcim.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Artificial intelligence-based methods for predicting drug-target interactions (DTIs) aim to explore reliable drug candidate targets rapidly and cost-effectively to accelerate the drug development process. However, current methods are often limited by the topological regularities of drug molecules, making them difficult to generalize to a broader chemical space. Additionally, the use of similarity to measure DTI network links often introduces noise, leading to false DTI relationships and affecting the prediction accuracy. To address these issues, this study proposes an Adaptive Iterative Graph Optimization (AIGO)-DTI prediction framework. This framework integrates atomic cluster information and enhances molecular features through the design of functional group prompts and graph encoders, optimizing the construction of DTI association networks. Furthermore, the optimization of graph structure is transformed into a node similarity learning problem, utilizing multihead similarity metric functions to iteratively update the network structure to improve the quality of DTI information. Experimental results demonstrate the outstanding performance of AIGO-DTI on multiple public data sets and label reversal data sets. Case studies, molecular docking, and existing research validate its effectiveness and reliability. Overall, the method proposed in this study can construct comprehensive and reliable DTI association network information, providing new graphing and optimization strategies for DTI prediction, which contribute to efficient drug development and reduce target discovery costs.
Collapse
Affiliation(s)
- Sizhe Zhang
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Ying Su
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Wanhua Huang
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046 Xinjiang, China
| | - Hongyi Li
- Xinjiang University, Urumqi, 830046 Xinjiang, China
| |
Collapse
|
16
|
Bian J, Lu H, Dong G, Wang G. Hierarchical multimodal self-attention-based graph neural network for DTI prediction. Brief Bioinform 2024; 25:bbae293. [PMID: 38920341 PMCID: PMC11200190 DOI: 10.1093/bib/bbae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Drug-target interactions (DTIs) are a key part of drug development process and their accurate and efficient prediction can significantly boost development efficiency and reduce development time. Recent years have witnessed the rapid advancement of deep learning, resulting in an abundance of deep learning-based models for DTI prediction. However, most of these models used a single representation of drugs and proteins, making it difficult to comprehensively represent their characteristics. Multimodal data fusion can effectively compensate for the limitations of single-modal data. However, existing multimodal models for DTI prediction do not take into account both intra- and inter-modal interactions simultaneously, resulting in limited presentation capabilities of fused features and a reduction in DTI prediction accuracy. A hierarchical multimodal self-attention-based graph neural network for DTI prediction, called HMSA-DTI, is proposed to address multimodal feature fusion. Our proposed HMSA-DTI takes drug SMILES, drug molecular graphs, protein sequences and protein 2-mer sequences as inputs, and utilizes a hierarchical multimodal self-attention mechanism to achieve deep fusion of multimodal features of drugs and proteins, enabling the capture of intra- and inter-modal interactions between drugs and proteins. It is demonstrated that our proposed HMSA-DTI has significant advantages over other baseline methods on multiple evaluation metrics across five benchmark datasets.
Collapse
Affiliation(s)
- Jilong Bian
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Hao Lu
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, Heilongjiang 150040, China
| |
Collapse
|
17
|
Pan F, Yin C, Liu SQ, Huang T, Bian Z, Yuen PC. BindingSiteDTI: differential-scale binding site modelling for drug-target interaction prediction. Bioinformatics 2024; 40:btae308. [PMID: 38730554 PMCID: PMC11256917 DOI: 10.1093/bioinformatics/btae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/06/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
MOTIVATION Enhanced by contemporary computational advances, the prediction of drug-target interactions (DTIs) has become crucial in developing de novo and effective drugs. Existing deep learning approaches to DTI prediction are frequently beleaguered by a tendency to overfit specific molecular representations, which significantly impedes their predictive reliability and utility in novel drug discovery contexts. Furthermore, existing DTI networks often disregard the molecular size variance between macro molecules (targets) and micro molecules (drugs) by treating them at an equivalent scale that undermines the accurate elucidation of their interaction. RESULTS We propose a novel DTI network with a differential-scale scheme to model the binding site for enhancing DTI prediction, which is named as BindingSiteDTI. It explicitly extracts multiscale substructures from targets with different scales of molecular size and fixed-scale substructures from drugs, facilitating the identification of structurally similar substructural tokens, and models the concealed relationships at the substructural level to construct interaction feature. Experiments conducted on popular benchmarks, including DUD-E, human, and BindingDB, shown that BindingSiteDTI contains significant improvements compared with recent DTI prediction methods. AVAILABILITY AND IMPLEMENTATION The source code of BindingSiteDTI can be accessed at https://github.com/MagicPF/BindingSiteDTI.
Collapse
Affiliation(s)
- Feng Pan
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Chong Yin
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Si-Qi Liu
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
- Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong (Shenzhen), 518172, China
| | - Tao Huang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Pong Chi Yuen
- Department of Computer Science, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| |
Collapse
|
18
|
Zeng X, Su GP, Li SJ, Lv SQ, Wen ML, Li Y. Drug-Online: an online platform for drug-target interaction, affinity, and binding sites identification using deep learning. BMC Bioinformatics 2024; 25:156. [PMID: 38641811 PMCID: PMC11031932 DOI: 10.1186/s12859-024-05783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Accurately identifying drug-target interaction (DTI), affinity (DTA), and binding sites (DTS) is crucial for drug screening, repositioning, and design, as well as for understanding the functions of target. Although there are a few online platforms based on deep learning for drug-target interaction, affinity, and binding sites identification, there is currently no integrated online platforms for all three aspects. RESULTS Our solution, the novel integrated online platform Drug-Online, has been developed to facilitate drug screening, target identification, and understanding the functions of target in a progressive manner of "interaction-affinity-binding sites". Drug-Online platform consists of three parts: the first part uses the drug-target interaction identification method MGraphDTA, based on graph neural networks (GNN) and convolutional neural networks (CNN), to identify whether there is a drug-target interaction. If an interaction is identified, the second part employs the drug-target affinity identification method MMDTA, also based on GNN and CNN, to calculate the strength of drug-target interaction, i.e., affinity. Finally, the third part identifies drug-target binding sites, i.e., pockets. The method pt-lm-gnn used in this part is also based on GNN. CONCLUSIONS Drug-Online is a reliable online platform that integrates drug-target interaction, affinity, and binding sites identification. It is freely available via the Internet at http://39.106.7.26:8000/Drug-Online/ .
Collapse
Affiliation(s)
- Xin Zeng
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Guang-Peng Su
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China
| | - Shu-Juan Li
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Shuang-Qing Lv
- Institute of Surveying and Information Engineering West, Yunnan University of Applied Science, Dali, 671000, China
| | - Meng-Liang Wen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650000, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, 671003, China.
| |
Collapse
|
19
|
Jia P, Zhang F, Wu C, Li M. A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond. Brief Bioinform 2024; 25:bbae162. [PMID: 38739759 PMCID: PMC11089422 DOI: 10.1093/bib/bbae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/31/2024] [Indexed: 05/16/2024] Open
Abstract
Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.
Collapse
Affiliation(s)
- Pengzhen Jia
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Fuhao Zhang
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
- College of Information Engineering, Northwest A&F University, No. 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Chaojin Wu
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, 932 Lushan Road(S), Changsha 410083, China
| |
Collapse
|
20
|
Xiang X, Gao J, Ding Y. DeepPPThermo: A Deep Learning Framework for Predicting Protein Thermostability Combining Protein-Level and Amino Acid-Level Features. J Comput Biol 2024; 31:147-160. [PMID: 38100126 DOI: 10.1089/cmb.2023.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Using wet experimental methods to discover new thermophilic proteins or improve protein thermostability is time-consuming and expensive. Machine learning methods have shown powerful performance in the study of protein thermostability in recent years. However, how to make full use of multiview sequence information to predict thermostability effectively is still a challenge. In this study, we proposed a deep learning-based classifier named DeepPPThermo that fuses features of classical sequence features and deep learning representation features for classifying thermophilic and mesophilic proteins. In this model, deep neural network (DNN) and bi-long short-term memory (Bi-LSTM) are used to mine hidden features. Furthermore, local attention and global attention mechanisms give different importance to multiview features. The fused features are fed to a fully connected network classifier to distinguish thermophilic and mesophilic proteins. Our model is comprehensively compared with advanced machine learning algorithms and deep learning algorithms, proving that our model performs better. We further compare the effects of removing different features on the classification results, demonstrating the importance of each feature and the robustness of the model. Our DeepPPThermo model can be further used to explore protein diversity, identify new thermophilic proteins, and guide directed mutations of mesophilic proteins.
Collapse
Affiliation(s)
- Xiaoyang Xiang
- School of Science, Jiangnan University, Wuxi, P. R. China
| | - Jiaxuan Gao
- School of Science, Jiangnan University, Wuxi, P. R. China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
21
|
Morehead A, Cheng J. Geometry-complete perceptron networks for 3D molecular graphs. Bioinformatics 2024; 40:btae087. [PMID: 38373819 PMCID: PMC10904142 DOI: 10.1093/bioinformatics/btae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
MOTIVATION The field of geometric deep learning has recently had a profound impact on several scientific domains such as protein structure prediction and design, leading to methodological advancements within and outside of the realm of traditional machine learning. Within this spirit, in this work, we introduce GCPNet, a new chirality-aware SE(3)-equivariant graph neural network designed for representation learning of 3D biomolecular graphs. We show that GCPNet, unlike previous representation learning methods for 3D biomolecules, is widely applicable to a variety of invariant or equivariant node-level, edge-level, and graph-level tasks on biomolecular structures while being able to (1) learn important chiral properties of 3D molecules and (2) detect external force fields. RESULTS Across four distinct molecular-geometric tasks, we demonstrate that GCPNet's predictions (1) for protein-ligand binding affinity achieve a statistically significant correlation of 0.608, more than 5%, greater than current state-of-the-art methods; (2) for protein structure ranking achieve statistically significant target-local and dataset-global correlations of 0.616 and 0.871, respectively; (3) for Newtownian many-body systems modeling achieve a task-averaged mean squared error less than 0.01, more than 15% better than current methods; and (4) for molecular chirality recognition achieve a state-of-the-art prediction accuracy of 98.7%, better than any other machine learning method to date. AVAILABILITY AND IMPLEMENTATION The source code, data, and instructions to train new models or reproduce our results are freely available at https://github.com/BioinfoMachineLearning/GCPNet.
Collapse
Affiliation(s)
- Alex Morehead
- Electrical Engineering & Computer Science, University of Missouri-Columbia, Columbia, MO 65211, United States
| | - Jianlin Cheng
- Electrical Engineering & Computer Science, University of Missouri-Columbia, Columbia, MO 65211, United States
| |
Collapse
|
22
|
Galluzzo Y. A comprehensive review of the data and knowledge graphs approaches in bioinformatics. COMPUTER SCIENCE AND INFORMATION SYSTEMS 2024; 21:1055-1075. [DOI: 10.2298/csis230530027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The scientific community is currently showing strong interest in constructing knowledge graphs from heterogeneous domains (genomic, pharmaceutical, clinical etc.). The main goal here is to support researchers in gaining an immediate overview of the biomedical and clinical data that can be utilized to construct and extend KGs. A in-depth overview of the available biomedical data and the latest applications of knowledge graphs, from the biological to the clinical context, is provided showing the most recent methods of representing biomedical knowledge with embeddings (KGEs). Furthermore, this review, differentiates biomedical databases based on their construction process (whether manually curated by experts or not), aiming to offer a detailed overview and guide researchers in selecting the appropriate database for their research considering to the specific project needs, available resources, and data complexity. In conclusion, the review highlights current challenges: integration of different knowledge graphs and the interpretability of predictions of new relations.
Collapse
|
23
|
Wu H, Liu J, Jiang T, Zou Q, Qi S, Cui Z, Tiwari P, Ding Y. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169:623-636. [PMID: 37976593 DOI: 10.1016/j.neunet.2023.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Tengsheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, 215009, China.
| | - Quan Zou
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Shujie Qi
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden.
| | - Yijie Ding
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| |
Collapse
|
24
|
Zeng M, Wu Y, Li Y, Yin R, Lu C, Duan J, Li M. LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism. Bioinformatics 2023; 39:btad752. [PMID: 38109668 PMCID: PMC10749772 DOI: 10.1093/bioinformatics/btad752] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/13/2023] [Accepted: 12/17/2023] [Indexed: 12/20/2023] Open
Abstract
MOTIVATION There is mounting evidence that the subcellular localization of lncRNAs can provide valuable insights into their biological functions. In the real world of transcriptomes, lncRNAs are usually localized in multiple subcellular localizations. Furthermore, lncRNAs have specific localization patterns for different subcellular localizations. Although several computational methods have been developed to predict the subcellular localization of lncRNAs, few of them are designed for lncRNAs that have multiple subcellular localizations, and none of them take motif specificity into consideration. RESULTS In this study, we proposed a novel deep learning model, called LncLocFormer, which uses only lncRNA sequences to predict multi-label lncRNA subcellular localization. LncLocFormer utilizes eight Transformer blocks to model long-range dependencies within the lncRNA sequence and shares information across the lncRNA sequence. To exploit the relationship between different subcellular localizations and find distinct localization patterns for different subcellular localizations, LncLocFormer employs a localization-specific attention mechanism. The results demonstrate that LncLocFormer outperforms existing state-of-the-art predictors on the hold-out test set. Furthermore, we conducted a motif analysis and found LncLocFormer can capture known motifs. Ablation studies confirmed the contribution of the localization-specific attention mechanism in improving the prediction performance. AVAILABILITY AND IMPLEMENTATION The LncLocFormer web server is available at http://csuligroup.com:9000/LncLocFormer. The source code can be obtained from https://github.com/CSUBioGroup/LncLocFormer.
Collapse
Affiliation(s)
- Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yiming Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL 32603, United States
| | - Chengqian Lu
- School of Computer Science, Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junwen Duan
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
25
|
Chen J, Gu Z, Lai L, Pei J. In silico protein function prediction: the rise of machine learning-based approaches. MEDICAL REVIEW (2021) 2023; 3:487-510. [PMID: 38282798 PMCID: PMC10808870 DOI: 10.1515/mr-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Proteins function as integral actors in essential life processes, rendering the realm of protein research a fundamental domain that possesses the potential to propel advancements in pharmaceuticals and disease investigation. Within the context of protein research, an imperious demand arises to uncover protein functionalities and untangle intricate mechanistic underpinnings. Due to the exorbitant costs and limited throughput inherent in experimental investigations, computational models offer a promising alternative to accelerate protein function annotation. In recent years, protein pre-training models have exhibited noteworthy advancement across multiple prediction tasks. This advancement highlights a notable prospect for effectively tackling the intricate downstream task associated with protein function prediction. In this review, we elucidate the historical evolution and research paradigms of computational methods for predicting protein function. Subsequently, we summarize the progress in protein and molecule representation as well as feature extraction techniques. Furthermore, we assess the performance of machine learning-based algorithms across various objectives in protein function prediction, thereby offering a comprehensive perspective on the progress within this field.
Collapse
Affiliation(s)
- Jiaxiao Chen
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhonghui Gu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| | - Jianfeng Pei
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences (2021RU014), Beijing, China
| |
Collapse
|
26
|
Xu F, Yang Z, Wang L, Meng D, Long J. MESPool: Molecular Edge Shrinkage Pooling for hierarchical molecular representation learning and property prediction. Brief Bioinform 2023; 25:bbad423. [PMID: 38048081 PMCID: PMC10753536 DOI: 10.1093/bib/bbad423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 12/05/2023] Open
Abstract
Identifying task-relevant structures is important for molecular property prediction. In a graph neural network (GNN), graph pooling can group nodes and hierarchically represent the molecular graph. However, previous pooling methods either drop out node information or lose the connection of the original graph; therefore, it is difficult to identify continuous subtructures. Importantly, they lacked interpretability on molecular graphs. To this end, we proposed a novel Molecular Edge Shrinkage Pooling (MESPool) method, which is based on edges (or chemical bonds). MESPool preserves crucial edges and shrinks others inside the functional groups and is able to search for key structures without breaking the original connection. We compared MESPool with various well-known pooling methods on different benchmarks and showed that MESPool outperforms the previous methods. Furthermore, we explained the rationality of MESPool on some datasets, including a COVID-19 drug dataset.
Collapse
Affiliation(s)
- Fanding Xu
- School of Life Science and Technology, Xi’an Jiaotong University, 710049 Shaanxi, China
| | - Zhiwei Yang
- School of Physics, Xi’an Jiaotong University, 710049 Shaanxi, China
| | - Lizhuo Wang
- School of Life Science and Technology, Xi’an Jiaotong University, 710049 Shaanxi, China
| | - Deyu Meng
- Rearch Institute for Mathematics and Mathematical Technology, Xi’an Jiaotong University, 710049 Shaanxi, China
- School of Mathematics and Statistics, Henan University, 475004 Henan, China
| | - Jiangang Long
- School of Life Science and Technology, Xi’an Jiaotong University, 710049 Shaanxi, China
| |
Collapse
|
27
|
Tang R, Sun C, Huang J, Li M, Wei J, Liu J. Predicting Drug-Protein Interactions by Self-Adaptively Adjusting the Topological Structure of the Heterogeneous Network. IEEE J Biomed Health Inform 2023; 27:5675-5684. [PMID: 37672364 DOI: 10.1109/jbhi.2023.3312374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Many powerful computational methods based on graph neural networks (GNNs) have been proposed to predict drug-protein interactions (DPIs). It can effectively reduce laboratory workload and the cost of drug discovery and drug repurposing. However, many clinical functions of drugs and proteins are unknown due to their unobserved indications. Therefore, it is difficult to establish a reliable drug-protein heterogeneous network that can describe the relationships between drugs and proteins based on the available information. To solve this problem, we propose a DPI prediction method that can self-adaptively adjust the topological structure of the heterogeneous networks, and name it SATS. SATS establishes a representation learning module based on graph attention network to carry out the drug-protein heterogeneous network. It can self-adaptively learn the relationships among the nodes based on their attributes and adjust the topological structure of the network according to the training loss of the model. Finally, SATS predicts the interaction propensity between drugs and proteins based on their embeddings. The experimental results show that SATS can effectively improve the topological structure of the network. The performance of SATS outperforms several state-of-the-art DPI prediction methods under various evaluation metrics. These prove that SATS is useful to deal with incomplete data and unreliable networks. The case studies on the top section of the prediction results further demonstrate that SATS is powerful for discovering novel DPIs.
Collapse
|
28
|
Pan S, Xia L, Xu L, Li Z. SubMDTA: drug target affinity prediction based on substructure extraction and multi-scale features. BMC Bioinformatics 2023; 24:334. [PMID: 37679724 PMCID: PMC10485962 DOI: 10.1186/s12859-023-05460-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Drug-target affinity (DTA) prediction is a critical step in the field of drug discovery. In recent years, deep learning-based methods have emerged for DTA prediction. In order to solve the problem of fusion of substructure information of drug molecular graphs and utilize multi-scale information of protein, a self-supervised pre-training model based on substructure extraction and multi-scale features is proposed in this paper. RESULTS For drug molecules, the model obtains substructure information through the method of probability matrix, and the contrastive learning method is implemented on the graph-level representation and subgraph-level representation to pre-train the graph encoder for downstream tasks. For targets, a BiLSTM method that integrates multi-scale features is used to capture long-distance relationships in the amino acid sequence. The experimental results showed that our model achieved better performance for DTA prediction. CONCLUSIONS The proposed model improves the performance of the DTA prediction, which provides a novel strategy based on substructure extraction and multi-scale features.
Collapse
Affiliation(s)
- Shourun Pan
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Leiming Xia
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Lei Xu
- College of Computer Science and Technology, Qingdao University, Qingdao, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Krix S, DeLong LN, Madan S, Domingo-Fernández D, Ahmad A, Gul S, Zaliani A, Fröhlich H. MultiGML: Multimodal graph machine learning for prediction of adverse drug events. Heliyon 2023; 9:e19441. [PMID: 37681175 PMCID: PMC10481305 DOI: 10.1016/j.heliyon.2023.e19441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Adverse drug events constitute a major challenge for the success of clinical trials. Several computational strategies have been suggested to estimate the risk of adverse drug events in preclinical drug development. While these approaches have demonstrated high utility in practice, they are at the same time limited to specific information sources. Thus, many current computational approaches neglect a wealth of information which results from the integration of different data sources, such as biological protein function, gene expression, chemical compound structure, cell-based imaging and others. In this work we propose an integrative and explainable multi-modal Graph Machine Learning approach (MultiGML), which fuses knowledge graphs with multiple further data modalities to predict drug related adverse events and general drug target-phenotype associations. MultiGML demonstrates excellent prediction performance compared to alternative algorithms, including various traditional knowledge graph embedding techniques. MultiGML distinguishes itself from alternative techniques by providing in-depth explanations of model predictions, which point towards biological mechanisms associated with predictions of an adverse drug event. Hence, MultiGML could be a versatile tool to support decision making in preclinical drug development.
Collapse
Affiliation(s)
- Sophia Krix
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Fraunhofer Center for Machine Learning, Germany
| | - Lauren Nicole DeLong
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Artificial Intelligence and its Applications Institute, School of Informatics, University of Edinburgh, 10 Crichton Street, EH8 9AB, UK
| | - Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Department of Computer Science, University of Bonn, 53115, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Fraunhofer Center for Machine Learning, Germany
- Enveda Biosciences, Boulder, CO, 80301, USA
| | - Ashar Ahmad
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Grunenthal GmbH, 52099, Aachen, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, 22525, Hamburg, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
30
|
Chen ZH, Zhao BW, Li JQ, Guo ZH, You ZH. GraphCPIs: A novel graph-based computational model for potential compound-protein interactions. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:721-728. [PMID: 37251691 PMCID: PMC10209012 DOI: 10.1016/j.omtn.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Identifying proteins that interact with drug compounds has been recognized as an important part in the process of drug discovery. Despite extensive efforts that have been invested in predicting compound-protein interactions (CPIs), existing traditional methods still face several challenges. The computer-aided methods can identify high-quality CPI candidates instantaneously. In this research, a novel model is named GraphCPIs, proposed to improve the CPI prediction accuracy. First, we establish the adjacent matrix of entities connected to both drugs and proteins from the collected dataset. Then, the feature representation of nodes could be obtained by using the graph convolutional network and Grarep embedding model. Finally, an extreme gradient boosting (XGBoost) classifier is exploited to identify potential CPIs based on the stacked two kinds of features. The results demonstrate that GraphCPIs achieves the best performance, whose average predictive accuracy rate reaches 90.09%, average area under the receiver operating characteristic curve is 0.9572, and the average area under the precision and recall curve is 0.9621. Moreover, comparative experiments reveal that our method surpasses the state-of-the-art approaches in the field of accuracy and other indicators with the same experimental environment. We believe that the GraphCPIs model will provide valuable insight to discover novel candidate drug-related proteins.
Collapse
Affiliation(s)
- Zhan-Heng Chen
- Department of Clinical Anesthesiology, Faculty of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Hao Guo
- Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Caoan Road 4800, Shanghai 201804, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
| |
Collapse
|
31
|
Li M, Zhao B, Yin R, Lu C, Guo F, Zeng M. GraphLncLoc: long non-coding RNA subcellular localization prediction using graph convolutional networks based on sequence to graph transformation. Brief Bioinform 2023; 24:6955268. [PMID: 36545797 DOI: 10.1093/bib/bbac565] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
The subcellular localization of long non-coding RNAs (lncRNAs) is crucial for understanding lncRNA functions. Most of existing lncRNA subcellular localization prediction methods use k-mer frequency features to encode lncRNA sequences. However, k-mer frequency features lose sequence order information and fail to capture sequence patterns and motifs of different lengths. In this paper, we proposed GraphLncLoc, a graph convolutional network-based deep learning model, for predicting lncRNA subcellular localization. Unlike previous studies encoding lncRNA sequences by using k-mer frequency features, GraphLncLoc transforms lncRNA sequences into de Bruijn graphs, which transforms the sequence classification problem into a graph classification problem. To extract the high-level features from the de Bruijn graph, GraphLncLoc employs graph convolutional networks to learn latent representations. Then, the high-level feature vectors derived from de Bruijn graph are fed into a fully connected layer to perform the prediction task. Extensive experiments show that GraphLncLoc achieves better performance than traditional machine learning models and existing predictors. In addition, our analyses show that transforming sequences into graphs has more distinguishable features and is more robust than k-mer frequency features. The case study shows that GraphLncLoc can uncover important motifs for nucleus subcellular localization. GraphLncLoc web server is available at http://csuligroup.com:8000/GraphLncLoc/.
Collapse
Affiliation(s)
- Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Baoying Zhao
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston 021382, USA
| | - Chengqian Lu
- School of Computer Science, Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, China
| | - Fei Guo
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Zeng
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
32
|
Wang K, Zhou R, Wu Y, Li M. RLBind: a deep learning method to predict RNA-ligand binding sites. Brief Bioinform 2023; 24:6832814. [PMID: 36398911 DOI: 10.1093/bib/bbac486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.
Collapse
Affiliation(s)
- Kaili Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
33
|
Dehnavi A, Nazem F, Ghasemi F, Fassihi A, Rasti R. A GU-Net-based architecture predicting ligand–Protein-binding atoms. JOURNAL OF MEDICAL SIGNALS & SENSORS 2023. [DOI: 10.4103/jmss.jmss_142_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Zhang Y, Hu Y, Li H, Liu X. Drug-protein interaction prediction via variational autoencoders and attention mechanisms. Front Genet 2022; 13:1032779. [PMID: 36313473 PMCID: PMC9614151 DOI: 10.3389/fgene.2022.1032779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 09/29/2023] Open
Abstract
During the process of drug discovery, exploring drug-protein interactions (DPIs) is a key step. With the rapid development of biological data, computer-aided methods are much faster than biological experiments. Deep learning methods have become popular and are mainly used to extract the characteristics of drugs and proteins for further DPIs prediction. Since the prediction of DPIs through machine learning cannot fully extract effective features, in our work, we propose a deep learning framework that uses variational autoencoders and attention mechanisms; it utilizes convolutional neural networks (CNNs) to obtain local features and attention mechanisms to obtain important information about drugs and proteins, which is very important for predicting DPIs. Compared with some machine learning methods on the C.elegans and human datasets, our approach provides a better effect. On the BindingDB dataset, its accuracy (ACC) and area under the curve (AUC) reach 0.862 and 0.913, respectively. To verify the robustness of the model, multiclass classification tasks are performed on Davis and KIBA datasets, and the ACC values reach 0.850 and 0.841, respectively, thus further demonstrating the effectiveness of the model.
Collapse
Affiliation(s)
- Yue Zhang
- School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China
| | | | | | | |
Collapse
|
35
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
36
|
Zhao L, Zhu Y, Wang J, Wen N, Wang C, Cheng L. A brief review of protein-ligand interaction prediction. Comput Struct Biotechnol J 2022; 20:2831-2838. [PMID: 35765652 PMCID: PMC9189993 DOI: 10.1016/j.csbj.2022.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 01/21/2023] Open
Abstract
The task of identifying protein–ligand interactions (PLIs) plays a prominent role in the field of drug discovery. However, it is infeasible to identify potential PLIs via costly and laborious in vitro experiments. There is a need to develop PLI computational prediction approaches to speed up the drug discovery process. In this review, we summarize a brief introduction to various computation-based PLIs. We discuss these approaches, in particular, machine learning-based methods, with illustrations of different emphases based on mainstream trends. Moreover, we analyzed three research dynamics that can be further explored in future studies.
Collapse
Affiliation(s)
- Lingling Zhao
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Yan Zhu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Naifeng Wen
- School of Mechanical and Electrical Engineering, Dalian Minzu University, Dalian, China
| | - Chunyu Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
- Corresponding authors.
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China
- Corresponding authors.
| |
Collapse
|
37
|
Park J, Sung G, Lee S, Kang S, Park C. ACGCN: Graph Convolutional Networks for Activity Cliff Prediction between Matched Molecular Pairs. J Chem Inf Model 2022; 62:2341-2351. [PMID: 35522160 DOI: 10.1021/acs.jcim.2c00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the interesting issues in drug-target interaction studies is the activity cliff (AC), which is usually defined as structurally similar compounds with large differences in activity toward a common target. The AC is of great interest in medicinal chemistry as it may provide clues to understanding the complex properties of the target proteins, paving the way for practical applications aimed at the discovery of more potent drugs. In this paper, we propose graph convolutional networks for the prediction of AC and designate the proposed models as Activity Cliff prediction using Graph Convolutional Networks (ACGCNs). The results show that ACGCNs outperform several off-the-shelf methods when predicting ACs of three popular target data sets for thrombin, Mu opioid receptor, and melanocortin receptor. Finally, we utilize gradient-weighted class activation mapping to visualize activation weights at nodes in the molecular graphs, demonstrating its potential to contribute to the ability to identify important substructures for molecular docking.
Collapse
Affiliation(s)
- Junhui Park
- Department of Statistics and Data Science, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 03722, South Korea
| | - Gaeun Sung
- TESSER Inc., 544 Eonju-ro, Gangnam-gu, Seoul 06147, South Korea
| | - SeungHyun Lee
- TESSER Inc., 544 Eonju-ro, Gangnam-gu, Seoul 06147, South Korea
| | - SeungHo Kang
- Department of Statistics and Data Science, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 03722, South Korea
| | - ChunKyun Park
- Department of Statistics and Data Science, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|